Supplementary material for "Top-k Selection based on Adaptive Sampling of Noisy Preferences"

A. Proof of Theorem 1

Proof. First, we apply the Hoeffding theorem (Hoeffding, 1963) concerning the sum of random variables to $\bar{y}_{i, j}$. Note that $Y_{i, j}$ is a random variable with support $[0,1]$ thus its range is 1 . An equivalent formulation of the Hoeffding theorem is as follows: For any $0<\delta<1$, the interval

$$
\begin{equation*}
[\underbrace{\bar{y}_{i, j}-\sqrt{\frac{1}{2 n_{i, j}} \log \frac{2}{\delta}}}_{\ell_{i, j}}, \underbrace{\bar{y}_{i, j}+\sqrt{\frac{1}{2 n_{i, j}} \log \frac{2}{\delta}}}_{u_{i, j}}] \tag{12}
\end{equation*}
$$

contains $y_{i, j}$ with probability at least $1-\delta$.
According to this, by setting the confidence level to $\delta / K^{2} n_{\max }$, for any i, j and round $n_{i, j}$, the probability that $y_{i, j}$ is not included in $\left[\ell_{i, j}, u_{i, j}\right]$ is at most $\delta /\left(K^{2} n_{\text {max }}\right)$. Thus, with probability at least $1-\delta, y_{i, j} \in$ $\left[\ell_{i, j}, u_{i, j}\right]$ for every i and j throughout the whole run of the PBR-CO algorithm. Therefore, if the PBR-CO returns an index set \widehat{I} of options and $n_{i, j} \leq n_{\max }$ for all $i, j \in[K]$ then \widehat{I} is the solution set of (5) with probability with at least $1-\delta$.
For the expected sample complexity bound, let $\widetilde{n}_{i, j}$ be

$$
\left\lceil\frac{1}{2 \Delta_{i, j}^{2}} \log \frac{2 K^{2} n_{\max }}{\delta}\right\rceil
$$

Based on (12), when for some i and $j, Y_{i, j}$ is sampled for at least $\widetilde{n}_{i, j}$ times, then $\left[\ell_{i, j}, u_{i, j}\right]$ does not contain $1 / 2$ with probability at most $\delta /\left(K^{2} n_{\max }\right)$ if we assume that $y_{i, j} \neq 1 / 2$, and thus $\Delta_{i, j}=y_{i, j}-1 / 2 \neq 0$. Furthermore, if for some o_{i} all the preferences against other options are decided (i.e., $\ell_{i, j}>1 / 2$ or $u_{i, j}<1 / 2$ for all j), then $Y_{i, 1}, \ldots, Y_{i, K}$ will not be sampled any more (see Procedure 2, line 7).
Putting these observations together, the claim follows from the union bound.

B. Proof of Theorem 2

Proof. One can get a confidence interval for $\bar{y}_{i}=\frac{1}{K-1} \sum_{j \neq i} \bar{y}_{i, j}$ based on the confidence intervals of $\bar{y}_{j, i}$. More precisely, put $c_{i}=\frac{1}{K-1} \sum_{j \neq i} c_{i, j}$, and observe that, as $y_{i, j} \in\left[y_{i, j}-c_{i, j}, y_{i, j}+c_{i, j}\right]$ with probability at least $1-\delta /\left(2 K^{2} n_{\max }\right)$ for any $1 \leq j \leq K$ in any of the $n_{\max }$ rounds, the interval

$$
[\underbrace{\bar{y}_{i}-c_{i}}_{\ell_{i}}, \underbrace{\bar{y}_{i}+c_{i}}_{u_{i}}]
$$

contains y_{i} with probability at least $1-\delta /\left(2 K n_{\max }\right)$ in any round. Therefore, denoting by \mathcal{E} the event that each y_{i} is within the confidence interval of \bar{y}_{i} throughout the whole run of algoritm PBR-SE, it holds that $\mathbf{P}[\mathcal{E}] \geq 1-\delta / 2$. Also note that whenever \mathcal{E} holds then $\bar{y}_{i}-c_{i} \leq y_{i} \leq y_{j} \leq \bar{y}_{j}+c_{j}$ for $1 \leq i<j \leq K$, and thus none of $o_{1}, \ldots, o_{K-\kappa}$ gets selected and none of $o_{K-\kappa+1}, \ldots, o_{K}$ gets discarded.

