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Abstract

We provide efficient algorithms for learning
disjunctions in the semi-supervised setting
under a natural regularity assumption intro-
duced by (Balcan & Blum, 2005). We prove
bounds on the sample complexity of our algo-
rithms under a mild restriction on the data
distribution. We also give an active learning
algorithm with improved sample complexity
and extend all our algorithms to the random
classification noise setting.

1. Introduction

In many modern applications, like web-based informa-
tion gathering, unlabeled data is abundant but labeling
it is expensive. Consequently, there has been substan-
tial effort in understanding and using semi-supervised
learning (using large amounts of unlabeled data to aug-
ment limited labeled data) and active learning (where
the algorithm itself asks for labels of carefully cho-
sen examples with the goal of minimizing the human
labeling effort) (Zhu, 2011; Dasgupta, 2011).

Conceptually, what makes unlabeled data useful in
the semi-supervised learning context (Balcan & Blum,
2010; Zhu, 2011), is that for many learning problems,
the natural regularities of the problem involve not only
the form of the function being learned but also how this
function relates to the distribution of data; for example,
that it partitions data by a wide margin as in Transduc-
tive SVM (Joachims, 1999a) or that data contains re-
dundant sufficient information as in Co-training (Blum
& Mitchell, 1998). Unlabeled data is useful in this con-
text because it allows one to reduce the search space
from the whole set of hypotheses, down to the set of
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hypotheses satisfying the regularity condition with re-
spect to the underlying distribution. Such insights
have been exploited for deriving a variety of sample
complexity results (Dasgupta et al., 2001; Kaariainen,
2005; Rigollet, 2007; Balcan & Blum, 2010). However,
while in principle semi-supervised learning can provide
benefits over fully supervised learning (Balcan & Blum,
2010; Zhu, 2011), the corresponding algorithmic prob-
lems become much more challenging. As a consequence
there has been a scarcity of efficient semi-supervised
learning algorithms.

In this paper we provide efficient algorithms with nearly
optimal sample complexity for semi-supervised and ac-
tive learning of disjunctions under a natural regularity
assumption introduced in (Balcan & Blum, 2005). In
particular we consider the so called two-sided disjunc-
tions setting, where we assume that the target function
is a monotone disjunction satisfying a margin like reg-
ularity assumption1. In the simplest case resolved
in (Balcan & Blum, 2005), the notion of “margin” is as
follows: every variable is either a positive indicator for
the target function (i.e., the true label of any example
containing that variable is positive) or a negative in-
dicator (i.e., the true label of any example containing
that variable is negative), and no example contains
both positive and negative indicators. In this work, we
consider the much more challenging setting left open
in (Blum & Balcan, 2007) where non-indicators or ir-
relevant variables, i.e., variables that appear in both
positive and negative examples, are also present.

In the semi-supervised learning setting, we present
an algorithm that finds a consistent hypothesis that
furthermore is compatible (in the sense that it satisfies
our regularity assumption). This algorithm is proper
(it outputs a disjunction), has near-optimal labeled
data sample complexity provided that each irrelevant
variable appears with non-negligible probability, and
it is efficient when the number of irrelevant variables

1See Section 6 for further discussion.
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is O(log n). We next present a non-proper algorithm
that PAC learns two-sided disjunctions with nearly the
same sample complexity and whose running time is
polynomial for any k.

In the active learning setting, we present an efficient
active learning algorithm for two-sided disjunctions.
This algorithm outputs a consistent, compatible hy-
pothesis, with sample complexity linear in the number
of irrelevant variables and independent of the proba-
bility of irrelevant variables appearing, a quantity that
appears in the bounds in the semi-supervised setting.
Combined with the NP-hardness result we show for
two-sided disjunctions (see supplementary material),
the algorithm also shows that the active query ability
can help to overcome computational difficulty.

We also discuss how our algorithms can be adapted to
deal with random classification noise.

Discussion: To see why the presence of irrelevant vari-
ables significantly complicates the algorithmic problem,
note that in the absence of non-indicators (the case
studied in (Balcan & Blum, 2005)), we could construct
an approximation of the so called commonality graph,
defined on n vertices (one per variable), by putting
an edge between two vertices i and j if there is any
example x in our unlabeled sample with xi, xj set to
1. If the target function indeed satisfies the regular-
ity assumption, then no component will get multiple
labels, so all we need to learn is a labeled example in
each component. Furthermore, if the number of com-
ponents in the underlying graph is small, then both in
the semi-supervised and active learning setting we can
learn with many fewer labeled examples then in the
supervised learning setting.

