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Supplementary Material

A. DP-means objective derivation

First consider the generative model in Section 2. The
joint distribution of the observed data x, cluster indi-
cators z, and cluster means µ can be written as follows.

P(x, z, µ) = P(x|z, µ)P(z)P(µ)

=
K+∏

k=1

∏

n:zn,k=1

N (xn|µk, σ2ID)

· θK+−1 Γ(θ + 1)
Γ(θ + N)

K+∏

k=1

(SN,k − 1)!

·
K+∏

k=1

N (µk|0, ρ2ID).

Then set θ := exp(−λ2/(2σ2)) and consider the limit
σ2 → 0. In the following, f(σ2) = O(g(σ2)) denotes
that there exist some constants c, s2 > 0 such that
|f(σ2)| ≤ c|g(σ2)| for all σ2 < s2.

− log P(x, z, µ)

=
K+∑

k=1

∑

n:zn,k=1

[
O(log σ2) +

1
2σ2

‖xn − µk‖2
]

+ (K+ − 1)
λ2

2σ2
+ O(1)

+ O(1).

It follows that

−2σ2 log P(x, z, µ) =
K+∑

k=1

∑

n:zn,k=1

‖xn − µk‖2

+ (K+ − 1)λ2 + O(σ2 log(σ2)).

But since σ2 log(σ2) → 0 as σ2 → 0, we have that
the remainder of the righthand side is asymptotically
equivalent (as σ2 → 0) to the lefthand side (Eq. (2)).

B. BP-means objective derivation

The recipe is the same as in Sup. Mat. A. This time we
start with the generative model in Section 3. The joint
distribution of the observed data X, feature indicators
Z, and feature means A can be written as follows.

P(X, Z,A) = P(X|Z, A)P(Z)P(A)

=
1

(2πσ2)ND/2
exp

{
− 1

2σ2
tr((X − ZA)′(X − ZA))

}

·
γK+

exp
{
−

∑N
n=1

γ
n

}

∏H
h=1 K̃h!

K+∏

k=1

(SN,k − 1)!(N − SN,k)!
N !

· 1
(2πρ2)K+D/2

exp
{
− 1

2ρ2
tr(A′A)

}
.

Now set γ := exp(−λ2/(2σ2)) and consider the limit
σ2 → 0. Then

− log P(X, Z,A)

= O(log σ2) +
1

2σ2
tr((X − ZA)′(X − ZA))

+ K+ λ2

2σ2
+ exp(−λ2/(2σ2))

N∑

n=1

n−1 + O(1)

+ O(1).

It follows that

−2σ2 log P(X, Z,A) = tr[(X − ZA)′(X − ZA)] + K+λ2

+ O
(
σ2 exp(−λ2/(2σ2))

)
+ O(σ2 log(σ2)).

But since exp(−λ2/(2σ2)) → 0 and σ2 log(σ2) → 0 as
σ2 → 0, we have that −2σ2 log P(X, Z,A) ∼ tr[(X −
ZA)′(X − ZA)] + K+λ2.

C. Collapsed DP-means objective
derivation

We apply the usual recipe as in Sup. Mat. A. The
generative model for collapsed DP-means is described
in Section 4. The joint distribution of the observed
data X and cluster indicators Z can be written as
follows:

P(X, Z) = P(X|Z)P(Z)

=
(

(2π)ND/2(σ2)(N−K+)D/2(ρ2)K+D/2|Z ′Z +
σ2

ρ2
ID|D/2

)−1

· exp
{
− 1

2σ2
tr

(
X ′(IN − Z(Z ′Z +

σ2

ρ2
ID)−1Z ′)X

)}

· θK+−1 Γ(θ + 1)
Γ(θ + N)

K+∏

k=1

(SN,k − 1)!.

Now set θ := exp(−λ2/(2σ2)) and consider the limit
σ2 → 0. Then

− log P(X, Z) = O(log(σ2))

+
1

2σ2
tr

(
X ′(IN − Z(Z ′Z +

σ2

ρ2
ID)−1Z ′)X

)

+ (K+ − 1)
λ2

2σ2
+ O(1).
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It follows that

−2σ2 log P(X, Z)

= tr
(

X ′(IN − Z(Z ′Z +
σ2

ρ2
ID)−1Z ′)X

)

+ (K+ − 1)λ2 + O(σ2 log(σ2)).

