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Abstract

We consider the problem of reliably select-
ing an optimal subset of fixed size from
a given set of choice alternatives, based
on noisy information about the quality of
these alternatives. Problems of similar
kind have been tackled by means of adap-
tive sampling schemes called racing algo-
rithms. However, in contrast to existing
approaches, we do not assume that each al-
ternative is characterized by a real-valued
random variable, and that samples are
taken from the corresponding distributions.
Instead, we only assume that alternatives
can be compared in terms of pairwise pref-
erences. We propose and formally ana-
lyze a general preference-based racing al-
gorithm that we instantiate with three spe-
cific ranking procedures and corresponding
sampling schemes. Experiments with real
and synthetic data are presented to show
the efficiency of our approach.

1. Introduction

Consider the problem of selecting the best κ out of
K random variables with high probability on the
basis of finite samples, assuming that random vari-
ables are ranked based on their expected value. A
natural way of approaching this problem is to apply
an adaptive sampling strategy, called racing algo-
rithm, which makes use of confidence intervals de-
rived from the concentration property of the mean
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estimate (Hoeffding, 1963). This formal setup was
first considered by Maron & Moore (1994) and is
now used in many practical applications, such as
model selection (Maron & Moore, 1997), large-scale
learning (Mnih et al., 2008) and policy search in
MDPs (Heidrich-Meisner & Igel, 2009).

Motivated by recent work on learning from qualita-
tive or implicit feedback, including preference learn-
ing in general (Fürnkranz & Hüllermeier, 2011) and
preference-based reinforcement learning in particu-
lar (Akrour et al., 2011; Cheng et al., 2011), we in-
troduce and analyze a preference-based generaliza-
tion of the value-based setting of the above selection
problem, subsequently denoted TKS (short for Top-
k Selection) problem: Instead of assuming that the
decision alternatives or options O = {o1, . . . , oK}

are characterized by real values (namely expecta-
tions of random variables) and that samples provide
information about these values, we only assume that
the options can be compared in a pairwise manner.
Thus, a sample essentially informs about pairwise
preferences, i.e., whether or not an option oi might
be preferred to another one oj (written oi � oj).

An important observation is that, in this setting, the
original goal of finding the top-κ options is no longer
well-defined, simply because pairwise comparisons
can be cyclic. Therefore, to make the specification
of our problem complete, we add a ranking procedure
that turns a pairwise preference relation into a com-
plete preorder of the options O. The goal is then to
find the top-κ options according to that order. More
concretely, we consider Copeland’s ranking (binary
voting), the sum of expectations (weighted voting)
and the random walk ranking (PageRank) as target
rankings. For each of these ranking models, we de-
vise proper sampling strategies that constitute the
core of our preference-based racing algorithm.



After detailing the problem setting in Section 2,
we introduce a general preference-based racing algo-
rithm in Section 3 and analyze sampling strategies
for different ranking methods in Section 4. In Sec-
tion 5, a first experimental study with sports data
is presented, and in Section 6, we consider a special
case of our setting that is close to the original value-
based one. Related work is discussed in Section 7.

2. Problem Setting and Terminology

In this section, we first recapitulate the original
value-based setting of the TKS problem and then
introduce our preference-based generalization.

2.1. Value-based TKS

Consider a set of decision alternatives or options
O = {o1, . . . , oK}, where each option oi is associated
with a random variable Xi. Let F1, . . . , FK denote
the (unknown) distribution functions of X1, . . . , XK ,
respectively, and µi =

�
xdFi(x) the corresponding

expected values (supposed to be finite).

The TKS task consists of selecting, with a predefined
confidence 1−δ, the κ < K options with highest ex-
pectations. In other words, one seeks an index set
I ⊆ [K] = {1, . . . ,K} of cardinality κ maximizing�

i∈I µi, which is formally equivalent to the follow-
ing optimization problem:

argmax
I⊆[K]: |I|=κ

�

i∈I

�

j �=i

I{µj < µi} , (1)

where I{·} is the indicator function which is 1 if its
argument is true and 0 otherwise. This selection
problem must be solved on the basis of random sam-
ples drawn from X1, . . . , XK .

2.2. Preference-based TKS

Our point of departure is pairwise preferences over
the set O of options. In the most general case,
one typically allows four possible outcomes of a sin-
gle pairwise comparison between oi and oj , namely
(strict) preference for oi, (strict) preference for oj ,
indifference and incomparability. They are denoted
by oi � oj , oi ≺ oj , oi ∼ oj and oi⊥ oj , respectively.