Introducing non-indicators into the target concept com-
plicates matters, because components can now have
multiple labels. We could think of the non-indicators as
forming a vertex cut in the commonality graph separat-
ing variables corresponding to positive indicators from
those corresponding to negative ones. To learn well,
one could try to find such a cut with the necessary prop-
erties to ensure compatibility with the unlabeled data
(i.e. no examples are composed only of non-indicators).
Unfortunately, this is a difficult combinatorial prob-
lem in general. Interestingly, we will be able to find
such cut for k = O(log n) and for general k we will be
still be able to learn with nearly optimal rates, if each
non-indicator appears with non-negligible probability;
we do this by identifying a superset of non-indicators
and carefully making inferences using it. Furthermore,
since mistakes reveal vertices in both sides of the cut,
our adaptive query ability in the active learning model
will allow us to actively search for vertices in the cut.

Related work: While several semi-supervised learn-
ing methods have been introduced (Chapelle et al.,
2006; Zhu et al., 2003; Joachims, 1999b), much of the
theoretical work has focused either on sample com-
plexity (e.g., (Dasgupta et al., 2001; Kaariainen, 2005;
Rigollet, 2007)) or on providing polynomial time al-
gorithms with error bounds for surrogate losses only
(e.g., (Rosenberg & Bartlett, 2007)). The few exist-
ing results with guarantees on the classification error
loss hold under very stringent conditions about the
underlying data distribution (e.g., independence given
the label (Blum & Mitchell, 1998)). By contrast, we
provide (PAC-style) polynomial time algorithms for
learning disjunctions with general guarantees on the
classification error loss.

We note that while a lot of the research on active
learning (Dasgupta, 2005; Balcan et al., 2006; Hanneke,
2007a;b; Dasgupta et al., 2007; Beygelzimer et al., 2010;
Koltchinskii, 2010) has not made an explicit regularity
assumption as in semi-supervised learning, this is an
interesting direction to study. As our results reveal, ac-
tive learning could help overcome computational hard-
ness limitations over (semi-supervised) passive learning
in these settings.

2. Preliminaries and Notation

Let X = {0, 1}n be the instance space, Y = {−1, 1}
be the label set, and D denote any fixed probability
distribution over X. Following (Balcan & Blum, 2005),
a two-sided disjunction h is defined as a pair of mono-
tone disjunctions2 (h+, h−) such that h+(x) = −h−(x)
for all x ∼ D, and h+ is used for classification. Let the
concept class C be the set of all pairs3 of monotone
disjunctions and for any hypothesis h = (h+, h−) ∈ C,
define h(x) = h+(x).

For a two-sided disjunction (h+, h−), variables included
in h+ are the positive indicators, and variables in h− are
negative indicators. Variables appearing neither in h+
nor in h− are called non-indicators, as the value of any
such variable has no effect on the label of any example.
To simplify the discussion, we will often identify binary
strings in X = {0, 1}n with subsets of the variables
V = {x1, . . . , xn}. In other words, we say an example
x contains xi if the i-th coordinate of x is set to 1.
This allows us to speak of variables “appearing in”
or “being present in” examples rather than variables
being set to 1. We will use similar language when

2Recall that a monotone disjunction is an OR function
of positive literals only, e.g. h(x) = x1 ∨ x3 ∨ x4.

3Although we are actually interested in learning a single
monotone disjunction, we need to associate each disjunction
with a second disjunction in order to test compatibility.
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referring to hypotheses, so that a two-sided disjunction
h = (h+, h−) consists of a set h+ of positive indicators
and a set h− of negative indicators (which completely
determine a third set of non-indicators).

In the semi-supervised learning setting, we will assume
that both labeled examples L and unlabeled examples
U are drawn i.i.d. from D and that examples in L
are labeled by the target concept h∗, where h∗ is a
two-sided disjunction with at most k non-indicators.
We will let |L| = ml and |U | = mu; both ml and mu

will be polynomial throughout the paper. In the active
setting, the algorithm first receives a polynomially sized
unlabeled sample U and it can adaptively ask for the
label `(x) = h∗(x) of any example x ∈ U . In the
random classification noise model (studied in Section 5)
we assume that the label of each labeled example is
flipped with probability α.

