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Abstract

Motivated by applications of large-scale graph clustering, we study random-walk-based local
algorithms whose running times depend only on the size of the output cluster, rather than the
entire graph. In particular, we develop a method with better theoretical guarantee compared to
all previous work, both in terms of the clustering accuracy and the conductance of the output
set. We also prove that our analysis is tight, and perform empirical evaluation to support our
theory on both synthetic and real data.

More specifically, our method outperforms prior work when the cluster is well-connected. In
fact, the better it is well-connected inside, the more significant improvement we can obtain. Our
results shed light on why in practice some random-walk-based algorithms perform better than
its previous theory, and help guide future research about local clustering.

1 Introduction

As a central problem in machine learning, clustering methods have been applied to data mining,
computer vision, social network analysis. Although a huge number of results are known in this
area, there is still need to explore methods that are robust and efficient on large data sets, and
have good theoretical guarantees. In particular, several algorithms restrict the number of clusters,
or impose constraints that make these algorithms impractical for large data sets.

To solve those issues, recently, local random-walk clustering algorithms [ST04, ACL06] have
been introduced. The main idea behind those algorithms is to find a good cluster around a specific
node. These techniques, thanks to their scalability, has had high impact in practical applications
[LLDM09, GLMY11, GS12, AGM12, LLM10, WLS+12]. Nevertheless, the theoretical understand-
ing of these techniques is still very limited. In this paper, we make an important contribution in
this direction. First, we relate for the first time the performance of these local algorithms with the
internal connectivity of a cluster instead of analyzing only its external connectivity. This change of
perspective is relevant for practical applications where we are not only interested to find clusters
that are loosely connected with the rest of the world, but also clusters that are well-connected
internally. In particular, we show theoretically and empirically that this internal connectivity is a
fundamental parameter for those algorithms and, by leveraging it, it is possible to improve their
performances.

Formally, we study the clustering problem where the data set is given by a similarity matrix
as a graph: given an undirected1 graph G = (V,E), we want to find a set S that minimizes the

∗Part of this work was done when the authors are at Google Research New York City. An extended abstract of
this paper has appeared in the proceedings of the 30th International Conference on Machine Learning (ICML 2013).

1All our results can be easily generalized to weighted graphs.
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relative number of edges going out of S with respect to the size of S (or the size of S̄ if S is larger
than S̄). To capture this concept rigorously, we consider the cut conductance of a set S as:2

φc(S)
def
=

|E(S, S̄)|
min{vol(S), vol(S̄)}

,

where vol(S)
def
=
∑

v∈S deg(v). Finding S with the smallest φc(S) is called the conductance min-
imization. This measure is a well-studied measure in different disciplines [SM00, ST04, ACL06,
GLMY11, GS12], and has been identified as one of the most important cut-based measures in the lit-
erature [Sch07]. Many approximation algorithms have been developed for the problem, but most of
them are global ones: their running time depends at least linearly on the size of the graph. A recent
trend, initiated by Spielman and Teng [ST04], and then followed by [ST08, ACL06, AP09, GT12],
attempts to solve this conductance minimization problem locally, with running time only dependent
on the volume of the output set.

In particular, if there exists a set A ⊂ V with φc(A) ≤ Ψ, these local algorithms guarantee
the existence of some set Ag ⊆ A with at least half the volume, such that for any “good” starting
vertex v ∈ Ag, they output a set S with conductance φc(S) = Õ(

√
Ψ).

Finding Well-Connectedness Clusters. All local clustering algorithms developed so far, both
theoretical ones and empirical ones, only assume that φc(A) is small, i.e., A is poorly connected
to Ā. Notice that such set A, no matter how small φc(A) is, may be poorly connected or even
disconnected inside. This cannot happen in reality if A is a “good” cluster, and in practice we are
often interested in finding mostly good clusters. This motivates us to study an extra measure on
A, that is the connectedness of A, denoted as Conn(A) and we will define it formally in Section 2.
We assume that, in addition to prior work, the cluster A satisfies the gap assumption

Gap = Gap(A)
def
=

Conn(A)

Ψ
≥ Ω (1) ,

which says that A is better connected inside than it is connected to Ā. This assumption is partic-
ularly relevant when the edges of the graph represent pairwise similarity scores extracted from a
machine learning algorithm: we would expect similar nodes to be well connected within themselves
while dissimilar nodes to be loosely connected. As a result, it is not surprising that the notion of
connectedness is not new. For instance [KVV04] studied a bicriteria optimization for this objective.
However, local algorithms based on the above gap assumption is not well studied.3

Our Results. Under the gap assumption Gap ≥ Ω(1), can we guarantee any better cut conduc-
tance than the previously shown Õ(

√
Ψ) ones? We prove that the answer is affirmative, along with

some other desirable properties. In particular, we prove:

Theorem 1. If there exists a non-empty set A ⊂ V such that φc(A) ≤ Ψ and Gap ≥ Ω(1), then
there exists some Ag ⊆ A with vol(Ag) ≥ 1

2vol(A) such that, when choosing a starting vertex v ∈ Ag,
the PageRank-Nibble algorithm outputs a set S with

1. vol(S \A) ≤ O( 1
Gap

)vol(A),

2. vol(A \ S) ≤ O( 1
Gap

)vol(A),

2Others also study a related notion called expansion, i.e., |E(S,S̄)|
min{|S|,|S̄|} or |E(S,S̄)|

|S|·|S̄| , but there exist well-known

reductions between the approximation algorithms on them.
3One relevant paper using this assumption is [MMV12], who provided a global SDP-based algorithm to approximate

the cut conductance.
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3. φc(S) ≤ O(
√

Ψ/Gap), and

with running time O(vol(A)
Ψ·Gap ) ≤ O(vol(A)

Ψ ).

We interpret the above theorem as follows. The first two properties imply that under Gap ≥
Ω(1), the volume for vol(S\A) and vol(A\S) are both small in comparison to vol(A), and the larger
the gap is, the more accurate S approximates A.4 For the third property on the cut conductance
φc(S), we notice that our guarantee O(

√
Ψ/Gap) ≤ O(

√
Ψ) outperforms all previous work on local

clustering under this gap assumption. In addition, Gap might be very large in reality. For instance
when A is a very-well-connected cluster it might satisfy Conn(A) = polylog(n), and as a consequence
Gap may be as large as Ω̃(1/Ψ). In this case our Theorem 1 guarantees a polylog(n) approximation
to the cut conductance.

Our proof of Theorem 1 uses almost the same PageRank algorithm as [ACL06], but with a
very different analysis specifically designed for our gap assumption.5 This algorithm is simple and
clean, and can be described in four steps: 1) compute the (approximate) PageRank vector starting
from a vertex v ∈ Ag with carefully chosen parameters, 2) sort all the vertices according to their
(normalized) probabilities in this vector, 3) study all sweep cuts that are those separating high-
value vertices from low-value ones, and 4) output the sweep cut with the best cut conductance.
See Algorithm 1 on page 12 for details.

We also prove that our analysis is tight.

Theorem 2. There exists a graph G = (V,E) and a non-empty A ⊂ V with Ψ and Gap = Ω(1),
such that for all starting vertices v ∈ A, none of the sweep-cut based algorithm on the PageRank
vector can output a set S with cut conductance better than O(

√
Ψ/Gap).

We prove this tightness result by illustrating a hard instance, and proving upper and lower
bounds on the probabilities of reaching specific vertices (up to a very high precision). Theorem 2
does not rule out existence of another local algorithm that can perform better than O(

√
Ψ/Gap).

However, we conjecture that all existing (random-walk-based) local clustering algorithms share the
same hard instance and do not outperform O(

√
Ψ/Gap), similar to the classical case where they

all provide only Õ(
√

Ψ) guarantee due to Cheeger’s inequality. It is an interesting open question
to design a flow-based local algorithm to overcome this barrier under our gap assumption.

1.1 Prior Work

Most relevant to our work are the ones on local algorithms for clustering. On the theoretical side,
after the first such result [ST04, ST08], [ACL06] simply compute a Pagerank random walk vector
and then show that one of its sweep cuts satisfies cut conductance O(

√
Ψ log n). The computation

of this Pagerank vector is deterministic and is essentially the algorithm we adopt in this paper.
[AP09, GT12] use the theory of evolving set from [MP03]. They study a stochastic volume-biased
evolving set process that is similar to a random work. This leads to a better (but probabilistic)
running time and but essentially with the same cut conductance guarantee.

The problem of conductance minimization is UGC-hard to approximate within any constant
factor [CKK+06]. On the positive side, spectral partitioning algorithms output a solution with

4Very recently, [WLS+12] studied a variant of the PageRank random walk and their first experiment —although
analyzed in a different perspective— essentially confirmed our first two properties in Theorem 1. However, they have
not attempted to explain this in theory.

5Interestingly, their theorems do not imply any new result in our setting at least in any obvious way, and thus
proofs different from the previous work are necessary in this paper. To the best of our knowledge, equation (3.1) is
the only part that is a consequence of their result, and we will mention it without proof.
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conductance O(
√

Ψ) where this idea traces back to [Alo86] and [SJ89]; Leighton and Rao [LR99]
provide a first O(log n) approximation; and Arora, Rao and Vazirani [ARV09] provide a O(

√
log n)

approximation. Those results, along with recent improvements on the running time by for instance
[AHK10, AK07, She09], are all global algorithms: their time complexities depend at least linearly
on the size of G. There are also seminal work in machine learning to make such global algorithm
practical, including the seminal work of [LC10] for spectral partitioning.

Less relevant to our work are supervised learning on finding clusters, and there exist algorithms
that have a sub-linear running time in terms of the size of the training set [ZCZ+09, SSS08].

On the empirical side, random-walk-based graph clustering algorithms have been widely used in
practice [GS12, GLMY11, ACE+13, AGM12] as they can be implemented in a distributed manner
for very big graphs using map-reduce or similar distributed graph mining algorithms [LLDM09,
GLMY11, GS12, AGM12]. Such local algorithms have been applied for (overlapping) clustering of
big graphs for distributed computation [AGM12], or community detection on huge Youtube video
graphs [GLMY11]. There also exist variants of the random walk, such as the multi-agent random
walk, that are known to be local and perform well in practice [AvL10].

More recently, [WLS+12] studied a slight variant of the PageRank random walk and performed
supportive experiments on it. Their experiments confirmed the first two properties in our Theo-
rem 1, but their theoretical results are not strong enough to confirm it. This is because there is no
well-connectedness assumption in their paper so they are forced to study random walks that start
from a random vertex selected in A, rather than a fixed one like ours. In addition, they have not
argued about the cut conductance (like our third property in Theorem 1) of the set they output.

Clustering is an important technique for community detections, and indeed local clustering
algorithms have been widely applied there, see for instance [AL06]. Sometimes researchers care
about finding all communities, i.e., clusters, in the entire graph and this can be done by repeatedly
applying local clustering algorithms. However, if the ultimate goal is to find all clusters, global
algorithms perform better in at least in terms of minimizing conductance [LLDM09, GLMY11,
GS12, AGM12, LLM10].