To make ranking procedures applicable, these pair-
wise outcomes need to be turned into numerical
scores. We consider the outcome of a comparison
between oi and oj as a random variable Yi,j which
assumes the value 1 if oi � oj , 0 if oi ≺ oj , and 1/2
otherwise. Thus, indifference and incomparability
are handled in the same way, namely by giving half

a point to both options. Essentially, this means that
these outcomes are treated in a neutral way.

Based on a set of realizations {y1
i,j , . . . , y

n
i,j} of Yi,j ,

assumed to be independent, the expected value
yi,j = E[Yi,j ] of Yi,j can be estimated by the mean

ȳi,j =
1
n

n�

�=1

y
�
i,j . (2)

A ranking procedure A (concrete choices of A will be
discussed in the next section) produces a complete
preorder �A of the options O on the basis of the
relation Y = [yi,j ]K×K ∈ [0, 1]K×K . In analogy
to (1), our preference-based TKS task can then be
defined as selecting a subset I ⊂ [K] such that

argmax
I⊆[K]: |I|=κ

�

i∈I

�

j �=i

I{oj ≺
A

oi} , (3)

where ≺A denotes the strict part of �A. More
specifically, the optimality of the selected subset
should be guaranteed with probability at least 1−δ.

2.3. Ranking Procedures

In the following, we introduce three instantiations of
the ranking procedure A, starting with Copeland’s
ranking (CO); it is defined as follows (Moulin, 1988):
oi ≺

CO oj if and only if di < dj , where di = #{k ∈

[K] | 1/2 < yi,k}. The interpretation of this relation
is very simple: An option oi is preferred to oj when-
ever oi “beats” more options than oj does.

The sum of expectations (SE) ranking is a “soft”
version of CO: oi ≺

SE oj if and only if

yi =
1

K − 1

�

k �=i

yi,k <
1

K − 1

�

k �=j

yj,k = yj . (4)

The idea of the random walk (RW) ranking is to
handle the matrix Y as a transition matrix of a
Markov chain and order the options based on its sta-
tionary distribution. More precisely, RW first trans-
forms Y into the stochastic matrix S = [si,j ]K×K

where si,j = yi,j/
�K

�=1
y�,i. Then, it determines the

stationary distribution (v1, . . . , vK) for this matrix
(i.e., the eigenvector corresponding to the largest
eigenvalue 1). Finally, the options are sorted ac-
cording to these probabilities: oi ≺

RW oj iff vi < vj .

The RW ranking is directly motivated by the PageR-
ank algorithm (Brin & Page, 1998), which has been
well studied in social choice theory (Altman & Ten-
nenholtz, 2008; Brandt & Fischer, 2007) and rank
aggregation (Negahban et al., 2012), and which is
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Algorithm 1 PBR(Y1,1, . . . , YK,K ,κ, nmax, δ)
1: B = D = ∅ � Set of selected and discarded

options
2: A = {(i, j)| i �= j, 1 ≤ i, j ≤ K}

3: � Set of all pairs of options still racing
4: for i, j = 1 → K do ni,j = 0 � Initialization
5: while (∀ i ∀j, (ni,j ≤ nmax)) ∧ (|A| > 0) do
6: for all (i, j) ∈ A do
7: ni,j = ni,j + 1
8: y

ni,j

i,j ∼ Yi,j � Draw a random sample

9: Update Ȳ = [ȳi,j ]K×K with the new samples
10: according to (2)
11: for i, j = 1 → K do
12: � Update confidence bounds, C,U,L
13: ci,j =

�
1

2ni,j
log 2K2nmax

δ

14: � Hoeffding bound
15: ui,j = ȳi,j + ci,j , �i,j = ȳi,j − ci,j

16: (A,B) = SSCO(A, Ȳ,K,κ,U,L)
17: � Sampling strategy for ≺CO

18: (A,B, D) = SSSE(A, Ȳ,K,κ,U,L, D)
19: � Sampling strategy for ≺SE

20: (A,B) = SSRW(Ȳ,K,κ,C)
21: � Sampling strategy for ≺RW

22: return B

widely used in many application fields (Brin & Page,
1998; Kocsor et al., 2008).

3. Preference-based Racing Algorithm

The original racing algorithm for the value-based
TKS problem is an iterative sampling method. In
each iteration, it either selects a subset of options to
be sampled, or it terminates and returns a κ-sized
subset of options as a (probable) solution to (1).

