Supplementary material for "Top-k Selection based on Adaptive Sampling of Noisy Preferences"

A. Proof of Theorem 1

Proof. First, we apply the Hoeffding theorem (Hoeffding, 1963) concerning the sum of random variables to $\bar{y}_{i,j}$. Note that $Y_{i,j}$ is a random variable with support [0, 1] thus its range is 1. An equivalent formulation of the Hoeffding theorem is as follows: For any $0 < \delta < 1$, the interval

$$\left[\underbrace{\bar{y}_{i,j} - \sqrt{\frac{1}{2n_{i,j}}\log\frac{2}{\delta}}}_{\ell_{i,j}}, \underbrace{\bar{y}_{i,j} + \sqrt{\frac{1}{2n_{i,j}}\log\frac{2}{\delta}}}_{u_{i,j}}\right]$$
(12)

contains $y_{i,j}$ with probability at least $1 - \delta$.

According to this, by setting the confidence level to $\delta/K^2 n_{\max}$, for any i, j and round $n_{i,j}$, the probability that $y_{i,j}$ is not included in $[\ell_{i,j}, u_{i,j}]$ is at most $\delta/(K^2 n_{\max})$. Thus, with probability at least $1 - \delta$, $y_{i,j} \in [\ell_{i,j}, u_{i,j}]$ for every i and j throughout the whole run of the PBR-CO algorithm. Therefore, if the PBR-CO returns an index set \hat{I} of options and $n_{i,j} \leq n_{\max}$ for all $i, j \in [K]$ then \hat{I} is the solution set of (5) with probability with at least $1 - \delta$.

For the expected sample complexity bound, let $\widetilde{n}_{i,j}$ be

$$\left\lceil \frac{1}{2\Delta_{i,j}^2} \log \frac{2K^2 n_{\max}}{\delta} \right\rceil$$

Based on (12), when for some *i* and *j*, $Y_{i,j}$ is sampled for at least $\tilde{n}_{i,j}$ times, then $[\ell_{i,j}, u_{i,j}]$ does not contain 1/2 with probability at most $\delta/(K^2 n_{\max})$ if we assume that $y_{i,j} \neq 1/2$, and thus $\Delta_{i,j} = y_{i,j} - 1/2 \neq 0$. Furthermore, if for some o_i all the preferences against other options are decided (i.e., $\ell_{i,j} > 1/2$ or $u_{i,j} < 1/2$ for all *j*), then $Y_{i,1}, \ldots, Y_{i,K}$ will not be sampled any more (see Procedure 2, line 7).

Putting these observations together, the claim follows from the union bound.

B. Proof of Theorem 2

Proof. One can get a confidence interval for $\bar{y}_i = \frac{1}{K-1} \sum_{j \neq i} \bar{y}_{i,j}$ based on the confidence intervals of $\bar{y}_{j,i}$. More precisely, put $c_i = \frac{1}{K-1} \sum_{j \neq i} c_{i,j}$, and observe that, as $y_{i,j} \in [y_{i,j} - c_{i,j}, y_{i,j} + c_{i,j}]$ with probability at least $1 - \delta/(2K^2 n_{\max})$ for any $1 \leq j \leq K$ in any of the n_{\max} rounds, the interval

$$\left[\underbrace{\bar{y}_i-c_i}_{\ell_i},\underbrace{\bar{y}_i+c_i}_{u_i}\right]$$

contains y_i with probability at least $1 - \delta/(2Kn_{\max})$ in any round. Therefore, denoting by \mathcal{E} the event that each y_i is within the confidence interval of \bar{y}_i throughout the whole run of algoritm PBR-SE, it holds that $\mathbf{P}[\mathcal{E}] \geq 1 - \delta/2$. Also note that whenever \mathcal{E} holds then $\bar{y}_i - c_i \leq y_i \leq y_j \leq \bar{y}_j + c_j$ for $1 \leq i < j \leq K$, and thus none of $o_1, \ldots, o_{K-\kappa}$ gets selected and none of $o_{K-\kappa+1}, \ldots, o_K$ gets discarded.

If for some $i \leq K - \kappa$ and $j \geq K - \kappa + 1$ the number of samples for each of $y_{i,1}, \ldots, y_{i,K}$ and $y_{j,1}, \ldots, y_{j,K}$ is at least $\left[\left(\frac{4}{y_i - y_j}\right)^2 \log \frac{2K^2 n_{\max}}{\delta}\right]$ then event \mathcal{E} implies $\bar{y}_i + c_i < y_i + 2c_i \leq y_j - 2c_j < \bar{y}_j - c_j$ by Hoeffding's bound. Therefore, with probability at least $1 - \delta$, after sampling $y_{i,k}$ at least b_i times for $i = 1, \ldots, K - \kappa$ and $k = 1, \ldots, K$ and sampling $y_{j,k}$ at least b_j times for $j = K - \kappa + 1, \ldots, K$ and $k = 1, \ldots, k$, algorithm PBR-SE selects $o_{K-\kappa+1}, \ldots, o_K$, discards $o_1, \ldots, o_{K-\kappa}$, and thus terminates and returns the optimal solution. \Box

B.1. The pseudo-code of PBR framework regarding the setup described in Section 6

In this setup there are given a set of random variables X_i, \ldots, X_K as input. Each random variable X_i takes values in a set Ω that is a partially ordered by a preference relation \preceq .

Procedure 5 $PBR(X_1, \ldots, X_K, \kappa, n_{max}, \delta)$

1: $B = D = \emptyset$ \triangleright Set of chosen and discarded options 2: $A = \{(i, j) | 1 \le i, j \le K, i \ne j\}$ 3: for $i = 1 \rightarrow K$ do $n_i = 0$ 4: 5: while $\forall (n_i \leq n_{\max}) \land (|A| > 0)$ do for all i appearing in A do 6: $x_i^{(n_i)} \sim X_i$ 7: $n_i = n_i + 1$ 8: \triangleright Draw a random sample 9: for all $(i, j) \in A$ do Update $\bar{y}_{i,j}$ with the new samples according to (11) 10: $c_{i,j} = \sqrt{\frac{1}{2\min(n_i, n_j)} \log \frac{2K^2 n_{\max}}{\delta}}$ $u_{i,j} = \bar{y}_{i,j} + c_{i,j} , \ \ell_{i,j} = \bar{y}_{i,j} - c_{i,j}$ 11: 12: \triangleright For the implementation of sampling strategies see Section 4 13: $(A, B) = \mathbf{SSCO}(A, \bar{\mathbf{Y}}, K, \kappa, \mathbf{U}, \mathbf{L})$ \triangleright Sampling strategy for \prec^{CO} 14: \triangleright Sampling strategy for $\prec^{\rm SE}$ $(A, B, D) = \mathbf{SSSE}(A, \bar{\mathbf{Y}}, K, \kappa, \mathbf{U}, \mathbf{L}, D)$ 15: \triangleright Sampling strategy for \prec^{RW} 16: $(A, B) = \mathbf{SSRW}(\bar{\mathbf{Y}}, K, \kappa, \mathbf{C})$ 17: return B