The generalization error of a hypothesis h is given by
err(h) = Prx∼D[h(x) 6= h∗(x)], the probability of h
misclassifying a random example drawn from D. For a
set L of labeled examples, the empirical error is given by
errL(h) = |L|−1

∑
x∈L I[h(x) 6= h∗(x)]. If errL(h) = 0

for some h we say that h is consistent with the data.

To formally encapsulate the regularity or compatibility
assumption for two-sided disjunctions described in the
introduction, we consider the compatibility function
χ: χ(h, x) = I[h+(x) = −h−(x)] for any hypothe-
sis h and example x ∈ X. In addition, we define
(overloading notation) the compatibility between h
and the distribution D as χ(h,D) = Ex∼D[χ(h, x)] =
Prx∼D[h+(x) = −h−(x)]. For a set U of unlabeled
examples, define the empirical compatibility between
h and U as χ(h, U) = |U |−1

∑
x∈U I[h+(x) = −h−(x)].

If χ(h, U) = 1 we say that h is compatible with the data.
Thus a hypothesis is consistent and compatible with a
set of examples if every example contains exactly one
type of indicator and every labeled example contains an
indicator of the same type as its label. We will assume
throughout that the target function is compatible.

We define, for any ε > 0, the reduced hypothesis class
CD,χ(ε) = {h ∈ C : 1 − χ(h,D) ≤ ε}, the set of
hypotheses with “unlabeled error” at most ε. Similarly,
CU,χ(ε) = {h ∈ C : 1− χ(h, U) ≤ ε} for an unlabeled
sample U . The key benefit of using unlabeled data and
our regularity assumption is that the number of labeled
examples will only depend on log |CD,χ(ε)| which for
helpful distributions will be much smaller than log |C|.

2.1. The Commonality Graph

The basic structure used by all of our algorithms is a
construct we call the commonality graph. As mentioned

in the introduction, the commonality graph is the graph
on variables that contains an edge between two vertices
if the corresponding variables appear together in a
common example. That is, given the set U of unlabeled
examples, define the commonality graph Gcom(U) =
(V,E) where V = {x1, . . . , xn} and E contains an edge
(xi, xj) if and only if there is some x ∈ U such that
xi and xj are both set to 1 in x. Furthermore, given
the set L of labeled examples, let V +

L be the set of
variables appearing in positive examples and V −L be
the set of variables appearing in negative examples.

The edge structure of the commonality graph and the
labeled examples will allow us to draw inferences about
which vertices in the graph correspond to positive indi-
cators, negative indicators, and non-indicators in the
target concept. Any variable that appears in a labeled
example cannot be an indicator of the type opposite of
the label. In addition, an edge between two variables
implies they cannot be indicators of different types.
This means that any path in the commonality graph
between positive and negative indicators must contain a
non-indicator. Similarly, paths that pass only through
indicator variables can be used to propagate labels to
the unlabeled examples.

3. Semi-supervised Learning

Our general strategy is to identify non-indicators and
remove them from the commonality graph, reducing
this problem to the simpler case. Notice that each
non-indicator that appears in the unlabeled data is
significant; failing to identify it can lead to incorrect
inferences about a large probability mass of examples.
A variable is obviously a non-indicator if it appears in
both positive and negative examples. A näıve approach
would be to draw enough labeled examples so that ev-
ery significant non-indicator appears in examples with
both labels. The problem with this approach is that
some non-indicator can appear much more frequently
in positive examples than in negative examples. In
this case the number of examples needed by the näıve
approach is inversely proportional to the probability
of that non-indicator appearing in negative examples.
This sample complexity can be worse than in the fully
supervised case.

In our approach, it is enough to ensure each non-
indicator appears in a labeled example, but not nec-
essarily in both positive and negative examples. The
number of examples needed in this case will now de-
pend on the minimum probability of a non-indicator
appearing. This allows the sample complexity to be
significantly smaller than that of the näıve approach;
for example, when a non-indicator appears in positive
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examples with constant probability while in negative
examples with probability ε/n.

Our approach can still identify non-indicators, now by
examining paths in the commonality graph. In paths
whose interior vertices appear only in unlabeled exam-
ples (i.e. are indicators) and whose endpoints appear
in oppositely labeled examples, one of the endpoints
must be a non-indicator. When k = O(log n) we can
enumerate over all consistent compatible hypotheses
efficiently by restricting our attention to a small set of
paths.

If the number of non-indicators is larger, we can still
find a good hypothesis efficiently by finding the non-
indicators one at a time. Each time our working hy-
pothesis makes a mistake this reveals a path whose
endpoint is a non-indicator.