In this section, we introduce a general preference-
based racing (PBR) algorithm that provides the ba-
sic statistics needed to solve the selection problem
(3), notably estimates of the yi,j and correspond-
ing confidence intervals. It contains a subroutine
that implements sampling strategies for the differ-
ent ranking models described in Section 2.3.

The pseudocode of PBR is shown in Algorithm 1.
The set A contains all pairs of options that still need
to be sampled; it is initialized with all K2−K pairs
of indices. The set B contains the indices of the
current top-κ solution. The algorithm samples those
Yi,j with (i, j) ∈ A (lines 6–8). Then, it maintains
the ȳi,j given in (2) for each pair of options in lines
(9–10). We denote the confidence interval of ȳi,j by

[ui,j , �i,j ]. To compute confidence intervals, we apply
the Hoeffding bound (Hoeffding, 1963) for a sum of
random variables in the usual way (see (Mnih et al.,
2008) for example).1

After the confidence intervals are calculated, one of
the sampling strategies implemented as a subroutine
is called. Since each sampling strategy can decide to
select or discard pairs of options at any time, the
confidence level δ has to be divided by K2nmax (line
13); this will be explained in more detail below.

The sampling strategies determine which pairs of op-
tions have to be sampled in the subsequent iteration.
There are three subroutines (SSCO,SSSE,SSRW)
in lines 16–21 of PBR that implement, respectively,
the sampling strategies for our three ranking models,
namely Copeland’s (CO), sum of expectation (SE)
and random walk (RW). The concrete implementa-
tion of the subroutines is detailed in the next section.
We refer to the different versions of our preference-
based racing algorithm as PBR−{CO,SE,RW}, de-
pending on which sampling strategy is used.

4. Sampling Strategies

4.1. Copeland’s Ranking (≺CO)

The preference relation specified by the matrix Y is
obviously reciprocal, i.e., yi,j = 1 − yj,i for i �= j.
Therefore, when using ≺CO for ranking, the opti-
mization task (3) can be reformulated as follows:

argmax
I⊆[K]: |I|=κ

�

i∈I

�

j �=i

I{yi,j > 1/2} (5)

Procedure 2 implements a sampling strategy that
optimizes (5). First, for each oi, we compute the
number zi of options that are worse with sufficiently
high probability—that is, for which ui,j < 1/2, j �= i

(line 2). Similarly, for each option oi, we also com-
pute the number wi of options oj that are preferred
to it with sufficiently high probability—that is, for
which �i,j > 1/2 (line 3). Note that, for each i, there
are always at most K − zi options that can be bet-
ter. Therefore, if |{j |K − zj < wi}| > K − κ, then
i is a member of the solution set I of (5) with high
probability (see line 4). The indices of these options
are collected in C. Based on a similar argument,
options can also be discarded (line 5); their indices
are collected in D.

1The empirical Bernstein bound (Audibert et al.,
2007) could be applied, too, but its application is only
advantageous if the support of the random variables is
much bigger than their variances (Mnih et al., 2008).
Since the support of Yi,j is [0, 1], it will not provide
tighter bounds in our applications.
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Procedure 2 SSCO(A, Ȳ,K,κ,U,L)
1: for i = 1 → K do
2: zi = |{j|ui,j < 1/2 ∧ i �= j}|

3: wi = |{j|�i,j > 1/2 ∧ i �= j}|

4: C =
�
i : K − κ <

��{j|K − zj < wi}
��� � Select

5: D =
�
i : κ <

��{j|K − wj < zi}
��� � Discard

6: for (i, j) ∈ A do
7: if (i, j ∈ C ∪D) ∨ (1/2 �∈ [�i,j , ui,j ]) then
8: A = A \ (i, j) � Stop updating ȳi,j

9: B = the top-κ options for which the correspond-
ing rows of Ȳ with most entries above 1/2

10: return (A,B)

In order to update A (the set of Yi,j still racing),
we note that, for those options whose indices are in
C ∪ D, it is already decided with high probability
whether or not they belong to I. Therefore, if the
indices of two options oi and oj both belong to C∪D,
then Yi,j does not need to be sampled any more, and
thus the index pair (i, j) can be excluded from A.
Additionally, if 1/2 �∈ [�i,j , ui,j ], then the pairwise
relation of oi and oj is known with sufficiently high
probability, so (i, j) can again be excluded from A.
These filter steps are implemented in line 7.