We note that σ2 log(σ2) → 0 as σ2 → 0. Further note
that Z ′Z is a diagonal K×K matrix with (k, k) entry
(call it SN,k) equal to the number of indices in cluster
k. Z ′Z is invertible since we assume no empty clusters
are represented in Z. Then

−2σ2 log P(X,Z)

∼ tr
(
X ′(IN − Z(Z ′Z)−1Z ′)X

)
+ (K+ − 1)λ2

as σ2 → 0.

C.1. More interpretable objective

The objective for the collapsed Dirichlet process
is more interpretable after some algebraic ma-
nipulation. We describe here how the opaque
tr

(
X ′(IN − Z(Z ′Z)−1Z ′)X

)
term can be written in

a form more reminiscent of the
∑K+

k=1

∑
n:zn,k=1 ‖xn−

µk‖2 term in the uncollapsed objective. First, recall
that C := Z ′Z is a K × K matrix with Ck,k = SN,k

and Cj,k = 0 for j '= k. Then C ′ := Z(Z ′Z)−1Z ′ is
an N × N matrix with C ′

n,m = S−1
N,k if and only if

zn,k = zm,k = 1 and C ′
n,m = 0 if zn,k '= zm,k.

tr(X ′(IN − Z(Z ′Z)−1Z ′)X)

= tr(X ′X)− tr(X ′Z(Z ′Z)−1Z ′X)

= tr(XX ′)−
D∑

d=1

K+∑

k=1

∑

n:zn,k=1

∑

m:zm,k=1

S−1
N,kXn,dXm,d

=
K+∑

k=1




∑

n:zn,k=1

xnx′n − 2S−1
N,k

∑

n:zn,k=1

xn

∑

m:zm,k=1

x′m

+ S−1
N,k

∑

n:zn,k=1

xn

∑

m:zm,k=1

x′m





=
K+∑

k=1

∑

n:zn,k=1

‖xn − S−1
N,k

∑

m:zm,k=1

xm,k‖2

=
K+∑

k=1

∑

n:zn,k=1

‖xn − x̄(k)‖2,

for the cluster-specific empirical mean defined as
x̄(k) := S−1

N,k

∑
m:zm,k=1 xm,k, as in the main text.

D. Collapsed BP-means objective
derivation

We continue to apply the usual recipe as in Sup.
Mat. A. The generative model for collapsed BP-means
is described in Section 4. The joint distribution of
the observed data X and feature indicators Z can be
written as follows:

P(X,Z) = P(X|Z)P(Z)

=
(

(2π)ND/2(σ2)(N−K+)D/2(ρ2)K+D/2|Z ′Z +
σ2

ρ2
ID|D/2

)−1

· exp
{
− 1

2σ2
tr

(
X ′(IN − Z(Z ′Z +

σ2

ρ2
ID)−1Z ′)X

)}

·
γK+

exp
{
−

∑N
n=1

γ
n

}

∏H
h=1 K̃h!

K+∏

k=1

(SN,k − 1)!(N − SN,k)!
N !

.

Now set γ := exp(−λ2/(2σ2)) and consider the limit
σ2 → 0. Then

− log P(X, Z) = O(log(σ2))

+
1

2σ2
tr

(
X ′(IN − Z(Z ′Z +

σ2

ρ2
ID)−1Z ′)X

)

+ K+ λ2

2σ2
+ exp(−λ2/(2σ2))

N∑

n=1

n−1 + O(1).

It follows that

−2σ2 log P(X, Z) = tr
(

X ′(IN − Z(Z ′Z +
σ2

ρ2
ID)−1Z ′)X

)

+ K+λ2 + O
(
σ2 exp(−λ2/(2σ2))

)
+ O(σ2 log(σ2)).