1.2 Roadmap

We provide preliminaries in Section 2, and they are followed by the high level ideas of the proofs
for Theorem 1 in Section 3 and Section 4. We then briefly describe how to prove our tightness
result in Theorem 5, and end the main body of this paper with empirical studies in Section 6.

2 Preliminaries

2.1 Problem Formulation

Consider an undirected graph G(V,E) with n = |V | vertices and m = |E| edges. For any vertex
u ∈ V the degree of u is denoted by deg(u), and for any subset of the vertices S ⊆ V , volume of S

is denoted by vol(S)
def
=
∑

u∈S deg(u). Given two subsets A,B ⊂ V , let E(A,B) be the set of edges
between A and B.

For a vertex set S ⊆ V , we denote by G[S] the induced subgraph of G on S with outgoing edges
removed, by degS(u) the degree of vertex u ∈ S in G[S], and by volS(T ) the volume of T ⊆ S in
G[S].

We respectively define the cut conductance and the set conductance of a non-empty set S ⊆ V

4



as follows:

φc(S)
def
=

|E(S, S̄)|
min{vol(S), vol(S̄)}

,

φs(S)
def
= min
∅⊂T⊂S

|E(T, S \ T )|
min{volS(T ), volS(S \ T )}

.

Here φc(S) is classically known as the conductance of S, and φs(S) is classically known as the
conductance of S on the induced subgraph G[S].

We formalize our goal in this paper as a promise problem. Specifically, we assume the existence
of a non-empty cluster of the vertices A ⊂ V satisfying vol(A) ≤ 1

2vol(V ) as well as φs(A) ≥ Φ
and φc(A) ≤ Ψ. This set A is not known to the algorithm. The goal is to find some set S that
“reasonably” approximates A, and at the same time be local : running in time proportional to
vol(A) rather than n or m.

Our assumption. We assume that the following gap assumption:

Gap
def
=

Conn(A)

Ψ

def
=

Φ2/ log vol(A)

Ψ
≥ Ω(1) (Gap Assumption)

holds throughout this paper. This assumption can be understood as the cluster A is more well-
connected inside than it is connected to Ā.
(This assumption can be weakened by replacing the definition of Conn(A) with Conn(A)

def
= 1

τmix(A) ,

where τmix(A) is the mixing time for the relative pointwise distance in G[A]; or less weakly

Conn(A)
def
= λ(A)

log vol(A) where λ(A) is the spectral gap, i.e., 1 minus the second largest eigenvalue

of the random walk matrix on G[A]. We discuss them in Appendix A.)

Input parameters. Similar to prior work on local clustering, we assume the algorithm takes as
input:

• Some “good” starting vertex v ∈ A, and an oracle to output the set of neighbors for any given
vertex.

This requirement is essential because without such an oracle the algorithm may have to read
all inputs and cannot be sublinear in time; and without a starting vertex the sublinear-time
algorithm may be unable to even find an element in A.

We also need v to be “good”, as for instance the vertices on the boundary of A may not be
helpful enough in finding good clusters. We call the set of good vertices Ag ⊆ A, and a local
algorithm needs to ensure that Ag is large, i.e., vol(Ag) ≥ 1

2vol(A).6

• The value of Φ.

In practice Φ can be viewed as a parameter and can be tuned for specific data. This is in
contrast to the value of Ψ that is the target cut conductance and does not need to be known
by the algorithm.7

• A value vol0 satisfying vol(A) ∈ [vol0, 2vol0].8

6This assumption is unavoidable in all local clustering work. One can replace this 1
2

by any other constant at the
expense of worsening the guarantees by a constant factor.

7In prior work when Ψ is the only quantity studied, Ψ plays both roles as a tuning parameter and as a target.
8This requirement is optional since otherwise the algorithm can try out different powers of 2 and pick the smallest

one with a valid output. It blows up the running time only by a constant factor for local algorithms, since the running
time of the last trial dominates.
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2.2 PageRank Random Walk

We use the convention of writing vectors as row vectors in this paper. Let A be the adjacency
matrix of G, and let D be the diagonal matrix with Dii = deg(i), then the lazy random walk matrix

W
def
= 1

2(I + D−1A). Accordingly, the PageRank vector prs,α, is defined to be the unique solution
of the following linear equation (cf. [ACL06]):

prs,α = αs+ (1− α)prs,αW ,

where α ∈ (0, 1] is the teleport probability and s is a starting vector. Here s is usually a probability
vector: its entries are in [0, 1] and sum up to 1. For technical reasons we may use an arbitrary (and
possibly negative) vector s inside the proof. When it is clear from the context, we drop α in the
subscript for cleanness.

Given a vertex u ∈ V , let χu ∈ {0, 1}V be the indicator vector that is 1 only at vertex u. Given
non-empty subset S ⊆ V we denote by πS the degree-normalized uniform distribution on S, that is,
πS(u) = deg(u)

vol(S) when u ∈ S and 0 otherwise. Very often we study a PageRank vector when s = χv
is an indicator vector, and if so we abbreviate prχv by prv.

One equivalent way to study prs is to imagine the following random procedure: first pick
a non-negative integer t ∈ Z≥0 with probability α(1 − α)t, then perform a lazy random walk
starting at vector s with exactly t steps, and at last define prs to be the vector describing the
probability of reaching each vertex in this random procedure. In its mathematical formula we have
(cf. [Hav02, ACL06]):

Proposition 2.1. prs = αs+ α
∑∞

t=1(1− α)t(sW t).

This implies that prs is linear: a · prs + b · prt = pras+bt.

2.3 Approximate PageRank Vector

In the seminal work of [ACL06], they defined approximate PageRank vectors and designed an
algorithm to compute them efficiently.

Definition 2.2. An ε-approximate PageRank vector p for prs is a nonnegative PageRank vector
p = prs−r where the vector r is nonnegative and satisfies r(u) ≤ εdeg(u) for all u ∈ V .

Proposition 2.3. For any starting vector s with ‖s‖1 ≤ 1 and ε ∈ (0, 1], one can compute an
ε-approximate PageRank vector p = prs−r for some r in time O

(
1
εα

)
, with vol(supp(p)) ≤ 2

(1−α)ε .

For completeness we provide the algorithm and its proof in Appendix B. It can be verified that:

∀u ∈ V, prs(u) ≥ p(u) ≥ prs(u)− εdeg(u) . (2.1)

2.4 Sweep Cuts

Given any approximate PageRank vector p, the sweep cut (or threshold cut) technique is the

one to sort all vertices according to their degree-normalized probabilities p(u)
deg(u) , and then study

only those cuts that separate high-value vertices from low-value vertices. More specifically, let
v1, v2, . . . , vn be the decreasing order over all vertices with respect to p(u)

deg(u) . Then, define sweep

sets Spj
def
= {v1, . . . , vj} for each j ∈ [n], and sweep cuts are the corresponding cuts (Spj , S

p
j ). Usually

given a vector p, one looks for the best cut:

min
j∈[n−1]

φc(S
p
j ) .
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In almost all the cases, one only needs to enumerate j over p(vj) > 0, so the above sweep cut
procedure runs in time O

(
vol(supp(p)) + |supp(p)| · log |supp(p)|

)
. This running time is dominated

by the time to compute p (see Proposition 2.3), so it is negligible.

2.5 Lovász-Simonovits Curve

Our proof requires the technique of Lovász-Simonovits Curve that has been more or less used in
all local clustering algorithms so far. This technique was originally introduced by Lovász and
Simonovits [LS90, LS93] to study the mixing rate of Markov chains. In our language, from a
probability vector p on vertices, one can introduce a function p[x] on real number x ∈ [0, 2m]. This
function p[x] is piecewise linear, and is characterized by all of its end points as follows (letting

p(S)
def
=
∑

a∈S p(a)):

p[0]
def
= 0, p[vol(Spj )]

def
= p(Spj ) for each j ∈ [n] .

In other words, for any x ∈ [vol(Spj ), vol(Spj+1)],

p[x]
def
= p(Spj ) +

x− vol(Spj )

deg(vj+1)
p(vj+1) .

Note that p[x] is increasing and concave.

3 Guarantee Better Accuracy

In this section, we study PageRank random walks that start at a vertex v ∈ A with teleport
probability α. We claim the range of interesting α is

[
Ω(Ψ), O( Φ2

logn)
]
. This is because, at a high

level, when α � Ψ the random walk will leak too much to Ā; while when α � Φ2

logn the random
walk will not mix well inside A. In prior work, α is chosen to be Θ(Ψ), and we will instead choose

α = Θ( Φ2

logn) = Θ(Ψ ·Gap). Intuitively, this choice of α ensures that under the condition the random

walk mixes inside, it makes the walk leak as little as possible to Ā. We prove the above intuition
rigorously in this section. Specifically, we first show some properties on the exact PageRank vector
in Section 3.1, and then move to the approximate vector in Section 3.2. This essentially proves the
first two properties of Theorem 1.

3.1 Properties on the Exact Vector

We first introduce a new notation p̃rs, that is the PageRank vector (with teleport probability α)
starting at vector s but walking on the subgraph G[A].

Next, we choose the set of “good” starting vertices Ag to satisfy two properties: (1) the total
probability of leakage is upper bounded by 2Ψ

α , and (2) prv is close to p̃rv for vertices in A. Note
that the latter implies that prv mixes well inside A as long as p̃rv does so.

Lemma 3.1. There exists a set Ag ⊆ A with volume vol(Ag) ≥ 1
2vol(A) such that, for any vertex

v ∈ Ag, in a PageRank vector with teleport probability α starting at v, we have:∑
u6∈A

prv(u) ≤ 2Ψ

α
. (3.1)

In addition, there exists a non-negative leakage vector l ∈ [0, 1]V with norm ‖l‖1 ≤ 2Ψ
α satisfying

∀u ∈ A, prv(u) ≥ p̃rv(u)− p̃rl(u) . (3.2)

7



(Details of the proof are in Appendix C.1.)

Proof sketch. The proof for the first property (3.1) is classical and can be found in [ACL06]. The
idea is to study an auxiliary PageRank random walk with teleport probability α starting at the
degree-normalized uniform distribution πA, and by simple computation, this random walk leaks
to Ā with probability no more than Ψ/α. Then, using Markov bound, there exists Ag ⊆ A with
vol(Ag) ≥ 1

2vol(A) such that for each starting vertex v ∈ Ag, this leakage is no more than 2Ψ
α . This

implies (3.1) immediately.
The interesting part is (3.2). Note that prv can be viewed as the probability vector from the

following random procedure: start from vertex v, then at each step with probability α let the walk
stop, and with probability (1 − α) follow the matrix W to go to one of its neighbors (or itself)
and continue. Now, we divide this procedure into two rounds. In the first round, we run the same
PageRank random walk but whenever the walk wants to use an outgoing edge from A to leak,
we let it stop and temporarily “hold” this probability mass. We define l to be the non-negative
vector where l(u) denotes the amount of probability that we have “held” at vertex u. In the second
round, we continue our random walk only from vector l. It is worth noting that l is non-zero only
at boundary vertices in A.