Despite important differences between the value-
based and the preference-based racing approach, the
expected number of samples taken by the latter can
be upper-bounded in much the same way as Even-
Dar et al. (2002) did for the former.2

Theorem 1. Let O = {o1, . . . , oK} be a set of op-
tions such that ∆i,j = yi,j−1/2 �= 0 for all i, j ∈ [K].
The expected number of pairwise comparison taken
by PBR-CO is bounded by

K�

i=1

�

j �=i

�
1

2∆2
i,j

log
2K2nmax

δ

�
.

Moreover, the probability that no optimal solution of
(6) is found by PBR-CO is at most δ if ni,j ≤ nmax

for all i, j ∈ [K].

4.2. Sum of Expectations (≺SE) Ranking

For the SE ranking model, the problem (3) can be
written equivalently as

argmax
I⊆[K]: |I|=κ

�

i∈I

�

j �=i

I{yj < yi} , (6)

2Due to space limitations, all proofs are moved to the
supplementary material.

Procedure 3 SSSE(A, Ȳ,K,κ,U,L, D)
1: G = {i : i appearing in A} � Active options
2: �B = {1, . . . ,K} \ (G ∪D) � Already selected
3: for all i ∈ G do
4: �i = 1

K−1

�
j∈G\{i} �i,j

5: ui = 1

K−1

�
j∈G\{i} ui,j

6: �K = |G|, �κ = κ− | �B| � Reduced problem
7: �B = �B ∪

�
i : �K − �κ <

��{j ∈ G : uj < �i}
���

8: D = D ∪
�
i : �κ <

��{j ∈ G : ui < �j}
���

9: for (i, j) ∈ A do
10: if (i ∈ �B ∪D) then
11: A = A \ (i, j) � Stop updating ȳi,j

12: for i = 1 → K do ȳi = 1

K−1

�
j �=i ȳi,j

13: B = the top-κ options with the highest ȳi values
14: return (A,B, D)

with yi as in (4). The naive implementation would
be to sample each random variable until the confi-
dence intervals of the estimates ȳi = 1

K−1

�
j �=i ȳi,j

are non-overlapping. Note, however, that if the
upper confidence bound of ȳi calculated as ui =

1

K−1

�
j �=i ui,j is smaller than K − κ lower bounds

�i� = 1

K−1

�
j �=i� �i�,j , then the pairwise comparisons

with respect to option oi do not need to be sampled
anymore; instead, oi can be excluded from the so-
lution set of (6) with high probability. Therefore,
oi can be discarded, and we can continue the run of
PBR-SE with parameters K − 1 and κ (line 6). We
use the set D to keep track of the discarded options.
An analogous rule can be devised for the selection of
options. The pseudocode of the PBR-SE sampling
strategy is shown in Procedure 3.

We can also upper-bound the expected number of
samples taken by PBR-SE. In fact, this setup is
very close to the value-based one, since a single real
value ȳi is assigned to each option.

Theorem 2. Let O = {o1, . . . , oK} be a set of op-
tions. Assume oi ≺

SE oj iff i < j without loss of
generality and yi �= yj for all 1 ≤ i �= j ≤ K. Let

bi =
��

4

yi−yK−κ+1

�2

log 2K2nmax
δ

�
for i ∈ [K − κ]

and bj =
��

4

yj−yK−κ

�2

log 2K2nmax
δ

�
for j = K−κ+

1, . . . ,K. Then, whenever nmax ≥ bK−κ = bK−κ+1,
PBR-SE terminates after

�
i �=j bi =

�K−κ
i=1

(K −

1)bi+
�K

j=K−κ+1
(K−1)bj pairwise comparisons and

outputs the optimal solution with probability at least
(1− δ).
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4.3. Random Walk (≺RW) Ranking

We start the description of the RW sampling strat-
egy with computing confidence intervals for the ele-
ments of a stochastic matrix S̄ = [s̄i,j ]K×K calcu-
lated as s̄i,j = ȳi,jP

� ȳ�,i
, assuming that we know con-

fidence bounds ci,j for a given confidence level δ for
each element of the matrix Ȳ = [ȳi,j ]K×K . Aslam &
Decatur (1998) provide simple bounds for propagat-
ing error via some basic operations (see Lemma 1-2).
Using their results, a direct calculation yields that
si,j ∈ [s̄i,j − ci,j , s̄i,j + ci,j ] where S = [si,j ]K×K is
the stochastic matrix calculated as si,j = yi,jP

� y�,i
and

ci,j =
K

3
max

k
ci,k

�

�

ȳ�,i (7)

with probability at least 1 −Kδ (since we assumed
that the confidence term is δ and each yi,j in the ith

row of matrix Y must be within the confidence in-
terval of ȳi,j to meet (7)). Note that the components
of a particular row of matrix C = [ci,j ]K×K are equal
to each other, therefore �C�1 = maxi

�
j |ci,j | =

K
3

maxi,k ci,k
�

� ȳ�,i.

