The Extended Parameter Filter

Appendices

A. Storvik’s filter as a Kalman filter

Let us consider the following model.

Ty = Azy1 + v, v~ N(0,Q)
Yt = Hl’t + Wt, Wt ~ N(O, R) (17)

We will call the MMSE estimate Kalman filter returns
as T4y = E[zs | yo.¢] and the variance Py, = cov(w; |
yo:t). Then the update for the conditional mean esti-
mate is as follows.

Tt = Al”t—l\t—l
+ Pt\t—lHT(HPt\t—lHT +R) (e — HAz¢_11-1)

K

where as for the estimation covariance

Pyi_1 = APt—1|t—1AT +Q
Pt‘t = (I - KtH)Ptlt_l (18)

Matching the terms above to the updates in equa-
tion 6, one will obtain a linear model for which the
transition matrix is A = I, the observation matrix is
H = F,, the state noise covariance matrix is Q = 0,
and the observation noise covariance matrix is R = Q

B. Proof of theorem 1

Let us assume that z € R%.0 € R? and fy(-) : R — R4
is a vector valued function parameterized by 6. More-
over, due to the assumption of separability fg(z;—1) =
I(z¢—1)Th(0), where we assume that I(-) : RY — R™*4
and h(-) : RP — R™ and m is an arbitrary con-
stant. The stochastic perturbance will have the log-
polynomial density p(v;) oc exp(Ajvy + vf Agvy +...)
Let us analyze the case of p(v;) o< exp(Ajvs +vf Agvy),
for mathematical simplicity.

Proof.

T
log p(6 | wo.r) o log p(8) + > logp(wy | 24-1,06)
t=1

T

o log p(0) + Z Ay (2= U(z1)"h(0)) +
t=1

(2 — U(wr-1)Th(0))" A (ze — U(z1-1)Th(0))

o logp(0) + (Z —(A1 + 2$$A2)l(xt—1)T> h(0)

t=1

S
T

+ nT(6) (Z l(xtl)Ang($t1)> h(#) + constants

t=1

S>

Therefore, sufficient statistics (S; € RY™™ and S, €
R™>*™) exist. The analysis can be generalized for
higher-order terms in v; in similar fashion. O

C. Proof of theorem 2

Proposition 1. Let S(x) be a M + 1 times differen-
tiable function and P(x) its order M Taylor approz-
imation. Let I = (x — a,x + a) be an open interval
around x. Let R(x) be the remainder function, so that
S(z) = P(x) + R(z). Suppose there exists constant U
such that

vy e, ‘f(’““)(y)‘ <U

We may then bound

aM+1
< -
We define the following terms
aM+1
=Uarron
Z = /exp(S(m))dw
I
Z = /exp(P(x))dm
I
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Since exp(-) is monotone and increasing and
|S(z) — P(z)] < ¢, we can derive tight bounds relating
Z and Z.

Proof.

aM+1 1 ae MM
B (M+1)! " /2r(M + 1) <M+1>

where the last approximation follows from Stirling’s
approximation. Therefore, Dk (p|[p) — 0 as M —
0. O

D. Proof of theorem 3
Proof.

log p(0 | zo.7) = log <

T
H (Tk|Tr-1, >

T
= log p(0 Z og p(zk | k—-1,0)

We can calculate the form of logp(xy | x—1,6) explic-
itly.

= log N'(f(z1_1,0),0?)
(.%‘k — f($k71a6>)2
202

a? — 2xp f(th-1,0) + f(xp—1,0)>
202

2 M o i o0
=~ log(ov/2m) — ok~ Zume o)

o2

log p(zy | w1-1,0)

—log(ov/27) —

—log(ov/27) —

ZQM Ji gl

Tk—1

* 202

Using this expansion, we calculate

T
log p(0 | zo.r) = logp(0) + Y _ log p(a | wr—1,0)
k=0
=logp(0) — (T + 1) log(cv2)

_ % (;wi> = T(0) " n(xo, ..., xr)

where we expand T(0)Tn(zg,...,27) as in 3. The
form for log p(0 | zo.7) is in the exponential family. [

E. Proof of theorem 4

Proof. Assume that function f has bounded deriva-
tives and bounded support I. Then the maximum

f@(xk—l)‘ < . It follows
that fo(wr—1)® = fo(wr—1)?
_2f6($k—1)€k-

Then the KL-divergence between the real posterior

and the approximated posterior satisfies the following
formula.

Dk (pr|lpr) (19)

1 T
-/ <QZ (a — folwn- 1))> pr(Blzo:r)do
So ;

Moreover, recall that as T — oo the posterior shrinks
to 6(0 — 6*) by the assumption of identifiability. Then
we can rewrite the KL-divergence as (assuming Taylor
approximation centered around 6,.)

A D r(pr|lpr) (20)

error satisfies ‘f@(ﬂik_l) -

= —ei — 2f9($k_1)6k ~

— lim Zek/ (zx — fo(zr—1))pr(0]zo.7)d0

U T—o0
1 . =
= — lim €k (21)

0'2 T—o0
k=1

M
(xk - ; Hi(zp_1) /59 (0 — ec)ip(9|$0;T)d9>
1 T Mo ,
= hm ( 2 )0 - 9c>’>

If the center of the Taylor approximation .. is the true
parameter value 8%, we can show that

T
. . 1
Am Dk r(prl|lpr) = o TII_{I;OI;% (xk — for (T1-1)))
1 T
= 7}1_1}1;()2%% =0 (22)
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where the final statement follows from law of large
numbers. Thus, as T' — oo, the Taylor approximation
of any order will converge to the true posterior given
that 6. = 6*. For an arbitrary center value 6.,

Dir(prllpr) = % > e (ozk =Y H'(zk1)(0" — GC)Z)

k=1 =0
(23)

Notice that € o m (by our assumptions that f
has bounded derivative and is supported on interval
I) and H'(:) o 7. The inner summation will be
bounded since M! > a™ ,Va € R as M — oco. There-
fore, as M — oo, Dk (p||p) — 0. O



