
The Extended Parameter Filter

Appendices

A. Storvik’s filter as a Kalman filter

Let us consider the following model.

xt = Axt−1 + vt, vt ∼ N(0,Q)

yt = Hxt + wt, wt ∼ N(0,R) (17)

We will call the MMSE estimate Kalman filter returns
as xt|t = E[xt | y0:t] and the variance Pt|t = cov(xt |
y0:t). Then the update for the conditional mean esti-
mate is as follows.

xt|t = Axt−1|t−1

+ Pt|t−1H
T (HPt|t−1H

T + R)−1︸ ︷︷ ︸
Kt

(yt −HAxt−1|t−1)

where as for the estimation covariance

Pt|t−1 = APt−1|t−1A
T + Q

Pt|t = (I−KtH)Pt|t−1 (18)

Matching the terms above to the updates in equa-
tion 6, one will obtain a linear model for which the
transition matrix is A = I, the observation matrix is
H = Ft, the state noise covariance matrix is Q = 0,
and the observation noise covariance matrix is R = Q

B. Proof of theorem 1

Let us assume that x ∈ Rd,θ ∈ Rp and fθ(·) : Rd → Rd
is a vector valued function parameterized by θ. More-
over, due to the assumption of separability fθ(xt−1) =
l(xt−1)Th(θ), where we assume that l(·) : Rd → Rm×d
and h(·) : Rp → Rm and m is an arbitrary con-
stant. The stochastic perturbance will have the log-
polynomial density p(vt) ∝ exp(Λ1vt + vTt Λ2vt + . . . )
Let us analyze the case of p(vt) ∝ exp(Λ1vt+v

T
t Λ2vt),

for mathematical simplicity.

Proof.

log p(θ | x0:T ) ∝ log p(θ) +

T∑
t=1

log p(xt | xt−1, θ)

∝ log p(θ) +

T∑
t=1

Λ1

(
xt − l(xt−1)Th(θ)

)
+

(
xt − l(xt−1)Th(θ)

)T
Λ2

(
xt − l(xt−1)Th(θ)

)
∝ log p(θ) +

(
T∑
t=1

−(Λ1 + 2xTt Λ2)l(xt−1)T

)
︸ ︷︷ ︸

S1

h(θ)

+ hT (θ)

(
T∑
t=1

l(xt−1)Λ2l
T (xt−1)

)
︸ ︷︷ ︸

S2

h(θ) + constants

Therefore, sufficient statistics (S1 ∈ R1×m and S2 ∈
Rm×m) exist. The analysis can be generalized for
higher-order terms in vt in similar fashion.

C. Proof of theorem 2

Proposition 1. Let S(x) be a M + 1 times differen-
tiable function and P (x) its order M Taylor approx-
imation. Let I = (x − a, x + a) be an open interval
around x. Let R(x) be the remainder function, so that
S(x) = P (x) +R(x). Suppose there exists constant U
such that

∀y ∈ I,
∣∣∣f (k+1)(y)

∣∣∣ ≤ U
We may then bound

∀y ∈ I, |R(y)| ≤ U aM+1

(M + 1)!

We define the following terms

ε = U
aM+1

(M + 1)!

Z =

∫
I

exp(S(x))dx

Ẑ =

∫
I

exp(P (x))dx
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Since exp(·) is monotone and increasing and
|S(x)− P (x)| ≤ ε, we can derive tight bounds relating

Z and Ẑ.

Z =

∫
I

exp(S(x))dx ≤
∫
I

exp(P (x) + ε)dx

= Ẑ exp(ε)

Z =

∫
I

exp(S(x))dx ≥
∫
I

exp(P (x)− ε)dx

= Ẑ exp(−ε)

Proof.

DKL(p||p̂) =

∫
I

ln

(
p(x)

p̂(x)

)
p(x)dx

=

∫
I

(
S(x)− P (x) + ln(Ẑ)− ln(Z)

)
p(x)dx

≤
∫
I

|S(x)− P (x)| p(x)dx

+

∫
I

∣∣∣ln(Ẑ)− ln(Z)
∣∣∣ p(x)dx

≤ 2ε ∝ aM+1

(M + 1)!
≈ 1√

2π(M + 1)!