As a next step, we use the result of Funderlic &
Meyer (1986) on the updating of Markov chains.

Theorem 3 (Funderlic&Meyer, 1986). Let S and
S� be the transition matrices of two irreducible
Markov chains whose stationary distributions are
v = (v1, · · · , vK) and v� = (v�1, · · · , v�K), respec-
tively. Moreover, define the difference matrix of the
transition matrices as E = S−S�. Then, the follow-
ing inequality holds:

�v − v��max ≤ �E�1�A#
�max , (8)

where A# =
�
a
#

i,j

�

K×K
=

�
I − S + 1vT

�−1
− 1vT .

In the PBR framework (Algorithm 1), we gradually
decrease the confidence intervals of the entries of the
matrix Ȳ, thus getting more precise estimates for Y.
Let us denote the stochastic matrices derived from Ȳ
and Y by S̄ and S, respectively, and their principal
eigenvectors (that belong to the eigenvalue 1) by v̄ =
(v̄1, · · · , v̄K) and v = (v1, · · · , vK). Moreover, let C
be the matrix that contains the confidence intervals
of S̄ as defined in (7). Applying Theorem 3,3 we
have �v− v̄�max ≤ �S− S̄�1�Ā#�max, where Ā# =

3Here, we assume that matrix S̄ defines an irreducible
Markov chain, but in practice we revised S̄ as S̄� = αS̄+
(1 − α)/K11T where 0 < α < 1. We used α = 0.98
(for more details on random perturbation of stochastic
matrices, see (Langville & Meyer, 2004)).

(I−S̄+1v̄T )−1−1v̄T . Moreover, we have �S−S̄�1 ≤
�C�1 with probability at least 1 − K2δ, since this
inequality requires all si,j to be within the confidence
interval given in (7) and, therefore all yi,j must be
within the confidence interval of ȳi,j .

Summarizing what we found so far, we have

�v − v̄�max ≤ �S− S̄�1�Ā#
�max

≤ �C�1�Ā#
�max (9)

This upper bound suggests the minimization of
�C�1. What remains to be shown, however, is that
�Ā#�max is bounded. In PBR, we gradually es-
timate Y, thereby obtaining a series of estimates
Ȳ(1), . . . , Ȳ(n). Now, it is easy to see that if Ȳ(n)

converges componentwise to Y, then �Ā(n)#�max →

�A#�max. Moreover, based on (Seneta, 1992) Eq.
(7), �A#�max is bounded from above for a stochas-
tic matrix S. In order to have a sample complexity
analysis for PBR-RW, we would also need to know
the rate of convergence of the series �Ā(n)#�max,
which is a quite difficult question.

The inequality (9) suggests a simple sampling
strategy: Since the goal is to decrease �C�1 =
K
3

maxi,j ci,j
�

� ȳ�,i, select the pairs of random vari-
ables (i, j) = argmaxi,j ci,j

�
� ȳ�,i for sampling.

Recall our original optimization task, namely to se-
lect a subset of options as follows:

argmax
I⊆[K]: |I|=κ

�

i∈I

�

j �=i

I{vj < vi} (10)

Let σ be the sorting permutation that puts the ele-
ments of v̄ in a descending order. Now, if |v̄σ(κ) −

v̄σ(κ+1)| > 2�C�1�Ā#�max is fulfilled, then we can
stop sampling, since |vi − v̄i| ≤ �C�1�Ā#�max for
1 ≤ i ≤ K with probability 1 − K2δ; therefore,
the confidence term has to be divided by K2. The
pseudo-code of RW sampling strategy is shown in
Procedure 4.

5. Experiments with Soccer Data

In this experiment, we applied our preference-based
racing method to sports data. We collected the
scores of all soccer matches of the last ten seasons
from the German Bundesliga. Our goal was to find
those three teams that performed best during that
time. We restricted to the 8 teams that participated
in each Bundesliga season between 2002 to 2012. Ta-
ble 1 lists the names of these teams and the number
of their overall wins (W), losses (L) and ties (T).

