
A Spectral Learning Approach to Range-Only SLAM

Appendix

A. Metric Upgrade for Learned Map

In the main body of the paper, we assumed that global
position estimates of at least four landmarks were
known. When these landmarks are known, we can
recover all of the estimated landmark positions and
robot locations.

In many cases, however, no global positions are known;
the best we can hope to do is recover landmark and
robot positions up to an orthogonal transform (trans-
lation, rotation, and reflection). It turns out that
Eqs. (7) provide enough geometric constraints to per-
form this metric upgrade, as long as we have at least
8 landmarks and at least 8 time steps. The idea is to
fit a quadratic surface to the rows of U or the columns
of V , then change coordinates so that the surface be-
comes the functions given in (7).

To derive the metric upgrade, suppose that we start
from an N ⇥ 4 matrix U of learned landmark coor-
dinates and an 4 ⇥ N matrix V of learned robot co-
ordinates from the algorithm of Sec. 3.1. We would
like to transform the learned coordinates into two new
matrices C and X such that
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where c is a row of C and x is a column of X.

At a high level, we first fit a quadratic surface to the
rows of U , then transform this surface so that it satis-
fies Eq. 14–15, and scale the surface so that it satisfies
Eq. 16. Our surface will then automatically also sat-
isfy Eq. 17, since X must be metrically correct if C
is.

In more detail, we first (step i) linearly transform each
row of U into approximately the form (1, ri,1, ri,2, ri,3):
we use linear regression to find a coe�cient vector
a 2 R4 such that Ua ⇡ 1, then set R = UQ where
Q 2 R4⇥3 is an orthonormal basis for the nullspace of
aT. After this step, our factorization is (UT
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Next (step ii) we fit an implicit quadratic surface to
the rows of R by finding 9 coe�cients bjk (for 0  j 
k  3) such that
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To do so, we form a matrix S that has the same number
of rows as U but 9 columns. The elements of row i of
S are ri,jri,k for 0  j  k  3 (in any fixed order; for
conciseness, we take ri,0 = 1 for all i). Then we find
a vector b 2 R9 that is approximately in the nullspace
of ST by taking a singular value decomposition of S
and selecting the right singular vector corresponding
to the smallest singular value. Using this vector, we
can define our quadratic as 0 ⇡ 1
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where r is a row of R, and the Hessian matrix H and
linear part ` are given by:
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Over the next few steps we will transform the coor-
dinates in R to bring our quadratic into the form of
Eq. 15: that is, one coordinate will be a quadratic
function of the other two, there will be no linear or
constant terms, and the quadratic part will be spheri-
cal with coe�cient 1

2

.

We start (step iii) by transforming coordinates so
that our quadratic has no cross-terms, i.e., so that
its Hessian matrix is diagonal. Using a 3 ⇥ 3 singu-
lar value decomposition, we can factor H = MH 0MT

so that M is orthonormal and H 0 is diagonal. If
we set R0 = RM and `0 = M`, and write r0 for a
row of R0, we can equivalently write our quadratic as
0 = 1

2
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Our next step (step iv) is to turn our implicit quadratic
surface into an explicit quadratic function. For this
purpose we pick one of the coordinates of R0 and write
it as a function of the other two. In order to do so, we
must have zero as the corresponding diagonal element
of the Hessian H 0—else we cannot guarantee that we
can solve for a unique value of the chosen coordinate.
So, we will take the index j such that H 0

jj is mini-
mal, and set H 0

jj = 0. Suppose that we pick the last
coordinate, j = 3. (We can always reorder columns
to make this true; SVD software will typically do so
automatically.) Then our quadratic becomes
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Now (step v) we can shift and rescale our coordinates
one more time to get our quadratic in the desired form:
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translate so that the linear and constant coe�cients
are 0, and rescale so that the quadratic coe�cients
are 1

2

. For the translation, we define new coordinates
r00 = r0 + c for c 2 R3, so that our quadratic becomes
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By expanding and matching coe�cients, we know c
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The first two equations are linear in c
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). So, we can solve directly for c
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; then we can plug their values into the last equation
to find c
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coe�cients to 1
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The left factor U 0 will now satisfy Eq. 14–15. We still
have one last useful degree of freedom: if we set C =
U 0T
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for any µ 2 R, then C will still satisfy Eq. 14–15. So
(step vi), we will pick µ to satisfy Eq. 16: in particular,

we set µ =
q

mean(V 0
4,:), so that when we set X =

T�1

4

V 0, the last row of X will have mean 1.