(
ae

M + 1

)M+1

where the last approximation follows from Stirling’s
approximation. Therefore, DKL(p||p̂) → 0 as M →
∞.

D. Proof of theorem 3

Proof.

log p̂(θ | x0:T ) = log

(
p(θ)

T∏
k=0

p̂(xk|xk−1, θ)
)

= log p(θ) +

T∑
k=0

log p̂(xk | xk−1, θ)

We can calculate the form of log p̂(xk | xk−1, θ) explic-
itly.

log p̂(xk | xk−1, θ) = logN (f̂(xk−1, θ), σ
2)

= − log(σ
√

2π)− (xk − f̂(xk−1, θ))
2

2σ2

= − log(σ
√

2π)− x2k − 2xkf̂(xk−1, θ) + f̂(xk−1, θ)
2

2σ2

= − log(σ
√

2π)− x2k
2σ2
−
∑M
i=0 xkH

i(xk−1)θi

σ2

+

∑2M
i=0 J

i
xk−1

θi

2σ2

Using this expansion, we calculate

log p̂(θ | x0:T ) = log p(θ) +

T∑
k=0

log p̂(xk | xk−1, θ)

= log p(θ)− (T + 1) log(σ
√

2π)

− 1

2σ2

(
T∑
k=0

x2k

)
− T (θ)T η(x0, . . . , xT )

where we expand T (θ)T η(x0, . . . , xT ) as in 3. The
form for log p̂(θ | x0:T ) is in the exponential family.

E. Proof of theorem 4

Proof. Assume that function f has bounded deriva-
tives and bounded support I. Then the maximum

error satisfies
∣∣∣fθ(xk−1)− f̂θ(xk−1)

∣∣∣ ≤ εk. It follows

that f̂θ(xk−1)2 − fθ(xk−1)2 = −ε2k − 2f̂θ(xk−1)εk ≈
−2f̂θ(xk−1)εk.

Then the KL-divergence between the real posterior
and the approximated posterior satisfies the following
formula.

DKL(pT ||p̂T ) (19)

=

∫
Sθ

(
1

σ2

T∑
k=1

εk(xk − f̂θ(xk−1))

)
pT (θ|x0:T )dθ

Moreover, recall that as T →∞ the posterior shrinks
to δ(θ− θ∗) by the assumption of identifiability. Then
we can rewrite the KL-divergence as (assuming Taylor
approximation centered around θc)

lim
T→∞

DKL(pT ||p̂T ) (20)

=
1

σ2
lim
T→∞

T∑
k=1

εk

∫
Sθ

(xk − f̂θ(xk−1))pT (θ|x0:T )dθ

=
1

σ2
lim
T→∞

T∑
k=1

εk· (21)(
xk −

M∑
i=0

Hi(xk−1)

∫
Sθ

(θ − θc)ip(θ|x0:T )dθ

)

=
1

σ2
lim
T→∞

T∑
k=1

εk

(
xk −

M∑
i=0

Hi(xk−1)(θ∗ − θc)i
)

If the center of the Taylor approximation θc is the true
parameter value θ∗, we can show that

lim
T→∞

DKL(pT ||p̂T ) =
1

σ2
lim
T→∞

T∑
k=1

εk (xk − fθ∗(xk−1)))

=
1

σ2
lim
T→∞

T∑
k=1

εkvk = 0 (22)
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where the final statement follows from law of large
numbers. Thus, as T →∞, the Taylor approximation
of any order will converge to the true posterior given
that θc = θ∗. For an arbitrary center value θc,

DKL(pT ||p̂T ) =
1

σ2

T∑
k=1

εk

(
xk −

M∑
i=0

Hi(xk−1)(θ∗ − θc)i
)

(23)

Notice that εk ∝ 1
(M+1)! (by our assumptions that f

has bounded derivative and is supported on interval
I) and Hi(·) ∝ 1

M ! . The inner summation will be
bounded since M ! > aM ,∀a ∈ R as M → ∞. There-
fore, as M →∞, DKL(p||p̂)→ 0.