Each pair of teams met 20 times. For teams oi

and oj , we denote the outcome of these matches
5



Procedure 4 SSRW(Ȳ,K,κ,C)
1: Convert Ȳ to be stochastic matrix S̄, and calcu-

late C based on Eq. (7)
2: Calculate the eigenvector v̄ of S̄ which belongs

to the largest eigenvalue (= 1)
3: Calculate Ā# =

�
I − S̄ + 1v̄T

�−1
− 1v̄T

4: Take the κth and κ + 1th biggest elements of v̄
that are denoted by a and b

5: if |a− b| > 2�C�1�Ā#�max then A = ∅

6: else A = {argmaxi,j ci,j
�

� ȳ�,i}

7: B = the top-κ options for which the elements of
v̄ are largest

8: return (A,B)

by y1
i,j , . . . , y

20
i,j , and we take the corresponding fre-

quency distribution as the (ground-truth) probabil-
ity distribution of Yi,j . The rankings of the teams
with respect to ≺CO, ≺SE and ≺RW, computed from
the expectations yi,j = E[Yi,j ], are also shown in Ta-
ble 1. While the team of Munich (Bayern München)
dominates the Bundesliga regardless of the ranking
model, the follow-up positions may vary depending
on which method is chosen.

We run our racing algorithm on the outcomes of all
matches by sampling from the distributions of the
Yi,j (i.e., we sampled from each set of 20 scores
with replacement). PBR was parametrized by
δ = 0.1,κ = 3, nmax = {100, 500, 1000, 5000, 10000}.
Figure 1 shows the empirical sample complexity ver-
sus accuracy of different runs averaged out over 100
runs. As a baseline, we also run the PBR algo-
rithm with uniform sampling meaning that in each
iteration we sampled all pairwise comparisons. The
accuracy of a run is 1 if all top-κ teams were found,
otherwise 0. As we increase nmax, the accuracy
converges to 1 − δ. This experiment confirms that
our preference-based racing algorithm can indeed re-
cover the top-κ options with a confidence at least
1 − δ provided nmax is large enough. Moreover, by
using the sampling strategies introduced in Section
4, PBR can achieve an accuracy similar to the uni-
form sampling for an empirical sample complexity
that is an order of magnitude smaller (if again nmax

is large enough).

6. A Special Case

In this section, we consider a setting that is in a
sense in-between the value-based and the preference-
based one. Like in the former, each option oi is
associated with a random variable Xi; thus, it is
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Figure 1. The accuracy of different racing methods ver-
sus empirical sample complexity. The algorithms were
run with nmax = {100, 500, 1000, 5000, 10000}. The low-
est empirical sample complexity is achieved by setting
nmax = 100, and the sample complexity grows with nmax.

possible to evaluate individual options, not only to
compare pairs of options. However, the random vari-
ables Xi take values in a set Ω that is only partially
ordered by a preference relation �. Thus, like in the
preference-based setting, two options are not neces-
sarily comparable in terms of their sampled values.
Obviously, the value-based TKS setup described in
Section 2.1 is a special case with Ω = R and � the
standard ≤ relation on the reals.

Coming back to our preference-based setting, the
pairwise relation yi,j between options can now be
written as

P(Xi ≺ Xj) +
1
2

�
P(Xi ∼ Xj) + P(Xi⊥Xj)

�
.

Table 1. The 8 Bundesliga teams considered and their
scores achieved in the last 10 years. In the last three
columns, their ranks are shown according to the differ-
ent ranking models (≺CO, ≺SE and ≺RW). The stars
indicate that a team is among the top three.

Team W L T ≺CO ≺SE ≺RW

B. München 77 33 30 *1 *1 *1
B. Dortmund 56 49 35 *3 *2 5
B. Leverkusen 55 49 36 5 4 *2
VfB Stuttgart 55 53 32 *2 5 4
Schalke 04 54 47 39 4 *3 *3
W. Bremen 52 51 37 6 6 6
VfL Wolfsburg 44 66 30 7 7 7
Hannover 96 30 75 35 8 8 8

6



It can be estimated on the basis of random samples
Xi = {x1

i , . . . , x
ni
i } and Xj = {x1

j , . . . , x
nj

j } drawn
from PXi and PXj , respectively, as follows:

ȳi,j =
1

ninj

ni�

�=1

nj�

��=1

�
I{x�

i ≺ x
��

j } (11)

+
1
2
�
I{x�

i ∼ x
��

j } + I{x�
i ⊥ x

��

j }
��

This estimate is known as Mann-Whitney U-statistic
(also known as the Wilcoxon 2-sample statistic) and
belongs to the family of two-sample U-statistics.
Apart from ȳi,j being an unbiased estimator of yi,j ,
(11) exhibits concentration properties resembling
those of the sum of independent random variables.
Theorem 4 ((Hoeffding, 1963), §5b). 4 For any � >

0, using the notations introduced above,

P (|yi,j − ȳi,j | ≥ �) ≤ 2 exp(−2 min(ni, nj)�2) .