Similarly, we divide the PageRank random walk for p̃rv into two rounds. In the first round we
hold exactly the same amount of probability l(u) at boundary vertices u, and in the second round
we start from l but continue this random walk only within G[A]. To bound the difference between
prv and p̃rv, we note that they share the same procedure in the first round; while for the second
round, the random procedure for prv starts at l and walks towards V \ A (so in the worst case
it may never come back to A again), while that for p̃rv starts at l and walks only inside G[A] so
induces a probability vector p̃rl on A. This gives (3.2).

At last, to see ‖l‖1 ≤ 2Ψ
α , one just needs to verify that l(u) is essentially the probability that

the original PageRank random walk leaks from vertex u. Then, ‖l‖1 ≤ 2Ψ
α follows from the fact

that the total amount of leakage is upper bounded by 2Ψ
α .

As mentioned earlier, we want to use (3.2) to lower bound prv(u) for vertices u ∈ A. We achieve
this by first lower bounding p̃rv which is the PageRank random walk on G[A]. Given a teleport

probability α that is small compared to Φ2

log vol(A) , this random walk should mix well. We formally
state it as the following lemma, and provide its proof in the Appendix C.2.

Lemma 3.2. When α ≤ O(Ψ · Gap) we have that

∀u ∈ A, p̃rv(u) ≥ 4

5

degA(u)

vol(A)
.

Here degA(u) is the degree of u on G[A], but vol(A) is with respect to the original graph.

3.2 Properties of the Approximate Vector

From this section on we always use α ≤ O(Ψ ·Gap). We then fix a starting vertex v ∈ Ag and study
an ε-approximate Pagerank vector for prv. We choose

ε =
1

10 · vol0
∈
[ 1

20vol(A)
,

1

10vol(A)

]
. (3.3)

For notational simplicity, we denote by p this ε-approximation and recall from Section 2.3 that
p = prχv−r where r is a non-negative vector with 0 ≤ r(u) ≤ εdeg(u) for every u ∈ V . Recall from
(2.1) that prv(u) ≥ p(u) ≥ prv(u)− ε · deg(u) for all u ∈ V .

We now rewrite Lemma 3.1 in the language of approximate PageRank vectors using Lemma 3.2:

8



Corollary 3.3. For any v ∈ Ag and α ≤ O(Ψ · Gap), in an ε-approximate PageRank vector to prv
denoted by p = prχv−r, we have:∑

u6∈A
p(u) ≤ 2Ψ

α
and

∑
u6∈A

r(u) ≤ 2Ψ

α
.

In addition, there exists a non-negative leakage vector l ∈ [0, 1]V with norm ‖l‖1 ≤ 2Ψ
α satisfying

∀u ∈ A, p(u) ≥ 4

5

degA(u)

vol(A)
− deg(u)

10vol(A)
− p̃rl(u) .

Proof. The only inequality that requires a proof is
∑

u6∈A r(u) ≤ 2Ψ
α . In fact, if one takes a closer

look at the algorithm to compute an approximate Pagerank vector (cf. Appendix B), the total
probability mass that will be sent to r on vertices outside A, is upper bounded by the probability
of leakage. However, the latter is upper bounded by 2Ψ

α when we choose Ag.

We are now ready to state the main lemma of this section. We show that for all reasonable
sweep sets S on this probability vector p, it satisfies that vol(S \A) and vol(A\S) are both at most
O
(

Ψ
α vol(A)

)
.

Lemma 3.4. In the same definition of α and p from Corollary 3.3, let sweep set Sc
def
=
{
u ∈ V :

p(u) ≥ cdeg(u)
vol(A)

}
for any constant c < 3

5 , then we have the following guarantees on the size of Sc \A
and A \ Sc:

1. vol(Sc \A) ≤ 2Ψ
αc vol(A), and

2. vol(A \ Sc) ≤
(

2Ψ
α( 3

5
−c) + 8Ψ

)
vol(A).

Proof. First we notice that p(Sc \A) ≤ p(V \A) ≤ 2Ψ
α owing to Corollary 3.3, and for each vertex

u ∈ Sc \ A it must satisfy p(u) ≥ cdeg(u)
vol(A) . Those combined imply vol(Sc \ A) ≤ 2Ψ

αc vol(A) proving
the first property.

We show the second property in two steps. First, let Ab be the set of vertices in A such that
4
5

degA(u)
vol(A) −

deg(u)
10vol(A) <

3
5

deg(u)
vol(A) . Any such vertex u ∈ Ab must have degA(u) < 7

8 deg(u). This implies

that u has to be on the boundary of A and vol(Ab) ≤ 8Ψvol(A).

Next, for a vertex u ∈ A \ Ab we have (using Corollary 3.3 again) p(u) ≥ 3
5

deg(u)
vol(A) − p̃rl(u). If

we further have u 6∈ Sc so p(u) < cdeg(u)
vol(A) , it implies that p̃rl(u) ≥ (3

5 − c)
deg(u)
vol(A) . As a consequence,

the total volume for such vertices (i.e., vol(A \ (Ab ∪ Sc))) cannot exceed ‖p̃rl‖1
3/5−cvol(A). At last,

we notice that p̃rl is a non-negative probability vector coming from a random walk procedure, so
‖p̃rl‖1 = ‖l‖1 ≤ 2Ψ

α . This in sum provides that

vol(A \ Sc) ≤ vol(A \ (Ab ∪ Sc)) + vol(Ab)

≤

(
2Ψ

α(3
5 − c)

+ 8Ψ

)
vol(A) .

Note that if one chooses α = Θ(Ψ · Gap) in the above lemma, both those two volumes are at
most O(vol(A)/Gap) satisfying the first two properties of Theorem 1.
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4 Guarantee Better Cut Conductance

In the classical work of [ACL06], they have shown that when α = Θ(Ψ), among all sweep cuts on
vector p there exists one with cut conductance O(

√
Ψ log n). In this section, we improve this result

under our gap assumption Gap ≥ Ω(1).

Lemma 4.1. Letting α = Θ(Ψ · Gap), among all sweep sets Sc =
{
u ∈ V : p(u) ≥ cdeg(u)

vol(A)

}
for

c ∈ [1
8 ,

1
4 ], there exists one, denoted by Sc∗, with cut conductance φc(Sc∗) = O(

√
Ψ/Gap).

Proof sketch. To convey the idea of the proof, we only consider the case when p = prv is the exact
PageRank vector, and the proof for the approximate case is a bit more involved and deferred to
Appendix D.1.

Suppose that all sweep sets Sc for c ∈ [1
8 ,

1
4 ] satisfy |E(Sc, V \ Sc)| ≥ E0 for some value E0,

then it suffices to prove E0 ≤ O
(

Ψ√
α

)
vol(A). This is because, if so, then there exists some Sc∗

with |E(Sc∗ , V \ Sc∗)| ≤ E0 and this combined with the result in Lemma 3.4 (i.e., vol(Sc∗) =
(1±O(1/Gap))vol(A)) gives

φc(Sc∗) ≤ O
( E0

vol(Sc∗)

)
= O(Ψ/

√
α) = O(

√
Ψ/Gap) .

We introduce some classical notations before we proceed in the proof. For any vector q we denote
by q(S)

def
=
∑

u∈S q(u). Also, given a directed edge9, e = (a, b) ∈ E we let p(e) = p(a, b)
def
= p(a)

deg(a) ,

and for a set of directed edges E′ we let p(E′)
def
=
∑

e∈E′ p(e). We also let E(A,B)
def
= {(a, b) ∈

E | a ∈ A ∧ b ∈ B} be the set of directed edges from A to B.
Now for any set S1/4 ⊆ S ⊆ S1/8, we compute that

p(S) = prv(S) = αχv(S) + (1− α)(pW )(S)

≤ α+ (1− α)(pW )(S)

=⇒ (1− α)p(S) ≤ α(1− p(S)) + (1− α)(pW )(S)

=⇒ (1− α)p(S) ≤ 2Ψ + (1− α)(pW )(S)

=⇒ p(S) < O(Ψ) + (pW )(S) . (4.1)

Here we have used the fact that when p = prv is exact, it satisfies 1 − p(S) = p(V − S) ≤ 2Ψ/α
according to Corollary 3.3. In the next step, we use the definition of the lazy random walk matrix
W to compute that

(pW )(S)

=

( ∑
(a,b)∈E(S,S)

p(a, b) +
∑

(a,b)∈E(S,S̄)

p(a, b) + p(b, a)

2

)

=

(
1

2
p
(
E(S, S)

)
+

1

2
p
(
E(S, S) ∪ E(S, S̄) ∪ E(S̄, S)

))
≤
(

1

2
p
[∣∣E(S, S)

∣∣]+
1

2
p
[∣∣E(S, S) ∪ E(S, S̄) ∪ E(S̄, S)

∣∣])
=

(
1

2
p
[
vol(S)−

∣∣E(S, S̄)
∣∣]+

1

2
p
[
vol(S) +

∣∣E(S, S̄)
∣∣])

≤
(

1

2
p
[
vol(S)− E0

]
+

1

2
p
[
vol(S) + E0

])
. (4.2)

9G is an undirected graph, but we study undirected edges with specific directions for analysis purpose only.
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Digit 0 1 2 3 4 5 6 7 8 9
Ψ = φc(A) 0.00294 0.00304 0.08518 0.03316 0.22536 0.08580 0.01153 0.03258 0.09761 0.05139
φc(S) 0.00272 0.00067 0.03617 0.02220 0.00443 0.01351 0.00276 0.00456 0.03849 0.00448

Precision 0.993 0.995 0.839 0.993 0.988 0.933 0.946 0.985 0.941 0.994
Recall 0.988 0.988 0.995 0.773 0.732 0.896 0.997 0.805 0.819 0.705

Table 1: Clustering results on the USPS zipcode data set. We report precision |A ∩ S|/|S| and
recall |A ∩ S|/|A|.

Here the first inequality is due to the definition of the Lovász-Simonovits curve p[x], and the second
inequality is because p[x] is concave. Next, suppose that in addition to S1/4 ⊆ S ⊆ S1/8, we also

know that S is a sweep set, i.e., ∀a ∈ S, b 6∈ S we have p(a)
deg(a) ≥

p(b)
deg(b) . This implies p(S) = p[vol(S)]

and combining (4.1) and (4.2) we obtain that(
p[vol(S)]− p

[
vol(S)− E0

])
≤ O(Ψ) +

(
p
[
vol(S) + E0

]
− p[vol(S)]

)
.