If we have 7 learned coordinates in U as in Sec. 3.2,
we need to find a subspace of 4 coordinates in order
to perform metric upgrade. To do so, we take advan-
tage of the special form of the correct answer, given

in Eq. 10: in the upper block of C in Eq. 10, three
coordinates are identically zero. Since U is a linear
transformation of C, there will be three linear func-
tions of the top block of U that are identically zero
(or approximately zero in the presence of noise). We
can use SVD on the top block of U to find and remove
these linear functions (by setting the smallest three
singular values to zero), then proceed as above with
the four remaining coordinates.

B. Sample Complexity for the
Measurement Model (Robot Map)

Here we provide the details on how our estimation er-
ror scales with the number T of training examples—
that is, the scaling of the di↵erence between the esti-
mated measurement model bU , which contains the loca-
tion of the landmarks, and its population counterpart.

Our bound has two parts. First we use standard con-
centration bounds to show that each element of our
estimated covariance cM = bY bY > approaches its popu-
lation value. We use the Azuma-Hoe↵ding inequality
to bound the probability that the sum of random vari-
ables deviates from its mean. We start by rewriting
the empirical covariance matrix as a vector summed
over multiple samples:
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where ⌥ = (bY � bY )> is the matrix of column-wise
Kronecker products of the observations bY . We assume
that each element of ⌥ minus its expectation E⌥i is
bounded by a constant c; we can derive c from bounds
on anticipated errors in distance measurements and
odometry measurements.
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Then the Azuma-Hoe↵ding inequality bounds the
probability that the empirical sum di↵ers too much
from its population value:
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which means that the probability decreases as O( 1

T )

and the threshold decreases as Õ( 1p
T
).
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We can then use a union bound over all (2N)2 covari-
ance elements j (since bY 2 R2N⇥T ):
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That is, with high probability, the entire empirical co-
variance matrix cM is going to be close (in max-norm)
to its expectation.

Next we use the continuity of the SVD to show that
the learned subspace approaches its true value. Let
cM = M + E, where E is the perturbation (so the
largest element of E is bounded). Let bU be the output
of SVD, and let U be the population value (the top
singular vectors of the true M). Let  be the matrix
of canonical angles between range(U) and range(bU).
Since we know the exact rank of the true M (either 4
or 7), the last (4th or 7th) singular value of M will be
positive; call it � > 0. So, by Theorem 4.4 of Stewart
and Sun (1998),
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This result uses a 2-norm bound on E, but the bound
we showed above is in terms of the largest element of
E. But, the 2-norm can be bounded in terms of the
largest element:
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Finally, the result is that we can bound the canonical
angle:
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In other words, the canonical angle shrinks at a rate
of Õ( 1p

T
), with probability at least 1� 8N2

T .

C. The Robot as a Nonlinear
Dynamical System

Once we have learned an interpretable state space via
the algorithm of Section 3.3, we can simply write down
the nominal robot dynamics in this space. The accu-
racy of the resulting model will depend on how well our
sensors and actuators follow the nominal dynamics, as
well as how well we have learned the transformation S
to the interpretable version of the state space.

In more detail, we model the robot as a controlled non-
linear dynamical system. The evolution is governed

by the following state space equations, which general-
ize (1):

st+1

= f(st, at) + ✏t (18)

ot = h(st) + ⌫t (19)

Here st 2 Rk denotes the hidden state, at 2 Rl denotes
the control signal, ot 2 Rm denotes the observation,
✏t 2 Rk denotes the state noise, and ⌫t 2 Rm denotes
the observation noise. For our range-only system, fol-
lowing the decomposition of Section 3, we have:
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Here vt and !t are the translation and rotation calcu-
lated from the robot’s odometry. A nice property of
this model is that expected observations are a linear

function of state:

h(st) = Cst (21)

The dynamics, however, are nonlinear : see Eq. 22,
which can easily be derived from the basic kinematic
motion model for a wheeled robot (Thrun et al.,
2005).
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C.0.1. Robot System Identification

To apply the model of Section C, it is essential that we
maintain states in the physical coordinate frame, and
not just the linearly transformed coordinate frame—
i.e., bC and not bU = bCS�1. However, it is possible
instead to use system identification to learn to filter
directly in the raw state space bU . We conjecture that
it may be more robust to do so, since we will not be
sensitive to errors in the metric upgrade process (errors
in learning S), and since we can learn to compensate
for some deviations from the nominal model of Sec-
tion C.

To derive our system identification algorithm, we
can explicitly rewrite f(st, at) as a nonlinear feature-
expansion map followed by a linear projection. Our
algorithm will then just be to use linear regression to
learn the linear part of f .