Based on this concentration result, one can ob-
tain a confidence interval for ȳi,j as follows: for
any 0 < δ < 1, the interval [ȳi,j − ci,j , ȳi,j + ci,j ]
contains yi,j with probability at least 1 − δ where
ci,j =

�
1

2 min(ni,nj)
ln 2

δ .

We can readily adapt the PBR framework to this
special setup: In each iteration of PBR, those ran-
dom variables have to be sampled whose indices ap-
pear in A, i.e., those Xi with (i, j) ∈ A or (j, i) ∈ A.
Then, by comparing the random samples with re-
spect to �, one can calculate ȳi,j according to (11).
Finally, the confidence intervals for the ȳi,j can be
obtained based on Theorem 4 (for pseudo-code see
Appendix B.1).

6.1. Results on Synthetic Data

Recall that the setup described above is more gen-
eral than the original value-based one and, therefore,
that the PBR framework is more widely applicable
than the value-based Hoeffding race (HR).5 Never-
theless, it is interesting to compare their empirical
sample complexity in the standard numerical set-
ting, where both algorithms can be used.

We considered three test scenarios. In the first, each
random variable Xi follows a normal distribution
N ((k/2)mi, ci), where mi ∼ U [0, 1], ci ∼ U [0, 1],

4Although ȳi,j is a sum of ninj random values here,
these values are combinations of only ni+nj independent
values. This is why the convergence rate is not better
than the usual one for a sum of n independent variables.

5For a detailed description and implementation of this
algorithm, see (Heidrich-Meisner & Igel, 2009).

k ∈ N+; in the second, each Xi obeys a uniform dis-
tribution U [0, di], where di ∼ U [0, 10k] and k ∈ N+;
in the third, each Xi obeys a Bernoulli distribution
Bern(1/2) + di, where di ∼ U [0, k/5] and k ∈ N+.
In every scenario, the goal is to rank the distribu-
tions by their means. Note that the complexity of
the TKS problem is controlled by the parameter k,
with a higher k indicating a less complex task; we
varied k between 1 and 10. Besides, we used the
parameters K = 10, κ = 5, nmax = 300, δ = 0.05.

Strictly speaking, HR is not applicable in the first
scenario, since the support of a normal distribution
is not bounded; we used R = 8 as an upper bound,
thus conceding to HR a small probability for a mis-
take6. For Bernoulli and uniform distributions, the
bounds of the supports can be readily determined.

Figure 2 shows the number of random samples drawn
by the racing algorithms versus precision (percent-
age of true top-κ variables among the predicted
top-κ). PBR-CO, PBR-SE and PBR-RW achieve
a significantly lower sample complexity than HR,
whereas its accuracy is on a par or better in most
cases in the first two test scenarios. While this may
appear surprising at first sight, it can be explained
by the fact that the Wilcoxon 2-sample statistic is
efficient (Serfling, 1980).

In the Bernoulli case, one may wonder why the sam-
ple complexity of PBR-CO hardly changes with k

(see the red point cloud in Figure 2(c)). This can be
explained by the fact that the two sample U-statistic
Ȳ in (11) does not depend on the magnitude of the
drift di (as long as it is smaller than 1).

7. Related Work

The racing setup and the Hoeffding race algorithm
were first considered by Maron & Moore (1994; 1997)
in the context of model selection. Mnih et al. (2008)
improved the HR algorithm by using the empirical
Bernstein bound instead of the Hoeffding bound. In
this way, the variance information of the mean es-
timates could be incorporated in the calculation of
confidence intervals.