But exp(−λ2/(2σ2)) → 0 and σ2 log(σ2) → 0 as
σ2 → 0. And Z ′Z is invertible so long as two features
do not have identical membership (in which case we
collect them into a single feature). So we have that
−2σ2 log P(X, Z) ∼ tr

(
X ′(IN − Z(Z ′Z)−1Z ′)X

)
+

K+λ2.

E. Parametric objectives

First, consider a clustering prior with some fixed max-
imum number of clusters K. Let q1:K represent a dis-
tribution over clusters. Suppose q1:K is drawn from a
finite Dirichlet distribution with size K > 1 and pa-
rameter θ > 0. Further, suppose the cluster for each
data point is drawn iid according to q1:K . Then, inte-
grating out q, the marginal distribution of the cluster-
ing is Dirichlet-multinomial:

P(z) =
Γ(Kθ)

Γ(N + Kθ)

K∏

k=1

Γ(SN,k + θ)
Γ(θ)

. (11)
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We again assume a Gaussian mixture likelihood, only
now the number of cluster means µk has an upper
bound of K.

We can find the MAP estimate of z and µ under this
model in the limit σ2 → 0. With θ fixed, the clus-
tering prior has no effect, and the resulting optimiza-
tion problem is argminz,µ

∑K
k=1

∑
n:znk=1 ‖xn − µk‖2,

which is just the usual K-means optimization problem.

We can also try scaling θ = exp(−λ2/(2σ2)) for some
constant λ2 > 0 as in the unbounded cardinality case.
Then taking the σ2 → 0 limit of the log joint likelihood
yields a term of λ2 for each cluster containing at least
one data index in the product in Eq. (11)—except for
one such cluster. Call the number of such activated
clusters K+. The resulting optimization problem is

argmin
K+,z,µ

K∑

k=1

∑

n:znk=1

‖xn−µk‖2 +(K∧K+−1)λ2. (12)

This objective caps the number of clusters at K but
contains a penalty for each new cluster up to K.

A similar story holds in the feature case. Imagine that
we have a fixed maximum of K features. In this finite
case, we now let q1:K represent frequencies of each fea-
ture and let qk

iid∼ Beta(γ, 1). We draw znk ∼ Bern(qk)
iid across n and independently across k. The linear
Gaussian likelihood model is as in Eq. (5) except that
now the number of features is bounded. If we integrate
out the q1:K , the resulting marginal prior on Z is

K∏

k=1

(
Γ(SN,k + γ)Γ(N − SN,k + 1)

Γ(N + γ + 1)
Γ(γ + 1)
Γ(γ)Γ(1)

)
. (13)

Then the limiting MAP problem as σ2 → 0 is

argmin
Z,A

tr[(X − ZA)′(X − ZA)]. (14)

This objective is analogous to the K-means objective
but holds for the more general problem of feature al-
locations. Eq. (14) can be solved according to the K
features algorithm (Alg. 4). Notably, all of the opti-
mizations for n in the first step of the algorithm may
be performed in parallel.

We can further set γ = exp(−λ2/(2σ2)) as for the
unbounded cardinality case before taking the limit
σ2 → 0. Then a λ2 term contributes to the limiting
objective for each non-empty feature from the product
in Eq. (13):

argmin
K+,Z,A

tr[(X − ZA)′(X − ZA)] + (K ∧K+)λ2, (15)

reminiscent of the BP-means objective but with a cap
of K possible features.

F. General multivariate Gaussian
likelihood

Above, we assumed a multivariate spherical Gaussian
likelihood for each cluster. This assumption can be
generalized in a number of ways. For instance, as-
sume a general covariance matrix σ2Σk for positive
scalar σ2 and positive definite D × D matrix Σk.
Then we assume the following likelihood model for
data points assigned to the kth cluster (zn,k = 1):
xn ∼ N (µk, σ2Σk). Moreover, assume an inverse
Wishart prior on the positive definite matrix Σk:
Σk ∼ W−1(Φ, ν) for Φ a positive definite matrix and
ν > D−1. Assume a prior P(µ) on µ that puts strictly
positive density on all real-valued D-length vectors µ.
For now we assume K is fixed and that P(z) puts a
prior that has strictly positive density on all valid clus-
terings of the data points. Then