First, let’s look at the dynamics for the special case of
S = I. Each additive term in Eq. 22 is the product
of at most two terms in st and at most two terms in
at. Therefore, we define �(st, at) := st ⌦ st ⌦ āt ⌦ āt,
where āt = [1, at]T and ⌦ is the Kronecker product.
(Many of the dimensions of �(st, at) are duplicates;
for e�ciency we would delete these duplicates, but for
simplicity of notation we keep them.) Each additive
term in Eq. 22 is a multiple of an element of �(st, at),
so we can write the dynamics as:

st+1

= N�(st, at) + ✏t (23)

where N is a linear function that picks out the correct
entries to form Eq. 22.

Now, given an invertible matrix S, we can rewrite
f(st, at) as an equivalent function in the transformed
state space:

Sst+1

= f̄(Sst, at) + S✏t (24)

To do so, we use the identity (Ax) ⌦ (By) = (A ⌦
B)(x⌦ y). Repeated application yields

�(Sst, at) = Sst ⌦ Sst ⌦ āt ⌦ āt

= (S ⌦ S ⌦ I ⌦ I)(st ⌦ st ⌦ āt ⌦ āt)

= S̄ �(st, at) (25)

where S̄ = S ⌦ S ⌦ I ⌦ I. Note that S̄ is invertible
(since rank(A ⌦ B) = rank(A) rank(B)); so, we can
write

f̄(Sst, at) = SNS̄�1S̄�(st, at) = Sf(st, at) (26)

Using this representation, we can learn the linear part
of f , SNS̄�1, directly from our state estimates: we
just do a linear regression from �(Sst, at) to Sst+1

.

Algorithm 2 Robot System Identification

In: T i.i.d. pairs of observations {ot, at}Tt=1

, measure-
ment model for 4 landmarks C

1:4

(by e.g. GPS)
Out: measurement model bC, motion model bN , robot
states bX (the tth column is state st)

1: Collect observations and odometry into a matrix
bY (Eq. 8)

2: Find the the top 7 singular values and vectors:
hbU, b⇤, bV >i  SVD(bY , 7)

3: Find the transformed measurement matrix
bCS�1 = bU and robot states S bX = b⇤bV >

4: Compute a matrix � with columns �t =
�(Sst, at).

5: Compute dynamics: S bNS̄�1 = S bX
2:T (�1:T�1

)†

6: Compute the partial S�1: bS�1 = C�1

1:4

( bC
1:4

S�1)

where bCS�1 comes from step 3. bS�1 bX gives us
the x, y coordinates of the states. These can be
used to find bX (see Section 3.2)

7: Given bX, we can compute the full S as S =
(S bX) bX†

8: Finally, from steps 3,5, and 7, we find the inter-
pretable measurement model ( bCS�1)S and motion
model N = S�1(SNS̄�1)S̄.

For convenience, we summarize the entire learning
algorithm (state space discovery followed by system
identification) as Algorithm 1.

C.0.2. Filtering with the Extended Kalman

Filter

Whether we learn the dynamics through system identi-
fication or simply write them down in the interpretable
version of our state space, we will end up with a transi-
tion model of the form (23) and an observation model
of the form (21). Given these models, it is easy to
write down an EKF which tracks the robot state. The
measurement update is just a standard Kalman filter
update (see, e.g., (Thrun et al., 2005)), since the ob-
servation model is linear. For the motion update, we
need a Taylor approximation of the expected state at
time t+1 around the current MAP state ŝt, given the
current action at:

st+1

� st ⇡ N [�(ŝt, at) +
d�
ds

��
ŝt
(st � ŝt)] (27)

d�
ds

��
ŝ
= (ŝ⌦ I + I ⌦ ŝ)⌦ āt ⌦ āt (28)

We simply plug this Taylor approximation into the
standard Kalman filter motion update (e.g., (Thrun
et al., 2005)).



A Spectral Learning Approach to Range-Only SLAM

D. Synthetic Experiments

Our simulator randomly places 6 landmarks in a 2-D
environment. A robot then randomly moves through
the environment for 500 time steps and receives a range
reading to each one of the landmarks at each time step.
The range readings are perturbed by noise sampled
from a Gaussian distribution with variance equal to
1% of the range. Given this data, we apply the algo-
rithm from Section 3.3 to solve the SLAM problem.
We use the coordinates of 4 landmarks to learn the
linear transform S and recover the true state space, as
shown in Figure 1A. The results indicate that we can
accurately recover both the landmark locations and
the robot path.

We also investigated the empirical convergence rate
of our observation model (and therefore the map) as
the number of range readings increased. To do so,
we generated 1000 di↵erent random pairs of environ-
ments and robot paths. For each pair, we repeatedly
performed our spectral SLAM algorithm on increas-
ingly large numbers of range readings and looked at the
di↵erence between our estimated measurement model
(the robot’s map) and the true measurement model
|| bC � C||F . The results are shown in Figure 1B, and
show that our estimates steadily converge to the true
model, corroborating our theoretical results (in Sec-
tion 3.3 and the Appendix).