Since we can choose S to be an arbitrary sweep set between S1/4 and S1/8, we have that the
inequality p[x]−p[x−E0] ≤ O(Ψ)+p[x+E0]−p[x] holds for all end points x ∈ [vol(S1/4), vol(S1/8)]
on the piecewise linear curve p[x]. This implies that the same inequality holds for any real number
x ∈ [vol(S1/4), vol(S1/8)] as well. We are now ready to draw our conclusion by repeatedly applying
this inequality. Letting x1 := vol(S1/4) and x2 := vol(S1/8), we have

E0

4vol(A)
≤ p[x1]− p[x1 − E0]

≤ O(Ψ) + (p[x1 + E0]− p[x1])

≤ 2 ·O(Ψ) + (p[x1 + 2E0]− p[x1 + E0]) ≤ · · ·

≤
⌊x2 − x1

E0
+ 1
⌋
O(Ψ) + (p[x2 + E0]− p[x2])

≤
vol(S1/8 \ S1/4)

E0
O(Ψ) +

E0

8vol(A)

≤
vol(S1/8 \A) + vol(A \ S1/4)

E0
O(Ψ) +

E0

8vol(A)

≤ O(Ψ/α) · vol(A)

E0
O(Ψ) +

E0

8vol(A)
,

where the first inequality uses the definition of S1/4, the fifth inequality uses the definition of S1/8,
and last inequality uses Lemma 3.4 again. After re-arranging the above inequality we conclude
that E0 ≤ O

(
Ψ√
α

)
vol(A) and finish the proof.

The lemma above essentially shows the third property of Theorem 1 and finishes the proof of
Theorem 1. For completeness of the paper, we still provide the formal proof for Theorem 1 in
Appendix D.2, and summarize our final algorithm in Algorithm 1.

5 Tightness of Our Analysis

It is a natural question to ask under our newly introduced assumption Gap ≥ Ω(1): is O(
√

Ψ/Gap)
the best cut conductance we can obtain from a local algorithm? We show that this is true if one
sticks to a sweep-cut algorithm using PageRank vectors.
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Figure 1: Our hard instance for proving tightness. One can pick for instance ` ≈ n0.4 and Ψ ≈ 1
n0.9 ,

so that n/` ≈ n0.6, Ψn ≈ n0.1 and Ψn` ≈ n0.5.

Algorithm 1 PageRank-Nibble

Input: v,Φ and vol0 ∈ [vol(A)
2 , vol(A)].

Output: set S.
1: α← Θ( Φ2

log vol(A))) = Θ(Ψ · Gap).

2: p← a 1
10·vol0

-approximate PageRank vector with starting vertex v and teleport probability α.

3: Sort all vertices in supp(p) according to p(u)
deg(u) .

4: Consider all sweep sets S′c
def
= {u ∈ supp(p) : p(u) ≥ cdeg(u)

vol0
} for c ∈ [1

8 ,
1
2 ], and let S be the one

among them with the best φc(S).

More specifically, we show that our analysis in Section 4 is tight by constructing the following
hard instance. Consider a (multi-)graph with two chains (see Figure 1) of vertices, and there are
multi-edges connecting them.10 In particular:

• the top chain (ended with vertex a and c and with midpoint b) consists of `+1 vertices where
` is even with n

` edges between each consecutive pair;

• the bottom chain (ended with vertex d and e) consists of c0
Ψ` + 1 vertices with Ψn`

c0
edges

between each consecutive pair, where the constant c0 is to be determined later; and
• vertex b and d are connected with Ψn edges.

We let the top chain to be our promised cluster A. The total volume of A is 2n + Ψn, while the
total volume of the entire graph is 4n + 2Ψn. The mixing time for A is τmix(A) = Θ(`2), and the

cut conductance φc(A) = Ψn
vol(A) ≈

Ψ
2 . Suppose that the gap assumption11 Gap

def
= 1

τmix(A)·φc(A) ≈
1

Ψ`2
� 1 is satisfied, i.e., Ψ`2 = o(1). (For instance one can let ` ≈ n0.4 and Ψ ≈ 1

n0.9 to achieve
this requirement.)

10One can transform this example into a graph without parallel edges by splitting vertices into expanders, but that
goes out of the purpose of this section.

11We are using Theorem 1 in the language of gap assumption on τmix. See Section 2.1 and Appendix Afor details.
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We then consider a PageRank random walk that starts at vertex v = a and with teleport
probability α = γ

`2
for some arbitrarily small constant γ > 0.12 Let pra be this PageRank vector,

and we prove in Appendix Ethe following lemma:

Lemma 5.1. For any γ ∈ (0, 4] and letting α = γ/`2, there exists some constant c0 such that
when studying the PageRank vector pra starting from vertex a in Figure 1, the following holds
pra(d)
deg(d) >

pra(c)
deg(c) .

This lemma implies that, for any sweep-cut algorithm based on this vector pra, even if it
computes pra exactly and looks for all possible sweep cuts, then none of them gives a better cut
conductance than O(

√
Ψ/Gap). More specifically, for any sweep set S:

• if c 6∈ S, then |E(S, V \ S)| is at least n
` because it has to contain a (multi-)edge in the top

chain. Therefore, the cut conductance φc(S) ≥ Ω( n
`vol(S)) ≥ Ω(1

` ) ≥ Ω(
√

Ψ/Gap); or

• if c ∈ S, then d must be also in S because it has a higher normalized probability than c using
Lemma 5.1. In this case, |E(S, V \S)| is at least Ψn`

c0
because it has to contain a (multi-)edge in

the bottom chain. Therefore, the cut conductance φc(S) ≥ Ω( Ψn`
vol(S)) ≥ Ω(Ψ`) = Ω(

√
Ψ/Gap).

This ends the proof of Theorem 2. �

6 Empirical Evaluation

The PageRank local clustering method has been studied empirically in various previous work. For
instance, Gleich and Seshadhri [GS12] performed experiments on 15 datasets and confirmed that
PageRank outperformed many others in terms of cut conductance, including the famous Metis
algorithm. Moreover, [LLDM09] studied PageRank against Metis+MQI which is the Metis algo-
rithm plus a flow-based post-processing. Their experiments confirmed that although Metis+MQI
outperforms PageRank in terms of cut conductance, however, the PageRank algorithm’s outputs
are more “community-like”, and they enjoy other desirable properties.

Since our PageRank-Nibble is essentially the same PageRank method as before with only the-
oretical changes in the parameters, it certainly embraces the same empirical behavior as those
literatures above. Therefore, in this section we perform experiments only for the sake of demon-
strating our theoretical discoveries in Theorem 1, without comparisons to other methods. We run
our algorithm against both synthetic and real datasets.

Recall that Theorem 1 has three properties. The first two properties are accuracy guarantees
that ensure the output set S well approximates A in terms of volume; and the third property
is a cut-conductance guarantee that ensures the output set S has small φc(S). We now provide
experimental results to support them.

Experiment 1. In the first experiment, we study a synthetic graph of 870 vertices. We carefully
choose the parameters as follows in order to confuse the PageRank-Nibble algorithm so that it
cannot identify A up to a very high accuracy. We let the vertices be divided into three disjoint
subsets: subset A (which is the desired set) of 300 vertices, subset B of 20 vertices and subset C of
550 vertices. We assume that A is constructed from the Watts-Strogatz model13 with mean degree
K = 60 and a parameter β ∈ [0, 1] to control the connectivity of G[A]: varying β makes it possible

12Although we promised in Theorem 2 to study all starting vertices v ∈ A, in this version of the paper we only
concentrate on v = a because other choices of v are only easier and can be analyzed similarly. In addition, this choice
of α = γ

`2
is consistent with the one used Theorem 1.

13See http://en.wikipedia.org/wiki/Watts_and_Strogatz_model.

13

http://en.wikipedia.org/wiki/Watts_and_Strogatz_model
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Figure 2: Experimental result on the synthetic data. The horizontal axis represents the value of β
for constructing our graph, the blue curve (left) represents the ratio φc(S)

Ψ , and the red curve (right)
represents the clustering accuracy. The vertical bars are 94% confidence intervals for 100 runs.

to interpolate between a regular lattice (β = 0) that is not-well-connected and a random graph
(β = 1) that is well-connected. We then construct the rest of the graph by throwing in random
edges, or more specifically, we add an edge
• with probability 0.3 between each pair of vertices in B and B;
• with probability 0.02 between each pair of vertices in C and C;
• with probability 0.001 between each pair of vertices in A and B;
• with probability 0.002 between each pair of vertices in A and C; and
• with probability 0.002 between each pair of vertices in B and C.

It is not hard to verify that in this randomly generated graph, the (expected) cut conductance
Ψ = φc(A) is independent of β. As a result, the larger β is, we should expect the larger the well-
connectedness A enjoys, and therefore the larger the gap Gap is in Theorem 1. This should lead to
a better performance both in terms of accuracy and conductance when β goes larger.

To confirm this, we perform an experiment on this randomly generated graph with various
choices of β. For each choice of β, we run our PageRank-Nibble algorithm with teleport probability
α chosen to be the best one in the range of [0.001, 0.3], starting vertex v chosen to be a random
one in A, and ε to be sufficiently small. We then run our algorithm 100 times each time against
a different random graph instance. We then plot in Figure 2 two curves (along with their 94%

confidence intervals) as a function of β: the average cut conductance over Ψ ratio, i.e., φ(S)
Ψ , and

the average clustering accuracy, i.e., 1− |A∆S|
|V | . Our experiment confirms our result in Theorem 1:

PageRank-Nibble performs better both in accuracy and cut conductance as Gap goes larger.

Experiment 2. In the second experiment, we use the USPS zipcode data set14 that was also used
in the work from [WLS+12]. Following their experiment, we construct a weighted k-NN graph with
k = 20 out of this data set. The similarity between vertex i and j is computed as wij = exp(−d2

ij/σ)
if i is within j’s k nearest neighbors or vice versa, and wij = 0 otherwise, where σ = 0.2× r and r
denotes the average square distance between each point to its 20th nearest neighbor.

This is a dataset with 9298 images of handwritten digits between 0 to 9, and we treat it as
10 separate binary-classification problems. For each of them, we pick an arbitrary starting vertex
in it, let α = 0.003 and ε = 0.00005, and then run our PageRank-Nibble algorithm. We report
our results in Table 1. For each of the 10 binary-classifications, we have a ground-truth set A that
contains all data points associated with the given digit. We then compare the cut conductance of
our output set φc(S) against the desired cut conductance Ψ = φc(A), and our algorithm consistently

14http://www-stat.stanford.edu/~tibs/ElemStatLearn/data.html.

14

http://www-stat.stanford.edu/~tibs/ElemStatLearn/data.html


outperforms the desired one on all 10 clusters. (Notice that it is possible to see an output set S to
have smaller conductance than A, because A is not necessarily the sparest cut in the graph.) In
addition, one can also confirm from Table 1 that our algorithm enjoys high precision and recall.
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Appendix

A Two Weaker Gap Assumptions

As mentioned in Section 2, we can relax our gap assumption to

Gap =
Conn(A)

Ψ

def
=

λ(A)

Ψ log vol(A)
≥ Ω(1) , or (Gap Assumption’)

Gap =
Conn(A)

Ψ

def
=

1

Ψ · τmix(A)
≥ Ω(1) (Gap Assumption”)

• Here λ(A) is the spectral gap, that is the difference between the first and second largest
eigenvalues of the lazy random walk matrix on G[A]. (Notice that the largest eigenvalue
of any random walk matrix is always 1.) Equivalently, λ(A) can be defined as the second
smallest eigenvalue of the Laplacian matrix of G[A].