The number of labeled examples we require will depend
on the minimum non-indicator probability defined by

ε0(D,h∗) = min
xi /∈h∗+∪h∗−

Pr
x∼D

[xi = 1].

For notational convenience denote it simply by ε0 with-
out ambiguity. To guarantee with high probability that
each non-indicator appears in some labeled example, it
suffices to use Õ( 1

ε0
log k) labeled examples.

3.1. Finding a Consistent, Compatible
Hypothesis Efficiently when k = O(log n)

We now give an algorithm, along with some intuition,
for finding a two-sided disjunction that is consistent
and compatible with a given training set. We note that
this problem is NP-hard in general (see Section 2 in
supplementary material). Given example sets L and U ,
the algorithm begins by constructing the commonality
graph G = Gcom(U) and setting G to G \ (V+ ∩ V−).
This removes any variables that appear in both positive
and negative examples as these must be non-indicators.

To identify the rest of the non-indicators, we consider
a new graph. Using u ↔G v to denote the existence
of a path in the graph G between vertices u and v,
we define the indicator graph Gind(G,V+, V−) to be
the bipartite graph with vertex set V+ ∪ V− and edge
set {(u, v) ∈ V+ × V− : u ↔G\(V+∪V−) v}. The key
idea is that an edge in this graph implies that at least
one of its endpoints is a non-indicator, since the two
variables appear in oppositely labeled examples but are
connected by a path of indicators.

Note that the target set of non-indicators must form a
vertex cover in the indicator graph. By iterating over
all minimal vertex covers, we must find a subset of
the target non-indicators whose removal disconnects

Algorithm 1 Finding a consistent compatible two-
sided disjunction

Input: unlabeled set U , labeled set L
Set G = Gcom(U), V+ = V +

L , V− = V −L
Set G = G \ (V+ ∩ V−)
Set V+ = V+ ∩G, V− = V− ∩G
Set GI = Gind(G,V+, V−)
for each minimal vertex cover S of GI do

Set G′ = G \ S, V ′+ = V+ \ S, V ′− = V− \ S
Set h+ = {v ∈ G′ : ∃u ∈ V ′+, u↔G′ v}
if (h+, G

′\h+) is consistent and compatible then
break

Output: hypothesis h = (h+, G
′ \ h+)

positive examples from negative examples, and this
corresponds to a consistent compatible hypothesis. The
algorithm is summarized in Algorithm 1.

The key step in Algorithm 1 is enumerating the minimal
vertex covers of the indicator graph GI . One way to
do this is as follows. First find a maximum matching
M in GI , and let m be the number of disjoint edges
in M . Enumerate all 3m subsets of vertices that cover
M (for every edge in M , one or both of the endpoints
can be included in the cover). For each such cover S,
extend S to a minimal vertex cover of GI by adding
to S every variable not covered by M that has no
neighbors already in S. This extension can always be
done uniquely, so there is a one-to-one correspondence
between covers of M and minimal vertex covers of GI .

This enumeration method gives us both a concrete
way to implement Algorithm 1 and a way to bound
its running time. We prove in Theorem 1 that given
enough data, Algorithm 1 correctly outputs a consistent
compatible hypothesis with high probability. We then
bound its time and sample complexity.

Theorem 1. For any distribution D over {0, 1}n and
target concept h∗ ∈ C such that χ(h∗, D) = 1, h∗ has at
most k non-indicators, and the minimum non-indicator

probability is ε0, if mu ≥ 1
ε

[
log 2|C|

δ

]
and

ml ≥ max

{
1

ε0
log

k

δ
,

1

ε

[
log

2|CD,χ(ε)|
δ

]}
then with probability at least 1−2δ, Algorithm 1 outputs
a hypothesis h ∈ C such that errL(h) = 0, χ(h, U) = 1,
and err(h) ≤ ε. Furthermore, when k = O(log n) the
algorithm runs in time at most poly(n).

Proof. We separate the proof into three sections, first
proving consistency and compatibility of the output
hypothesis, then giving the sample sizes required to
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guarantee good generalization, and finally showing the
overall running time of the algorithm.

Consistency and Compatibility: The exit condi-
tion for the loop in Algorithm 1 guarantees that the
algorithm will output a consistent compatible hypothe-
sis, so long as a suitable minimal vertex cover of GI is
found. Thus, it suffices to show that such a vertex cover
exists with high probability when L is large enough.