In the context of multi-armed bandits, Even-Dar
et al. (2002) introduced a slightly different setup,
where an �-optimal random variable has to be cho-
sen with probability at least 1−δ; here, �-optimality
of Xi means that µi + � ≥ maxj∈[K] µj . Those al-
gorithms solving this problem are called (�, δ)-PAC

6The probability that all samples remain inside the
range is larger than 0.99 for K = 10 and nmax = 300.
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(b) II. Uniform distributions
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(c) III. Bernoulli distributions

Figure 2. The accuracy is plotted against the empirical sample complexities for the Hoeffding race algorithm (HR)
and PBR, with the complexity parameter k shown below the markers. Each result is the average of 1000 repetitions.

bandit algorithms. The authors propose such an al-
gorithm and prove an upper bound on the expected
sample complexity. In this paper, we borrowed their
technique and used it in the complexity analysis of
PBR-CO and PBR-SE.

Recently, Kalyanakrishnan et al. (2012) introduced a
PAC-bandit algorithm for TKS which is based on the
widely-known UCB index-based multi-armed ban-
dit method (Auer et al., 2002). In their formaliza-
tion, an algorithm is an (�,m, δ)-PAC bandit algo-
rithm that selects the m best random variables un-
der the PAC-bandit conditions. According to their
definition, a racing algorithm is a (0,κ, δ)-PAC algo-
rithm. They could prove a high probability bound
for the worst case sample complexity instead of the
expected sample complexity. It is an interesting
question whether their slack variable technique can
be applied in our setup.

Yue et al. (2012) introduce a multi-armed bandit
setup where feedback is provided in the form of noisy
comparisons between options, just like in our ap-
proach. In their setup, however, they are aiming at a
small cumulative regret, where the reward of a pair-
wise comparison of oi and oj is max {∆i∗,i,∆i∗,j}
whereas ours is a pure exploration approach. To
ensure the existence of the best option oi∗, strong
assumptions are made on the distributions of the
comparisons, such as strong stochastic transitivity
and stochastic triangle inequality.

In “noisy sorting” (Braverman & Mossel, 2008),
noisy pairwise preferences are sampled like in our
case, but it is assumed that there is a total order
over the objects. That is why the algorithms pro-
posed for this setup require in general less pairwise
comparisons in expectation (O(K log K)) than ours.

8. Conclusion and Future Work

We introduced a generalization of the problem of
top-k selection under uncertainty, which is based
on comparing pairs of options in a qualitative in-
stead of evaluating single options in a quantitative
way. To tackle this problem, we proposed a general
framework in the form of a preference-based racing
algorithm along with three concrete instantiations,
using different methods for ranking options based
on pairwise comparisons. Our algorithms were ana-
lyzed formally, and their effectiveness was shown in
experimental studies on real and synthetic data.

For future work, there are still a number of theoret-
ical questions to be addressed, as well as interesting
variants of our setting. For example, inspired by
(Kalyanakrishnan et al., 2012), we plan to consider
a variant that seeks to find a ranking that is close
to the reference ranking (such as ≺CO ) in terms
of a given rank distance, thereby distinguishing be-
tween correct and incorrect solutions in a more grad-
ual manner than the (binary) top-k criterion.

Moreover, there are several interesting applications
of our preference-based TKS setup. Concretely,
we are currently working on an application in
preference-based reinforcement learning, namely a
preference-based variant of evolutionary direct pol-
icy search as proposed by Heidrich-Meisner & Igel
(2009).
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Fürnkranz, J. and Hüllermeier, E. (eds.). Preference
Learning. Springer-Verlag, 2011.

Heidrich-Meisner, V. and Igel, C. Hoeffding and Bern-
stein races for selecting policies in evolutionary direct
policy search. In Proceedings of the 26th International
Conference on Machine Learning, pp. 401–408, 2009.

Hoeffding, W. Probability inequalities for sums of
bounded random variables. Journal of the American
Statistical Association, 58:13–30, 1963.

Kalyanakrishnan, S., Tewari, A., Auer, P., and Stone, P.
Pac subset selection in stochastic multi-armed ban-
dits. In Proceedings of the Twenty-ninth International
Conference on Machine Learning (ICML 2012), pp.
655–662, 2012.

Kocsor, A., Busa-Fekete, R., and Pongor, S. Protein
classification based on propagation on unrooted bi-
nary trees. Protein and Peptide Letters, 15(5):428–34,
2008.

Langville, A. N and Meyer, C. D. Deeper inside pager-
ank. Internet Mathematics, 1(3):335–380, 2004.

Maron, O. and Moore, A.W. Hoeffding races: accel-
erating model selection search for classification and
function approximation. In Advances in Neural Infor-
mation Processing Systems, pp. 59–66, 1994.

Maron, O. and Moore, A.W. The racing algorithm:
Model selection for lazy learners. Artificial Intelli-
gence Review, 5(1):193–225, 1997.
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