• Here τmix is the mixing time for the relative pointwise distance in G[A] (cf. Definition 6.14
in [MR95]), that is, the minimum time required for a lazy random walk to mix relatively on
all vertices regardless of the starting distribution. Formally, let WA be the lazy random walk
matrix on G[A], and π be the stationary distribution on G[A] that is π(u) = degA(u)/volA(A),
then

τmix = min

{
t ∈ Z≥0 : max

u,v

∣∣∣∣(χvW t
A)(u)− π(u)

π(u)

∣∣∣∣ ≤ 1

2

}
.

Notice that using Cheeger’s inequality, we always have φs(A)2

log vol(A) ≤ O
( λ(A)

log vol(A)

)
≤ O

(
1

τmix

)
. This

is why (Gap Assumption”) is weaker than (Gap Assumption’) which is then weaker than (Gap
Assumption).

We emphasize that the exact statement of our Theorem 1 is still true under those two weak-
er assumptions, leading to two strictly stronger results. To see this, one only needs to restudy
Lemma 3.2 under the two new assumptions, and we provide such analysis in Appendix C.2.

B Algorithm for Computing Approximate PageRank Vector

In this section we briefly summarize the algorithm Approximate-PR (see Algorithm 2) proposed by
Andersen, Chung and Lang [ACL06] to compute an approximate PageRank vector. At high level,
Approximate-PR is an iterative algorithm, and maintains an invariant that p is always equal to
prs−r at each iteration.

Initially it lets p = ~0 and r = s so that p = ~0 = pr~0 satisfies this invariant. Notice that r does not
necessarily satisfy r(u) ≤ εdeg(u) for all vertices u, and thus this p is often not an ε-approximate
PageRank vector according to Definition 2.2 at this initial step.

In each following iteration, Approximate-PR considers a vertex u that violates the ε-approximation
of p, i.e., r(u) ≥ εdeg(u), and pushes this r(u) amount of probability mass elsewhere:

• α · r(u) amount of them is pushed to p(u);

• 1−α
2 deg(u)r(u) amount of them is pushed to r(v) for each neighbor v of u; and

• 1−α
2 r(u) amount of them remains at r(u).
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One can verify that after any push step the newly computed p and r will still satisfy p = prs−r.
This indicates that the invariant is satisfied at all iterations. When Approximate-PR terminates,
it satisfies both p = prs−r and r(u) ≤ εdeg(u) for all vertices u, so p must be an ε-approximate
PageRank vector.

We are left to show that Approximate-PR terminates quickly, and the support volume of p is
small:

Proposition 2.3. For any starting vector s with ‖s‖1 ≤ 1 and ε ∈ (0, 1], Approximate-PR computes
an ε-approximate PageRank vector p = prs−r for some r in time O

(
1
εα

)
, with vol(supp(p)) ≤ 2

(1−α)ε .

Proof sketch. To show that this algorithm converges fast, one just needs to notice that at each
iteration αr(u) ≥ αεdeg(u) amount of probability mass is pushed from vector r to vector p, so the
total amount of them cannot exceed 1 (because ‖s‖1 ≤ 1). This gives

∑T
i=1 deg(ui) ≤ 1

εα where
ui is the vertex chosen at the i-th iteration and T is the number of iterations. However, it is not
hard to verify that the total running time of Approximate-PR is exactly O

(∑T
i=1 deg(ui)

)
, and

thus Approximate-PR runs in time O
(

1
εα

)
.

To bound the support volume, we consider an arbitrary vertex u ∈ V with p(u) > 0. This p(u)
amount of probability mass must come from r(u) during the algorithm, and thus vertex u must be
pushed at least once. Notice that when u is lasted pushed, it satisfies r(u) ≥ 1−α

2 εdeg(u) after the
push, and this value r(u) cannot decrease in the remaining iterations of the algorithm. This implies
that for all u ∈ V with p(u) > 0, it must be true that r(u) ≥ 1−α

2 ε deg(u). However, we must have
‖r‖1 ≤ 1 because ‖s‖1 ≤ 1, so the total volume for such vertices cannot exceed 2

(1−α)ε .

Algorithm 2 Approximate-PR (from [ACL06])

Input: starting vector s, teleport probability α, and approximate ratio ε.
Output: the ε-approximate PageRank vector p = prs−r.

1: p← ~0 and r ← s.
2: while r(u) ≥ εdeg(u) for some vertex u ∈ V do
3: Pick an arbitrary u satisfying r(u) ≥ εdeg(u).
4: p(u)← p(u) + αr(u).
5: For each vertex v such that (u, v) ∈ E:

r(v)← r(v) + 1−α
2 deg(u)r(u).

6: r(u)← 1−α
2 r(u).

7: end while
8: return p.

C Missing Proofs in Section 3

C.1 Proof of Lemma 3.1

Lemma 3.1. There exists a set Ag ⊆ A with volume vol(Ag) ≥ 1
2vol(A) such that, for any vertex

v ∈ Ag, in a PageRank vector with teleport probability α starting at v, we have:∑
u6∈A

prv(u) ≤ 2Ψ

α
. (3.1)

In addition, there exists a non-negative leakage vector l ∈ [0, 1]V with norm ‖l‖1 ≤ 2Ψ
α satisfying

∀u ∈ A, prv(u) ≥ p̃rv(u)− p̃rl(u) . (3.2)
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Leakage event. We begin our proof by defining the leaking event in a random walk procedure.
We start the definition of a lazy random walk and then move to a PageRank random walk. At high
level, we say that a lazy random walk of length t starting at a vertex u ∈ A does not leak from A
if it never goes out of A, and let Leak(u, t) denote the probability that such a random walk leaks.

More formally, for each vertex u ∈ V in the graph with degree deg(u), recall that in its random
walk graph it actually has degree 2 deg(u), with deg(u) edges going to each of its neighbors, and
deg(u) self-loops. For a vertex u ∈ A, let us call its neighboring edge (u, v) ∈ E a bad edge if v 6∈ A.
In addition, if u has k bad edges, we also distinguish k self-loops at u in the lazy random walk
graph, and call them bad self-loops. Now, we say that a random walk does not leak from A, if it
never uses any of those bad edges of self-loops. The purpose of this definition is to make sure that
if a random walk chooses only good edges at each step, it is equivalent to a lazy random walk on
the induced subgraph G[A] with outgoing edges removed.

For a PageRank random walk with teleport probability α starting at a vertex u, recall that
it is also a random procedure and can be viewed as first picking a length t ∈ {0, 1, . . . } with
probability α(1 − α)t, and then performing a lazy random walk of length t starting from u. By
the linearity of random walk vectors, the probability of leakage for this Pagerank random walk is
exactly

∑∞
t=0 α(1− α)tLeak(u, t).

Upper bounding leakage. We now give an upper bound on the probability of leakage. We start
with an auxiliary lazy random walk of length t starting from a “uniform” distribution πA(u). Recall

that πA(u) = deg(u)
vol(A) for u ∈ A and 0 elsewhere. We now want to show that this random walk leaks

with probability at most 1− tΨ.15 This is because, one can verify that: (1) in the first step of this
random walk, the probability of leakage is upper bounded by Ψ by the definition of cut conductance;
and (2) in the i-th step in general, this random walk satisfies (πAW

i−1)(u) ≤ πA(u) for any vertex
u ∈ A, and therefore the probability of leakage in the i-th step is upper bounded by that in the
first step. In sum, the total leakage is at most tΨ, or equivalently,

∑
u∈A πA(u)Leak(u, t) ≤ tΨ.

We now sum this up over the distribution of t in a PageRank random walk:

∑
u∈A

πA(u)

( ∞∑
t=0

α(1− α)tLeak(u, t)

)
=

∞∑
t=0

α(1− α)t

(∑
u∈A

πA(u)Leak(u, t)

)

≤
∞∑
t=0

α(1− α)ttΨ =
Ψ(1− α)

α
.

This implies, using Markov bound, there exists a set Ag ⊆ A with volume vol(Ag) ≥ 1
2vol(A)

satisfying

∀v ∈ Ag,
∞∑
t=0

α(1− α)tLeak(v, t) ≤ 2Ψ(1− α)

α
<

2Ψ

α
, (C.1)

or in words: the probability of leakage is at most 2Ψ(1−α)
α in a Pagerank random walk that starts at

vertex v ∈ Ag. This inequality immediately implies (3.1), so for the rest of the proof, we concentrate
on (3.2).

Lower bounding pr. Now we pick some v ∈ Ag, and try to lower bound prv. To begin with, we
define two |A| × |A| lazy random walk matrices on the induced subgraph G[A] (recall that deg(u)
is the degree of a vertex and for u ∈ A we denote by degA(u) the number of neighbors of u inside
A):

15Note that this step of the proof coincides with that of Proposition 2.5 from [ST08]. Our tΨ is off by a factor of
2 from theirs because we also regard bad self-loops as edges that leak.
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1. Matrix Ŵ . This is a random walk matrix assuming that all outgoing edges from A being
“phantom”, that is, at each vertex u ∈ A:

• it picks each neighbor in A with probability 1
2 deg(u) , and

• it stays where it is with probability degA(u)
2 deg(u) .

For instance, let u be a vertex in A with four neighbors w1, w2, w3, w4 such that w1, w2, w3 ∈ A
but w4 6∈ A. Then, for a lazy random walk using matrix Ŵ , if it starts from u then in the
next step it stays at u with probability 3/8, and goes to w1, w2 and w3 each with probability
1/8. Note that, for the rest 1/4 probability (which corresponds to w4) it goes nowhere and
this random walk “disappears”! This can be viewed as that the random walk leaks A.

2. Matrix W̃ . This is a random walk matrix assuming that all outgoing edges from A are
removed, that is, at each vertex u ∈ A:

• it picks each neighbor in A with probability 1
2 degA(u) , and

• it stays where it is with probability 1
2 .

The major difference between W̃ and Ŵ is that they are normalized by different degrees in the
rows, and the rows of W̃ sum up to 1 but those of Ŵ do not necessarily. More specifically, if we
denote by D the diagonal matrix with deg(u) on the diagonal for each vertex u ∈ A, and DA the

diagonal matrix with degA(u) on the diagonal, then Ŵ = D−1DAW̃ . It is worth noting that, if

one sums up all entries of the nonnegative vector χvŴ
t, the summation is exactly 1 − Leak(v, t)

by our definition of Leak.
We now precisely study the difference between W̃ and Ŵ using the following claim.

Claim C.1. There exists non-negative vectors lt for all t ∈ {1, 2, . . . } satisfying:

‖lt‖1 = Leak(v, t)− Leak(v, t− 1) ,

and
χvŴ

t =
(
χvŴ

t−1 − lt
)
W̃ .