By the definition of ε0 along with the independence
of the samples and a union bound, if ml >

1
ε0

log k
δ ,

then with probability at least 1− δ, all non-indicator
variables appear in some labeled example. We will
assume in the remainder of the proof that all variables
not in V +

L ∪ V
−
L are indicators.

Since an edge in G between indicators forces both
endpoints to be of the same type, a path through
indicators does the same. Edges in GI correspond to
such paths, but the endpoints of such an edge cannot
be indicators of the same type because they appear in
differently labeled examples. It follows that at least one
endpoint of every edge in GI must be a non-indicator.

Now let V0 be the set of non-indicators in the target
hypothesis. The above observations imply that V0
contains a vertex cover of GI . It follows that there
must exist a subset S̃ ⊆ V0 that is a minimal vertex
cover of GI . Let h̃ = (h̃+, h̃−) be the hypothesis h
formed from the minimal vertex cover S = S̃. We only
need to show that h̃ is both consistent and compatible.

Every indicator of h∗ is also an indicator of h̃ since
only true non-indicators were removed from G and all
remaining variables became indicators in h̃. Since every
example contains an indicator of h∗, every example
must contain an indicator of h̃ of the correct type.
Furthermore, if an example contained both positive
and negative indicators, this would imply an edge still
present in GI . But removing a vertex cover removes
all edges, so this is impossible. Hence h̃ is a consistent,
fully compatible hypothesis.

Generalization Error: If mu ≥ 1
ε [log 2|C|

δ ] and

ml ≥ max{ 1
ε0

log k
δ ,

1
ε [log

2|CD,χ(ε)|
δ ]}, the above anal-

ysis states that Algorithm 1 will fail to produce a
consistent compatible hypothesis with probability at
most δ. Furthermore, an algorithm with true error rate
greater than ε will be fully consistent with a labeled set
of size ml with probability at most δ/CD,χ(ε). Union
bounding over all compatible hypotheses we see that
a consistent compatible hypothesis will fail to have an
error rate less than ε with probability at most δ. By
a union bound over the two failure events, the overall
probability of failure is ≤ 2δ.

Running Time: Since checking consistency and com-
patibility can be done in time polynomial in the number
of examples, the limiting factor in the running time
is the search over minimal vertex covers of GI . In a
bipartite graph, the size of the minimum vertex cover
is equal to the size of the maximum matching. The set
of k non-indicators in the target hypothesis includes
a vertex cover of GI , so the size m of the maximum
matching is at most k. There is one minimal vertex
cover for each of the 3m covers of the maximum match-
ing, so the number of minimal vertex covers to search
is at most 3k.

3.2. A General Semi-supervised Algorithm

Algorithm 1 is guaranteed (provided the labeled set is
large enough) to find a hypothesis that is both consis-
tent and compatible with the given data but is efficient
only when k is logarithmic in n. When k is instead poly-
logarithmic in n, our algorithm is no longer efficient but
still achieves a large improvement in sample complexity
over supervised learning. We now present an efficient
algorithm for finding a low-error (but not necessarily
consistent and compatible) hypothesis which matches
the sample complexity of Algorithm 1.

The algorithm, summarized in Algorithm 2, begins by
constructing the commonality graph from the unlabeled
examples and identifying potential indicators from a
subset of the labeled examples. We use sample(m,S)
to denote a random sample of m elements from set S.
An initial hypothesis is built and tested on the sequence
of remaining labeled examples. If the hypothesis makes
a mistake, it is updated and testing continues. Each
update corresponds to either identifying a non-indicator
or labeling all indicators in some connected component
in the commonality graph, so the number of updates
is bounded. Furthermore, if the hypothesis makes no
mistakes on a large enough sequence of consecutive
examples, then with high probability it has a small
error rate overall. This gives us a stopping condition
and allows us to bound the number of examples seen
between updates.

The hypotheses in Algorithm 2 use a variation on near-
est neighbor rules for classification. Given a common-
ality graph G and a set L of labeled examples, the
associated nearest neighbor hypothesis hG,L classifies
an example x the same as the nearest labeled example
in L. The distance between two examples x and x′

is the measured by the minimum path distance in G
between the variables in x and the variables in x′. If no
examples in L are connected to x, then hG,L classifies x
negative by default. For convenience, we use nnG,S(x)
to denote the vertex in the set S nearest to a variable
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Algorithm 2 Learning a Low-error Hypothesis

Input: data sets U and L, parameters ε, δ, k
Set L′ = sample( 1

ε0
log k

δ , L) and L = L \ L′

Set G = Gcom(U) \ (V +
L′ ∩ V

−
L′ )