P(x, z, µ, σ2Σ)

= P(x|z, µ, σ2Σ)P(z)P(µ)P(Σ)

=
K+∏

k=1

∏

n:zn,k=1

N (xn|µk, σ2Σk)

· P(z)P(µ) ·
K∏

k=1

[
|Φ|ν/2

2νD/2ΓD(ν/2)
|Σk|−

ν+D+1
2

· exp
{
−1

2
tr(ΦΣ−1

k )
}]

,

where ΓD is a multivariate gamma function. Consider
the limit σ2 → 0. Set ν = λ2/σ2 for some constant
λ2 : λ2 > 0. Then

− log P(x, z, µ, σ2Σ)

=
K∑

k=1

∑

n:zn,k=1

[
O(log σ2) +

1
2σ2

(xn − µk)′Σ−1
k (xn − µk)

]

+ O(1) +
K∑

k=1

[
− 1

2σ2
λ2 log |Φ| + D

2σ2
λ2 log 2

+ log ΓD(λ2/(2σ2)) +
(

λ2

2σ2
+

D + 1
2

)
log |Σk| + O(1)

]
.

So we find

−2σ2
[
log P(x, z, µ, σ2Σ) + log ΓD(λ2/(2σ2))

]

∼
K∑

k=1

∑

n:zn,k=1

(xn − µk)′Σ−1
k (xn − µk)

+
K∑

k=1

λ2 log |Σk| + c + O(σ2),
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where c is a constant in z, µ, σ2,Σ. Letting σ2 → 0,
the righthand side becomes

K∑

k=1

∑

n:zn,k=1

(xn−µk)′Σ−1
k (xn−µk)+

K∑

k=1

λ2 log |Σk|+c.

It is equivalent to optimize the same quantity without
c.

If the Σk are known, they may be inputted and the
objective may be optimized over the cluster means and
cluster assignments. For unknown Σk, though, the
resulting optimization problem is

min
z,µ,Σ

K∑

k=1




∑

n:zn,k=1

(xn − µk)′Σ−1
k (xn − µk) + λ2 log |Σk|



 .

That is, the squared Euclidean distance in the classic
K-means objective function has been replaced with a
Mahalanobis distance, and we have added a penalty
term on the size of the Σk matrices (with λ2 mod-
ulating the penalty as in previous examples). This
objective is reminiscent of that proposed by Sung &
Poggio (1998).

G. Proof of BP-means local
convergence

The proof of Proposition 1 is as follows.

Proof. By construction, the first step in any iteration
does not increase the objective. The second step starts
by deleting any features that have the same index col-
lection as an existing feature. Suppose there are m
such features with indices J and we keep feature k. By
setting Ak,· ←

∑
j∈J Aj,·, the objective is unchanged.

Next, let ‖Y ‖F =
√

tr(Y ′Y ) denote the Frobenius
norm of a matrix Y . Then ‖Y ‖2F is a convex func-
tion. We check that f(A) = tr[(X − ZA)′(X − ZA)]
is convex. Take λ ∈ [0, 1], and let A and B be K ×D
matrices; then,

f(λA + (1− λ)B)

= ‖Z[λA + (1− λ)B]−X‖2F
= ‖λ(ZA−X) + (1− λ)(ZB −X)‖2F
≤ λ‖ZA−X‖2F + (1− λ)‖ZB −X‖2F
= λf(A) + λf(B)

We conclude that f(A) is convex.

With this result in hand, note

∇Atr[(X − ZA)′(X − ZA)] = −2Z ′(X − ZA). (16)

Setting the gradient to zero, we find that A =
(Z ′Z)−1Z ′X solves the equation for A and therefore
minimizes the objective with respect to A when Z ′Z
is invertible, as we have already guaranteed.

Finally, since there are only finitely many feature al-
locations in which each data point has at most one
feature unique to only that data point and no features
containing identical indices (any extra such features
would only increase the objective due to the penalty),
the algorithm cannot visit more than this many con-
figurations and must finish in a finite number of itera-
tions.