Proof. To obtain the result of this claim, we write

χvŴ
t =

(
χvŴ

t−1
)
D−1DAW̃

=
(
χvŴ

t−1
)
W̃ −

(
χvŴ

t−1
)

(I −D−1DA)W̃

Now, we simply let lt
def
=
(
χvŴ

t−1
)

(I−D−1DA). It is a non-negative vector because degA(u) is no

larger than deg(u) for all u ∈ A. Furthermore, recall that in the lazy random walk characterized by

Ŵ , the amount of probability to disappear at a vertex u in the t-th step, is exactly its probability
after a (t− 1)-th step random walk, i.e., (χvŴ

t−1)(u), multiplied by the probability to leak in this

step, i.e., 1− degA(u)
deg(u) . Therefore, lt(u) exactly equals to the amount of probability to disappear in

the t-th step; or equivalently, ‖lt‖1 = Leak(v, t)− Leak(v, t− 1).

Now we use the above definition of lt and deduce that:
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Claim C.2. Letting l
def
=
∑∞

j=1(1 − α)j−1lj, we have ‖l‖1 ≤ 2Ψ
α and the following inequality on

vector holds coordinate-wisely on all vertices in A:

prv
∣∣
A
≥
∞∑
t=0

α(1− α)t (χv − l) W̃ t = p̃rv − p̃rl .

Proof. We begin the proof with a simple observation. The following inequality on vector holds
coordinate-wisely on all vertices in A according to the definition of Ŵ :

prv
∣∣
A

=
∞∑
t=0

α(1− α)t
(
χvW

t
)∣∣
A
≥
∞∑
t=0

α(1− α)tχvŴ
t .

Therefore, to lower bound prv
∣∣
A

it suffices to lower bound the right hand side. Now owing to

Claim C.1 we further reduce the computation on matrix Ŵ to that on matrix W̃ :

χvŴ
t =

(
χvŴ

t−1 − lt
)
W̃ =

((
χvŴ

t−2 − lt−1

)
W̃ − lt

)
W̃ = . . . = χvW̃

t −
t∑

j=1

ljW̃
t−j+1 .

We next combine the above two inequalities and compute

prv
∣∣
A
≥
∞∑
t=0

α(1− α)tχvŴ
t =

∞∑
t=0

α(1− α)t

χvW̃ t −
t∑

j=1

ljW̃
t−j+1


=

∞∑
t=0

α(1− α)tχvW̃
t −

∞∑
t=0

α(1− α)t
t∑

j=1

ljW̃
t−j+1

=
∞∑
t=0

α(1− α)tχvW̃
t −

∞∑
j=1

(1− α)j−1lj

∞∑
t=1

α(1− α)tW̃ t

≥
∞∑
t=0

α(1− α)tχvW̃
t −

∞∑
j=1

(1− α)j−1lj

∞∑
t=0

α(1− α)tW̃ t

=
∞∑
t=0

α(1− α)t

χv − ∞∑
j=1

(1− α)j−1lj

 W̃ t =
∞∑
t=0

α(1− α)t (χv − l) W̃ t .

At last, we upper bound the one norm of l using Claim C.1 again:

‖l‖1 =

∞∑
j=1

(1− α)j−1‖lj‖1 =

∞∑
j=1

(1− α)j−1(Leak(v, j)− Leak(v, j − 1))

=

∞∑
j=1

α(1− α)j−1Leak(v, j) ≤ 2Ψ(1− α)

α(1− α)
=

2Ψ

α
,

where the last inequality uses (C.1).

So far we have also shown (3.2) and this ends the proof of Lemma 3.1. �
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C.2 Proof of Lemma 3.2

Lemma 3.2 (restated). When the teleport probability α ≤ Φ2

72(3+log vol(A)) (or more weakly when

α ≤ λ(A)
9(3+log vol(A)) , or α ≤ O

(
1

τmix

)
), we have that

∀u ∈ A, p̃rv(u) =

∞∑
t=0

α(1− α)t
(
χvW̃

t
)

(u) >
4

5

degA(u)

vol(A)
.

Proof. We first prove this lemma in the case when α ≤ Φ2

72(3+log vol(A)) or α ≤ λ(A)
9(3+log vol(A)) . We

will then extend it to the weakest assumption α ≤ O
(

1
τmix

)
. For a discussion on the comparisons

between those three assumptions, see Appendix A.
Recall that we defined W̃ to be the lazy random walk matrix on A with outgoing edges removed,

and denoted by λ = λ(A) the spectral gap on the lazy random walk matrix of G[A] (cf. Appendix A).
Then, by the theory of infinity-norm mixing time of a Markov chain, the length-t random walk
starting at any vertex v ∈ A will land in a vertex u ∈ A with probability:

(χvW̃
t)(u) ≥ degA(u)∑

w∈A degA(w)
− (1− λ)t

√
degA(v)

miny degA(y)

≥ degA(u)∑
w∈A degA(w)

− (1− λ)t degA(v) .16

Now if we choose T0 = 3+log vol(A)
λ then for any t ≥ T0:

(χvW̃
t)(u) ≥ 9

10

degA(u)∑
w∈V degA(w)

≥ 9

10

degA(u)

vol(A)
. (C.2)

We then convert this into the language of PageRank vectors:

∞∑
t=0

α(1− α)t(χvW̃
t)(u) ≥ (1− α)T0α

∞∑
t=0

(1− α)t(χvW̃
t+T0)(u)

≥ (1− α)T0α
∞∑
t=0

(1− α)t
(

9

10

degA(u)

vol(A)

)
= (1− α)T0

(
9

10

degA(u)

vol(A)

)
.

At last, we notice that α ≤ 1
9T0

holds: this is either because we have chosen α ≤ λ(A)
9(3+log vol(A)) ,

or because we have chosen α ≤ Φ2

72(3+log vol(A)) and Cheeger’s inequality λ ≥ Φ2/8 holds. As a

consequence, it satisfies that (1− α)T0 ≥ 1− αT0 ≥ 8
9 and thus (1− α)T0

(
9
10

degA(u)
vol(A)

)
≥ 4

5
degA(u)
vol(A) .

We can also show our lemma under the assumption that α ≤ O(1/τmix). In such a case, one
can choose T0 = Θ(τmix) so that (C.2) and the rest of the proof still hold. It is worth emphasizing

that since we always have φs(A)2

log vol(A) ≤ O
( λ(A)

log vol(A)

)
≤ O

(
1

τmix

)
, this last assumption is the weakest

one among all three.

16Here we have used the fact that miny degA(y) ≥ 1. This is because otherwise G[A] will be disconnected so that
Φ = φs(A) = 0, λ(A) = 0 and τmix(A) =∞, but none of the three can happen under our gap assumption Gap ≥ Ω(1).
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D Missing Proofs in Section 4

D.1 Proof of Lemma 4.1

Lemma 4.1. Letting α = Θ(Ψ · Gap), among all sweep sets Sc =
{
u ∈ V : p(u) ≥ cdeg(u)

vol(A)

}
for

c ∈ [1
8 ,

1
4 ], there exists one, denoted by Sc∗, with cut conductance φc(Sc∗) = O(

√
Ψ/Gap).

Proof. We only point out how to extend our proof in the exact case (see Section 4) to the case
when p is an ε-approximate PageRank vector. For any set S1/4 ⊆ S ⊆ S1/8, we compute that

p(S) = prχv−r(S) = α(χv − r)(S) + (1− α)(pW )(S)

= α(χv − r)(V ) + αr(V \ S) + (1− α)(pW )(S)

≤ α(χv − r)(V ) + α (r(V \A) + r(A \ S)) + (1− α)(pW )(S)

= αp(V ) + α (r(V \A) + r(A \ S)) + (1− α)(pW )(S)

where in the last equality we have used (χv − r)(V ) = p(V ), owing to the fact that p = (χv −
r)
∑∞

t=0 α(1− α)tW t, but W is a random walk matrix that preserves the total probability mass.
We next notice that r(V \A) ≤ 2Ψ

α according to Corollary 3.3, as well as

r(A \ S) ≤ εvol(A \ S) (according to Definition 2.2)

≤ ε

(
2Ψ

α(3
5 −

1
4)

+ 8Ψ

)
vol(A) (according to Lemma 3.4 and S ⊇ S1/4)

<
7Ψ

α
εvol(A) (using α ≤ 1

9 from the our choice in Appendix C.2)

≤ 0.7Ψ

α
. (using our choice of ε ≤ 1

10vol(A) in Section 3.2)

Therefore, we have

p(S) ≤ αp(V ) + α
(2Ψ

α
+

0.7Ψ

α

)
+ (1− α)(pW )(S)

= αp(V ) + 2.7Ψ + (1− α)(pW )(S)

=⇒ (1− α)p(S) ≤ α · p(V \ S) + 2.7Ψ + (1− α)(pW )(S)

=⇒ (1− α)p(S) ≤ 4.7Ψ + (1− α)(pW )(S) (using Corollary 3.3)

=⇒ p(S) ≤ 5.3Ψ + (pW )(S) (using α ≤ 1
9 again)

In sum, we have arrived at the same conclusion as (4.1) in the case when p is only approximate,
and the rest of the proof follows in the same way as in the exact case.

D.2 Proof of Theorem 1

We are ready to put together all previous lemmas to show the main theorem of this paper.

Theorem 1. If there exists a non-empty set A ⊂ V such that φc(A) ≤ Ψ and Gap ≥ Ω(1), then
there exists some Ag ⊆ A with vol(Ag) ≥ 1

2vol(A) such that, when choosing a starting vertex v ∈ Ag,
the PageRank-Nibble algorithm outputs a set S with

1. vol(S \A) ≤ O( 1
Gap

)vol(A),

2. vol(A \ S) ≤ O( 1
Gap

)vol(A),

22



3. φc(S) ≤ O(
√

Ψ/Gap), and

with running time O(vol(A)
Ψ·Gap ) ≤ O(vol(A)

Ψ ).

Proof. As in Algorithm 1, we choose α = Θ(Ψ · Gap) to satisfy the requirements of all previous
lemmas. We define Ag according to Lemma 3.1 and compute an ε-approximate PageRank vector
starting from v where ε = 1

10vol0
satisfies (3.3).

Next we study all sweep sets S′c
def
= {u ∈ supp(p) : p(u) ≥ cdeg(u)

vol0
} for c ∈ [ 1

16 ,
1
4 ]. Notice that

since vol0 ∈
[vol(A)

2 , vol(A)
]
, all such sweep sets correspond to Sd = {u ∈ supp(p) : p(u) ≥ ddeg(u)

vol(A) }
for some d ∈ [ 1

16 ,
1
2 ]. Therefore, the output S is also some Sd sweep set with d ∈ [ 1

16 ,
1
2 ] and

Lemma 3.4 guarantees the first two properties of the theorem.
On the other hand, Lemma 4.1 guarantees the existence of some sweep set Sd∗ satisfying

φc(Sd∗) = O(
√

Ψ · Gap). Since d∗ ∈ [1
8 ,

1
4 ], this Sd∗ is also a sweep set S′c with c ∈ [ 1

16 ,
1
4 ], and

must be considered as sweep set candidate in our Algorithm 1. This immediately implies that
the output S of Algorithm 1 must have a cut conductance φc(S) that is at least as good as
φc(Sd∗) = O(

√
Ψ · Gap), finishing the proof for the third property of the theorem.