Set P = G ∩ (V +
L′ ∪ V

−
L′ )

Set h = hG,L′ and c = 0
while L 6= ∅ and c ≤ 1

ε log k+T
δ do

Set x = sample(1, L)
Set L = L \ {x}, and L′ = L′ ∪ {x}
if h(x) 6= `(x) then

Set G = G \ nnG,P (x)
Set h = hG,L′ and c = 0

else
Set c = c+ 1

Output: the hypothesis h

in the example x via a path in G. If no such vertex ex-
ists, nnG,S(x) returns the empty set. Using hypotheses
of this form ensures that the neighbor variable used
to classify an example x is connected to x by a path
through indicators, which allows us to propagate its la-
bel to the new example. If the example is misclassified,
we must have been fooled by a non-indicator.

The number of examples used by Algorithm 2 depends
on T , the number of connected components in the
commonality graph after removing all non-indicators.
Lemma 1 bounds T by the number of compatible hy-
potheses and is proved in the supplementary material.
Theorem 2 bounds the number of examples sufficient
for Algorithm 2 to output a low-error hypothesis.

Lemma 1. Let G be the graph that results from re-
moving all non-indicators from Gcom(U), and sup-
pose G is divided into T connected components. If

mu ≥ 2n2

ε log n
δ , then T ≤ log2 |CD,χ(ε)| with probabil-

ity at least 1− δ.
Theorem 2. For any distribution D over {0, 1}n and
target concept h∗ ∈ C such that χ(h∗, D) = 1, h∗ has at
most k non-indicators, and the minimum non-indicator

probability is ε0, if mu ≥ 2n2

ε log n
δ and

ml ≥
1

ε0
log

k

δ
+
k + log |CD,χ(ε)|

ε

[
log

k + log |CD,χ(ε)|
δ

]
then with probability at least 1−3δ, Algorithm 2 outputs
a hypothesis h in polynomial time such that err(h) ≤ ε.

Proof. Generalization Error: First note that accord-
ing to the loop exit condition, Algorithm 2 outputs the
first hypothesis it encounters that correctly classifies
a sequence of at least 1

ε log k+T
δ i.i.d. examples from

D. If err(h) > ε for some hypothesis h, then the prob-
ability that h correctly classifies such a sequence of

examples is at most (1− ε) 1
ε log k+Tδ ≤ δ

k+T . Assuming
Algorithm 2 updates its hypothesis at most k+T times,
a union bound over the k + T hypotheses considered
guarantees that with probability at least 1 − δ, the
hypothesis output by Algorithm 2 has error rate at
most ε. In the remainder of the proof, we will bound
the total number of samples required and show that it
makes at most k + T updates to its hypothesis.

Mistake Bound: By the definition of ε0, the initial set
of ml labeled examples ensures that with probability
at least 1 − δ all non-indicators are included in the
potential indicator set P , so all variables outside P
(call this set Q) are indicators. We will assume such an
event holds throughout the remainder of the proof. In
particular, this means that any paths through Q must
consist entirely of indicators of the same type.

Suppose at some point during the execution of Algo-
rithm 2, the intermediate hypothesis h misclassifies
an example x. There are two types of such mistakes
to consider. If the variables in x are not connected
to any variables in P , then by the above observation,
all variables connected to x are indicators of the same
type, and in particular, they are indicators of the type
corresponding to the label of x. This means that this
type of mistake can occur only when h knows of no
labeled examples connected to x. Once h is updated to
be hG,L′ where x ∈ L′, h can make no further mistakes
of this type on any examples connected to x. Thus,
Algorithm 2 can make at most T mistakes of this type
before all components have labeled examples.

The hypothesis hG,L′ labels x with the label of the
example of L′ containing nnG,P (x). If x is labeled in-
correctly, then this must be an example with label op-
posite that of x. But since the path between nnG,P (x)
and x consists only of vertices not in P , i.e. indicators,
we conclude that nnG,P (x) must be a non-indicator.
Algorithm 2 can make at most k mistakes of this type
before all non-indicators are removed from G.

Sample Complexity and Running Time: We have
shown that after Algorithm 2 makes k + T updates,
all non-indicators have been removed from G and all
connected components in G contain a variable that
has appeared in a labeled example. Since at most
1
ε log k+T

δ examples can be seen between updates, the
total number of labeled examples needed is at most

1

ε0
log

k

δ
+
k + T

ε
log

k + T

δ
.