If for some $i \leq K-\kappa$ and $j \geq K-\kappa+1$ the number of samples for each of $y_{i, 1}, \ldots, y_{i, K}$ and $y_{j, 1}, \ldots, y_{j, K}$ is at least $\left\lceil\left(\frac{4}{y_{i}-y_{j}}\right)^{2} \log \frac{2 K^{2} n_{\max }}{\delta}\right\rceil$ then event \mathcal{E} implies $\bar{y}_{i}+c_{i}<y_{i}+2 c_{i} \leq y_{j}-2 c_{j}<\bar{y}_{j}-c_{j}$ by Hoeffding's bound. Therefore, with probability at least $1-\delta$, after sampling $y_{i, k}$ at least b_{i} times for $i=1, \ldots, K-\kappa$ and $k=1, \ldots, K$ and sampling $y_{j, k}$ at least b_{j} times for $j=K-\kappa+1, \ldots, K$ and $k=1, \ldots, k$, algorithm PBR-SE selects $o_{K-\kappa+1}, \ldots, o_{K}$, discards $o_{1}, \ldots, o_{K-\kappa}$, and thus terminates and returns the optimal solution.

B.1. The pseudo-code of PBR framework regarding the setup described in Section 6

In this setup there are given a set of random variables X_{i}, \ldots, X_{K} as input. Each random variable X_{i} takes values in a set Ω that is a partially ordered by a preference relation \preceq.

```
Procedure \(5 \operatorname{PBR}\left(X_{1}, \ldots, X_{K}, \kappa, n_{\max }, \delta\right)\)
    \(B=D=\emptyset \quad \triangleright\) Set of chosen and discarded options
    \(A=\{(i, j) \mid 1 \leq i, j \leq K, i \neq j\}\)
    for \(i=1 \rightarrow K\) do
        \(n_{i}=0\)
    while \(\forall\left(n_{i} \leq n_{\max }\right) \wedge(|A|>0)\) do
        for all \(i\) appearing in \(A\) do
            \(x_{i}^{\left(n_{i}\right)} \sim X_{i}\)
            \(n_{i}=n_{i}+1 \quad \triangleright\) Draw a random sample
        for all \((i, j) \in A\) do
            Update \(\bar{y}_{i, j}\) with the new samples according to (11)
            \(c_{i, j}=\sqrt{\frac{1}{2 \min \left(n_{i}, n_{j}\right)} \log \frac{2 K^{2} n_{\text {max }}}{\delta}}\)
            \(u_{i, j}=\bar{y}_{i, j}+c_{i, j}, \ell_{i, j}=\bar{y}_{i, j}-c_{i, j}\)
                \(\triangleright\) For the implementation of sampling strategies see Section 4
        \((A, B)=\mathbf{S S C O}(A, \overline{\mathbf{Y}}, K, \kappa, \mathbf{U}, \mathbf{L}) \quad \triangleright\) Sampling strategy for \(\prec\) CO
        \((A, B, D)=\mathbf{S S S E}(A, \overline{\mathbf{Y}}, K, \kappa, \mathbf{U}, \mathbf{L}, D) \quad \triangleright\) Sampling strategy for \(\prec\) SE
        \((A, B)=\mathbf{S S R W}(\overline{\mathbf{Y}}, K, \kappa, \mathbf{C}) \quad \triangleright\) Sampling strategy for \(\prec^{\mathrm{RW}}\)
    return \(B\)
```