At last, as a direct consequence of Proposition 2.3 and the fact that the computation of the
approximate PageRank vector is the bottleneck for the running time, we conclude that Algorithm 1
runs in time O(vol(A)

α ) = O(vol(A)
Ψ·Gap ).

E Missing Proofs in Section 5

In this section we show that our cut conductance analysis for Theorem 1 is tight. We emphasize
here that such a tightness proof is very non-trivial, because one has to provide a graph hard instance
and start to upper and lower bound the probabilities of reaching specific vertices up to a very high
precision. This is different from the mixing time theory on Markov chains, as for instance, on a
chain of ` vertices it is known that a random walk of O(`2) steps mixes, but in addition we need
to compute how faster it mixes on one vertex than another vertex.

In Appendix E.1 we begin with some warm-up lemmas for the PageRank vector on a single
chain, and then in Appendix E.2 we formally prove Lemma 5.1 with the help from those lemmas.

E.1 Useful Lemmas for a PageRank Random Walk on a Chain

In this subsection we provide four useful lemmas about a PageRank random walk on a single chain.
For instance, in the first of them we study a chain of length ` and compute an upper bound on
the probability to reach the rightmost vertex from the leftmost one. The other three lemmas are
similar in this format. Those lemmas require the study of the eigensystem of a lazy random walk
matrix on this chain, followed by very careful but problem-specific analyses.

Lemma E.1. Let ` be an even integer, and consider a chain of ` + 1 vertices with the leftmost
vertex indexed by 0 and the rightmost vertex indexed by `. Let prχ0 be the PageRank vector for a
random walk starting at vertex 0 with teleport probability α = γ

`2
for some constant γ. Then,

prχ0(`) ≤ 1

2`

(
1− 2γ

π2/4 + γ
+

2γ

π2 + γ
+O

( 1

`2

))
.
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Proof. Let us define

W =



1
2

1
2

1
4

1
2

1
4

1
4

1
2

. . .
. . .

. . . 1
4

1
2

1
2


to be the (`+ 1)× (`+ 1) lazy random walk matrix of our chain. For k = 0, 1, . . . , `, define:

λk
def
=

1 + cos(πk` )

2
= cos2

(πk
2`

)
vk(u)

def
= deg(u) · cos

(πku
`

)
(u = 0, 1, . . . , `) , (E.1)

where deg(u) is the degree for the u-th vertex, that is, deg(0) = deg(`) = 1 while deg(i) = 2 for
i ∈ {1, 2, . . . , `− 1}. Then it is routinary to verify that vk ·W = λk · vk and thus

vk is the k-th (left-)eigenvector and λk is the k-th eigenvalue for matrix W .

We remark here that since W is not symmetric, those eigenvectors are not orthogonal to each other
in the standard basis. However, under the notion of inner product 〈x, y〉 def

=
∑`

i=0 x(i)y(i) deg(i)−1,
they form an orthonormal basis.

It now expand our starting probability vector χ0 under this orthonormal basis:

χ0 = (1, 0, 0, . . . , 0) =
1

2`

(
v0 + 2

`−1∑
k=1

vk + v`

)
.

As a consequence when t > 0, using λ` = 0:

χ0W
t =

1

2`

(
v0 + 2

`−1∑
k=1

(λk)
tvk

)
.

Now it is easy to compute the exact probability of reaching the right-most vertex `:

χ0W
t(`) =

1

2`

(
v0(`) + 2

`−1∑
k=1

(λk)
tvk(`)

)
=

1

2`

(
1 + 2

`−1∑
k=1

cos2t
(πk

2`

)
cos(πk)

)

=
1

2`

(
1 + 2

`−1∑
k=1

cos2t
(πk

2`

)
(−1)k

)
≤ 1

2`

(
1− 2 cos2t(

π

2`
) + 2 cos2t

(π
`

))
.

At last, we translate this language into the PageRank vector prχ0 and obtain

prχ0(`) =

∞∑
t=0

α(1− α)tχ0W
t(`) ≤ 1

2`

(
αv`(`) +

∞∑
t=0

α(1− α)t
(

1− 2 cos2t
( π

2`

)
+ 2 cos2t

(π
`

)))

=
1

2`

(
α+ 1− 2α

1− (1− α) cos2( π2`)
+

2α

1− (1− α) cos2(π` )

)
≤ 1

2`

(
1− 2γ

π2/4 + γ
+

2γ

π2 + γ
+O

( 1

`2

))
.

We remark here that the last inequality is obtained using Taylor approximation.
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Lemma E.2. Let ` be an even integer, and consider a chain of ` + 1 vertices with the leftmost
vertex indexed by 0 and the rightmost vertex indexed by `. Let prχ0 be the PageRank vector for a
random walk starting at vertex 0 with teleport probability α = γ

`2
for some constant γ. Then,

prχ0

( `
2

)
≥ 1

`

(
1− 2γ

π2 + γ
−O

( 1

`2

))
.

Proof. Recall from the proof of Lemma E.1 that for t > 0 we have

χ0W
t =

1

2`

(
v0 + 2

`−1∑
k=1

(λk)
tvk

)
.

Now it is easy to compute the exact probability of reaching the middle vertex `
2 :

χ0W
t
( `

2

)
=

1

2`

(
v0

( `
2

)
+ 2

`−1∑
k=1

(λk)
tvk

( `
2

))
=

1

`

(
1 + 2

`−1∑
k=1

cos2t
(πk

2`

)
cos
(πk

2

))

=
1

`

1 + 2

`/2−1∑
q=1

cos2t
(2πq

2`

)
(−1)q

 ≥ 1

`

(
1− 2 cos2t

(π
`

))
.

At last, we translate this language into the PageRank vector prχ0 and obtain

prχ0

( `
2

)
=

∞∑
t=0

α(1− α)tχ0W
t
( `

2

)
≥ 1

`

(
αv`

( `
2

)
+

∞∑
t=0

α(1− α)t
(

1− 2 cos2t
(π
`

)))

=
1

`

αv`( `
2

)
+ 1− 2α

1− (1− α) cos2
(
π
`

)


≥ 1

`

(
1− 2γ

π2 + γ
−O

( 1

`2

))
.

We remark here that the last inequality is obtained using Taylor approximation.

Lemma E.3. Let ` be an even integer, and consider a chain of ` + 1 vertices with the leftmost
vertex indexed by 0 and the rightmost vertex indexed by `. Let prχ`/2 be the PageRank vector for a
random walk starting at the middle vertex `/2 with teleport probability α = γ

`2
for some constant γ.

Then,

prχ`/2

( `
2

)
≤ 1

`

(
1 +
√
γ +O

(1

`

))
.

Proof. Following the notion of λk and vk in (E.1), we expand our starting probability vector χ`/2
under this orthonormal basis:

χ`/2 = (0, . . . , 0, 1, 0, . . . , 0) =
1

2`

v0 + 2

`/2−1∑
q=1

(−1)qv2q + (−1)`/2v`

 .

Then similar to the proof of Lemma E.1 we have that for all t > 0

χ`/2W
t =

1

2`

v0 + 2

`/2−1∑
q=1

(−1)q(λ2q)
tv2q

 .
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Now it is easy to compute the exact probability of reaching the middle vertex `
2 :

χ`/2W
t
( `

2

)
=

1

2`

v0

( `
2

)
+ 2

`/2−1∑
q=1

(−1)q(λ2q)
tv2q

( `
2

) =
1

`

1 + 2

`/2−1∑
q=1

(−1)q cos2t
(2πq

2`

)
cos
(2πq

2

)
=

1

`

1 + 2

`/2−1∑
q=1

cos2t
(2πq

2`

) =
1

`

 `

22t

bt/`c∑
k=−bt/`c

(
2t

t+ k`

) .

Notice that in the last equality we have used a recent result on power sum of cosines that can be
found in Theorem 1 of [Mer12]. Next we perform some classical tricks on binomial coefficients:

bt/`c∑
k=−bt/`c

(
2t

t+ k`

)
=

(
2t

t

)
+ 2

bt/`c∑
k=1

(
2t

t+ k`

)

≤
(

2t

t

)
+ 2

bt/`c∑
k=1

1

`

((
2t

t+ (k − 1)`+ 1

)
+

(
2t

t+ (k − 1)`+ 2

)
+ · · ·+

(
2t

t+ k`

))

≤
(

2t

t

)
+

1

`

2t∑
q=0

(
2t

q

)
≤ 22t

√
πt

+
22t

`
,

and in the last inequality we have used a famous upper bound on the central binomial coefficient
that says

(
2t
t

)
≤ 22t
√
πt

for any integer t ≥ 1 and p ∈ {0, 1, . . . , 2t}.
At last, we translate this language into the PageRank vector prχ`/2 and obtain

prχ`/2

( `
2

)
=

∞∑
t=0

α(1− α)tχ`/2W
t
( `

2

)
≤ α+

1

`

( ∞∑
t=1

α(1− α)t
`

22t

(
22t

√
πt

+
22t

`

))

= α+
1

`

(
1 +

∞∑
t=1

α(1− α)t
`√
πt

)
≤ α+

1

`

(
1 +

∫ ∞
t=0

α(1− α)t
`√
πt
dt

)

= α+
1

`

(
1 +

α`√
− log(1− α)

)
≤ 1

`

(
1 +
√
γ +O

(1

`

))
.

We remark here that the last inequality is obtained using Taylor approximation.

Lemma E.4. Consider an infinite chain with one special vertex called the origin. Note that the
chain is infinite both to the left and to the right of the origin. Now we study the PageRank random
walk on this infinite chain that starts from the origin with teleport probability α = γ

`2
, and denote

by prχ0(0) be the probability of reaching the origin. Then,

prχ0(0) ≥
√
πγ

2`
−O

( 1

`2

)
.

Proof. As before we begin with the analysis of a lazy random walk of a fixed length t, and will
translate it into the language of a PageRank random walk in the end. Suppose in the t actual
number of steps, there are t1 ≤ t number of them in which the random walk moves either to the
left or to the right, while in the remaining t − t1 of them the random walk stays. This happens
with probability

(
t
t1

)
2−t. When t1 is fixed, to reach the origin it must be the case that among t1

left-or-right moves, exactly t1/2 of them are left moves, and the other half are right moves. This
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happens with probability
(
t1
t1/2

)
2−t1 . In sum, the probability to reach the origin in a t-step lazy

random walk is:

t∑
t1=0

(
t

t1

)
2−t
(
t1
t1/2

)
2−t1 =

t/2∑
y=0

(
2y

y

)(
t

2y

)
2−2y−t =

1

(t)!