Straightforward algebra and an application of Lemma 1
yields the bound given in the theorem statement, and a
union bound over the three failure events of probability
δ yields the stated probability of success. The time
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complexity is clearly polynomial in n per example and
therefore polynomial overall.

4. Active Learning

We now consider the problem of learning two-sided
disjunctions in the active learning model, where the
learner has access to a set U of unlabeled examples
and an oracle that returns the label of any example in
U we submit. The additional power provided by this
model allows us to use the same strategy as in the semi-
supervised algorithm in Section 3.2 while achieving
sample complexity bounds independent of ε0.

As in Section 3.2, the goal will be to identify and re-
move non-indicators from the commonality graph and
obtain labeled examples for each of the connected com-
ponents in the resulting graph. In the semi-supervised
model we could identify a mistake when there was a
path connecting a positive labeled example and a neg-
ative labeled example. To identify non-indicators we
guaranteed that they would lie on the endpoints of
these labeled paths. In the active learning setting, we
are able to check the labels of examples along this path,
and thus are able to remove our dependence on the
minimum non-indicator probability.

The algorithm we propose can be seen as a slight modi-
fication of Algorithm 2. The idea is to maintain a set of
at least one labeled example per connected component
and to test the corresponding nearest neighbor hypoth-
esis on randomly chosen examples. If the hypothesis
misclassifies some example, it identifies a path from the
example to its nearest neighbor. Since these examples
have opposite labels, a non-indicator must be present at
a point on the path where positive indicators switch to
negative indicators, and such a non-indicator can found
in logarithmically many queries by actively choosing
examples to query along this path in a binary search
pattern. The search begins by querying the label of
an example containing the variable at the midpoint
of the path. Depending on the queried label, one of
the endpoints of the path is updated to the midpoint,
and the search continues recursively on the smaller
path whose endpoints still have opposite labels. Let
BinarySearchG,L(x) return the non-indicator along the
path in G from a variable in x to nnG,L(x). The algo-
rithm halts after removing all k non-indicators or after
correctly labeling a long enough sequence of random
examples. The details are described in Algorithm 3,
and the analysis is presented in Theorem 3.

Theorem 3. For any distribution D over {0, 1}n and
target concept h∗ ∈ C such that χ(h∗, D) = 1 and
h∗ has at most k non-indicators, let T be the number
of connected components in the graph G that results

Algorithm 3 Active Learning Two-Sided Disjunctions

Input: unlabeled data U , parameters ε, δ, k
Set G = Gcom(U) and L = ∅
for each connected component R of G do

Choose x ∈ U such that x ⊆ R
Set L = L ∪ {(x, `(x))}

Set h = hG,L and c = 0
while c ≤ 1

ε log k
δ do

Set x = sample(1, U) and L = L ∪ {(x, `(x))}
if h(x) 6= `(x) then

Set v = BinarySearchG,L(x)
Set G = G \ {v}
for each new connected component R of G do

Choose x ∈ U such that x ⊆ R
Set L = L ∪ {(x, `(x))}

Set h = hG,L and c = 0
else

Set c = c+ 1
Output: the hypothesis h

from removing all non-indicators from Gcom(U). If

mu ≥ 2n2

ε log n
δ then after at most

mq = O

(
log |CD,χ(ε)|+ k

[
log n+

1

ε
log

k

δ

])
label queries, with probability ≥ 1 − 2δ, Algorithm 3
outputs a hypothesis h in polynomial time such that
err(h) ≤ ε.

Proof. Generalization Error: According to the exit
condition of the loop in Step 3, Algorithm 3 outputs the
first hypothesis it encounters that correctly classifies a
sequence of at least 1

ε log k
δ i.i.d. examples from D. If

err(h) > ε for some hypothesis h, then the probability
that h correctly classifies such a sequence of examples
is at most (1 − ε) 1

ε log kδ ≤ δ
k . Assuming Algorithm 3

updates its hypothesis at most k times, a union bound
over the k hypotheses considered guarantees that with
probability at least 1 − δ, the hypothesis output by
Algorithm 3 has error rate at most ε. In the remainder
of the proof, we will bound the total number of samples
required by Algorithm 3 and show that it makes at
most k updates to its hypothesis.

Queries per Stage: In the loops over connected com-
ponents of G, one label is queried for each component.
The components are those formed by removing from G
a subset of the non-indicators, so the total number of
queries made in these loops is at most T , the number
of components after removing all non-indicators.