(2t− 1)!!

2t
=

1

(t)!
· (2t)!

t!22t
=

(
2t

t

)
2−2t ≥ 1√

4t
.

Here in the last inequality we have used the famous lower bound on the central binomial coefficient
that says

(
2t
t

)
≥ 22t
√

4t
for t ≥ 1. At last, we translate this into the language of a PageRank random

walk:

prχ0(0) ≥ α+

∞∑
t=1

α(1−α)t
1√
4t
≥ α+

∫ ∞
t=1

α(1−α)t
1√
4t
dt = α+

α
√
π
(

1− erf
(√
− log(1− α)

))
2
√
− log(1− α)

≥
√
πγ

2`
−O

( 1

`2

)
.

Here in the last inequality we have used the Taylor approximation for the Gaussian error function
erf.

E.2 Proof of Lemma 5.1

We are now ready to show the proof for Lemma 5.1.

Lemma 5.1. For any γ ∈ (0, 4] and letting α = γ/`2, there exists some constant c0 such that when

studying the PageRank vector pra starting from vertex a in Figure 1, it satisfies that pra(d)
deg(d) >

pra(c)
deg(c) .

We divide the proof into four steps. In the first step we provide an upper bound on pra(c)
deg(c) for

vertex c, and in the second step we provide a lower bound on pra(b)
deg(b) for vertex b. Both these steps

require a careful study on a finite chain (and in fact the top chain in Figure 1) which we have
already done in Appendix E.1. They together will imply that

pra(b)

deg(b)
> (1 + Ω(1))

pra(c)

deg(c)
. (E.2)

In the third step, we show that

pra(d)

deg(d)
> (1−O(1))

pra(b)

deg(b)
, (E.3)

that is, the (normalized) probability for reaching d must be roughly as large as b. This is a result

of the fact that, suppose towards contradiction that pra(d)
deg(d) is much smaller than pra(b)

deg(b) , then there
must be a large amount of probability mass moving from b to d due to the nature of PageRank
random walk, while a large fraction of them should remain at vertex d due to the chain at the
bottom, giving a contradiction to pra(d)

deg(d) being small.

And in the last step, we choose the constants very carefully to deduce pra(d)
deg(d) >

pra(c)
deg(c) out of

(E.2) and (E.3).

Step 1: upper bounding pra(c)/ deg(c). In the first step we upper bound the probability of
reaching vertex c. Since removing the edges between b and d will disconnect the graph and thus
only increase such probability, it suffices for us to consider just the top chain, which is equivalent
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to the PageRank random walk on a finite chain of length ` + 1 studied in Lemma E.1. In our
language, taking into account the multi-edges, we have that

pra(c)

deg(c)
≤ 1

n/`

1

2`

(
1− 2γ

π2/4 + γ
+

2γ

π2 + γ
+O

( 1

`2

))
=

1

2n

(
1− 2γ

π2/4 + γ
+

2γ

π2 + γ
+O

( 1

`2

))
. (E.4)

Step 2: lower bounding pra(b)/deg(b). In this step we ask for help from a variant of
Lemma 3.1. Letting p̃rs be the PageRank vector on the induced subgraph G[A] starting from s with
teleport probability α, then Lemma 3.1 (and its actual proof) implies that pra(b) ≥ p̃ra(b)− p̃rl(b)
where l is a vector that is only non-zero at the boundary vertex b, and in addition, ‖l‖1 = l(b) ≤ 2Ψ

α
since a ∈ Ag is a good starting vertex. We can rewrite this as

pra(b) ≥ p̃ra(b)−
2Ψ

α
p̃rb(b) .

Next we use Lemma E.2 and Lemma E.3 to deduce that:

pra(b) ≥
1

`

(
1− 2γ

π2 + γ
−O

( 1

`2

))
− 2Ψ

α

1

`

(
1 +
√
γ +O

(1

`

))
.

At last, we normalize this probability by its degree deg(b) = 2n/`+ Ψn and get:

pra(b)

deg(b)
≥ 1

2n+ Ψn`

(
1− 2γ

π2 + γ
−O

( 1

`2

)
− 2Ψ

α

(
1 +
√
γ +O

(1

`

)))
≥ 1

2n

(
1− 2γ

π2 + γ
−O(Ψ`2)

)
. (E.5)

Step 3: lower bounding pra(d)/ deg(d). Since we have already shown a good lower bound
on pra(b)/ deg(b) in the previous step, one may naturally guess that a similar lower bound should
apply to vertex d as well because b and d are neighbors. This is not true in general, for instance
if d were connected to a very large complete graph then all probability mass that reached d would
be badly diluted. However, with our careful choice of the bottom chain, we will show that this is
true in our case.

Lemma E.5. Let p∗
def
= pra(b)

deg(b) , then either pra(d)
deg(d) ≥ (1− c1)p∗ or pra(d)

deg(d) ≥
c1c0

2 p∗(1−O(1
` )).

Proof. Throughout the proof we assume that pra(d)
deg(d) < (1 − c1)p∗ because otherwise we are done.

Therefore, we only need to show that pra(d)
deg(d) ≥

c1c0
2 p∗(1−O(1

` )) is true under this assumption.
We first show a lower bound on the amount of net probability that will leak from A during the

given PageRank random walk, i.e., NetLeakage
def
=
∑

u6∈A pra(u). Loosely speaking, this net proba-
bility is the amount of probability that will leak from A, subtracted by the amount of probability
that will come back to A.

We introduce some notation first. Let p(t) def
= χaW

t be the lazy random walk vector after t

steps, and using the similar notation as Lemma 4.1, we let p(t)(b, d)
def
= p(t)(b)

deg(b) be the amount of

probability mass sent from b to d per edge at time step t to t+1, and similarly p(t)(d, b)
def
= p(t)(d)

deg(b) . If

the PageRank random walk runs for a total of t steps (which happens with probability α(1− α)t),
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then the total amount of net leakage becomes
∑t−1

i=0

(
p(i)(b, d)− p(i)(d, b)

)
·Ψn. This gives another

way to compute the total amount of net leakage of a PageRank random walk:

NetLeakage =

∞∑
t=0

α(1− α)t
t−1∑
i=0

(
p(i)(b, d)− p(i)(d, b)

)
·Ψn =

∞∑
i=0

(
p(i)(b, d)− p(i)(d, b)

)
·Ψn

∞∑
t=i+1

α(1− α)t

=
∞∑
i=0

(
p(i)(b, d)− p(i)(d, b)

)
·Ψn · (1− α)i+1 =

1− α
α

∞∑
i=0

α(1− α)i
(
p(i)(b, d)− p(i)(d, b)

)
·Ψn

=
1− α
α

(
pra(b)

deg(b)
− pra(d)

deg(d)

)
·Ψn ≥ 1− α

α
c1p
∗Ψn . (E.6)

Now we have a decent lower bound on the amount of net leakage, and we want to further lower
bound pra(d) using this NetLeakage quantity. We achieve so by studying an auxiliary “random
walk” procedure q(t), where q(0) = p(0) = χa, but

q(t+1) def
= q(t)W + δ(t), where δ(t)(u)


0, if u 6= b, u 6= d;

p(t)(d, b) ·Ψn, if u = b;

−p(t)(b, d) ·Ψn, if u = d.

It is not hard to prove by induction that for all t ≥ 0, it satisfies q(t)(u) = p(t)(u) for u ∈ A and
q(t)(u) = 0 for u 6∈ A.17 Then we have that:

∆
def
=
∞∑
t=0

α(1− α)tq(t) − pra

is precisely the vector that is zero everywhere in A and equal to pra everywhere in V \ A. We
further notice that

∆ =
∞∑
t=0

α(1− α)t
(
q(t) − p(t)

)
=
∞∑
t=0

α(1− α)t

(
t−1∑
i=0

δ(i)W t−i−1

)

=

∞∑
k=0

∞∑
i=0

α(1− α)k+i+1δ(i)W k =

∞∑
k=0

α(1− α)k

( ∞∑
i=0

(1− α)i+1δ(i)

)
W k .

Therefore, as long as we define δ
def
=
∑∞

i=0(1 − α)i+1δ(i) = 1−α
α

∑∞
i=0 α(1 − α)iδ(i), we can write

∆ = prδ also as a PageRank vector. We highlight here that δ is a vector that is non-zero only at
vertex b and d (and in fact δ(d) ≥ 0 and δ(b) ≤ 0), such that δ(d) + δ(b) = NetLeakage according
to the first equality in (E.6).

Now we are ready to lower bound pra(d). Using the linearity of PageRank vectors we have

pra(d) = ∆(d) = prδ(d) = pr(δ(d)χd+δ(b)χb)(d) = δ(d) · prd(d) + δ(b) · prb(d) ≥ (δ(d) + δ(b)) · prd(d)

where in the last inequality we have used prb(d) ≤ prd(d) which is true by monotonicity. Then we
continue

pra(d) ≥ (NetLeakage) · prd(d) ≥
(

1− α
α

c1p
∗Ψn

)
· prd(d) ≥

(
1− α
α

c1p
∗Ψn

)
·
(
πγ

2`
−O

( 1

`2

))
17This is obvious when t = 0. For q(t+1), we compute p(t+1) = p(t)W and q(t+1) = q(t)W + δ(t). Based on the

inductive assumption that the claim holds for q(t), it is automatically true that for u ∈ A \ {b}, p(t+1)(u) = q(t+1)(u),
and u ∈ V \ (A ∪ {d}) we have q(t+1)(u) = 0. For u = b or u = d, one can carefully check that δ(t) is introduced to
precisely make q(t+1)(b) = p(t+1)(b) and q(t+1)(d) = 0, so the claim holds.
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using (E.6) in the second inequality and Lemma E.4 in the last inequality, so we conclude that

pra(d) ≥ c1
2 p
∗Ψn(`−O(1)) and then pra(d)

deg(d) ≥
c1c0

2 p∗(1−O(1
` )).

Step 4: putting it all together. We now define (using the fact that γ > 0 and γ < 4) constant
c2 to satisfy

1− c2
def
=

1− 2γ
π2/4+γ

+ 2γ
π2+γ

1− 2γ
π2+γ

< 1 .

This constant is asymptotically the ratio between (E.4) and (E.5), so once we let p∗
def
= pra(b)

deg(b) it

satisfies that (using the fact that Ψ`2 = o(1))

pra(c)

deg(c)
≤ (1− c2)p∗(1 + o(1)) .

Next, if we choose c1 = c2
2 and c0 = 2

c1
in Lemma E.5, this gives

pra(d)

deg(d)
≥ min

{
1− c2

2
, 1−O

(1

`

)}
p∗ .

It is now clear from the above two inequalities that in the asymptotic case, i.e., when n, ` are
sufficiently large, we always have pra(d)

deg(d) >
pra(c)
deg(c) . This finishes the proof of Lemma 5.1. �
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