Now suppose the hypothesis h misclassifies an example
x. Let x′ be the nearest labeled example to x, and let
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xi and xj be the endpoints of the shortest path from x
to x′ in G. If each variable along the path appears in
examples of only one label, then there could be no path
between xi and xj , which appear in examples with
different labels. Thus, there must exist a variable along
the path from xi to xj that appears in both positive
and negative examples, i.e. a non-indicator. Since the
commonality graph was constructed using the examples
in U , we can query the labels of examples that contain
variables between xi and xj in order to find the non-
indicator. Using binary search, the number of queries
is logarithmic in the path length, which is at most n.

Query Complexity and Running Time: Each mis-
take results in removing a non-indicator from the G,
so at most k mistakes can be made. For each mistake,
O(log n) queries are needed to find a non-indicator to
remove and at most 1

ε log k
δ more queries are used before

another mistake is made. Combined with the queries
for the connected components, we can bound the total
number of queries by O

(
T + k

[
log n+ 1

ε log k
δ

])
. We

can further bound T by log |CD,χ(ε)| via Lemma 1, and
pay the price of an additional δ probability of failure.
The running time is clearly polynomial.

5. Random Classification Noise

We also consider the more challenging problem of learn-
ing two-sided disjunctions under random classification
noise, where the observed label of each example is
reversed from that given by the target concept in-
dependently with probability α ∈ [0, 1/2). The key
modification we make to extend our algorithms is to
determine the indicator type of each variable by taking
a majority vote of the labels of the containing examples.
To guarantee success with high probability this scheme
is used only for variables that are significant, that is,
they appear in at least Õ( 1

(1−2α)2 ) labeled examples.

We discuss some details below for the extensions to
Algorithms 2 and 3, and provide complete proofs for
all three algorithms in the supplementary material.

Semi-supervised Learning: We first draw enough
examples to ensure that all non-indicators are signifi-
cant and then build a hypothesis in a similar manner
to the noise-free setting by deciding indicator types
via majority voting. We then test the hypothesis on a
set of labeled examples and output it if the empirical
error is small. Otherwise, the high error may be caused
either by a component without any labeled variables
(which can be corrected by a majority vote of the ex-
amples in that component) or a non-indicator (which
can be identified by using enough labeled examples).
As in the noise-free setting, this allows us to bound the
number of updates to the hypothesis.

Active Learning: Besides using majority voting to
determine indicator types, another alteration is to per-
form binary search over edges (instead of vertices)
in order to distinguish disagreement caused by non-
indicators from that caused by noise. If an edge con-
tains an indicator, a majority vote of examples con-
taining the two variables in the edge will agree with
the type of the indicator, so any variable contained in
edges of different labels must be a non-indicator.

6. Discussion

One drawback of our semi-supervised algorithms is
that their dependence on the minimum non-indicator
probability restricts the class of distributions they can
efficiently learn. Additionally, the class of target con-
cepts for which Algorithm 1 can efficiently learn a con-
sistent and compatible hypothesis is restricted, and the
reduction given in the supplementary material proves
that some such restriction is necessary as the general
problem is NP-hard. One surprising result of our work
is that both restrictions can be lifted entirely in the ac-
tive learning setting while improving label complexity
at the same time. The ability to adaptively query the
labels of examples allows us to execute a strategy for
identifying non-indicators that would require too many
labeled examples in the semi-supervised setting. While
this represents the first known example of how active
learning can be used to avert computational difficulties
present in semi-supervised learning, it would be worth-
while to give more such examples and to understand
more generally when active learning provides this type
of advantage.

It is important to note that the problem of learning
two-sided disjunctions can be viewed as learning un-
der a large-margin assumption. We can represent a
two-sided disjunction h as a linear threshold function
h(x) = sign(wTx) where wi = +1 for positive indica-
tors, wi = −1 for negative indicators, and wi = 0 for
each of the k non-indicators. If h is fully compatible
with the distribution D, it is straightforward to show

that for every example x ∼ D, |wTx|
‖w‖∞‖x‖1 ≥

1
k+1 , which

corresponds to an L∞L1 margin of O(1/k). This is
a different notion of margin than the L2L2 margin
appearing in the mistake bounds for the Perceptron
algorithm (Rosenblatt, 1958) and the L1L∞ margin
in the bounds for Winnow (Littlestone, 1988). One
interesting area of future work is to provide generic al-
gorithms with bounds depending on the L∞L1 margin.
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