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1. Gradient Derivation

This section describes the derivation of (9-12) in the
main article. First note that:
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By writing:
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Equation 9 in the main article is obtained by replacing
Ku

ij with (1) in (3).

The cyclic property of the trace operator implies:
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Equation 10 in the main article is obtained by replac-
ing Kv

ij with (2) in (4).

To derive equation 11 in the main article, note that:
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The first term on the R.H.S. above is just Equation
9 in the main article divided by tr(KuK̃v). The sec-
ond term on the R.H.S. of (5) involves the derivative

of tr(KuK̃u) w.r.t. uT . As tr(K̃uK̃u) = tr(KuK̃u),
we will compute the derivative of tr(K̃uK̃u) =∑
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By considering the matrix centering formula (the equa-
tion below equation 2 in the main article):
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Putting (7) into (6), (6) becomes:
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For the 2nd term in (8):

1

N

∑
i

∑
j

K̃u
ij

N∑
s=1

∂Ku
sj

∂uT
=

1

N

∑
s

∑
j

∂Ku
sj

∂uT

∑
i

K̃u
ij = 0



CCA by HSIC and KTA: Supplementary

since
∑

i K̃
u
ij = 0 as K̃u is column centered. Using

similar arguments, along with the fact that K̃u is row
centered, (9) and (10) can also be shown to be 0. Com-
bining (1) with the first term in (8), we arrive at an
explicit expression for (6):
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All the partial gradients involved in (5) have now been
evaluated explicitly, and equation 11 in the main arti-
cle, along with its weights Wu

ij , can be obtain by simple
factorizing and reordering.

Finally, equation 12 in the main article and its associ-
ated W v

ij can be obtained by considering a derivation
symmetrical to the derivation above.

2. Computational Cost

The time required to run hsicCCA and ktaCCA, be-
sides the sample size and data dimension, will also
depend on the number of iterations, the convergence
threshold, the bandwidth parameter σx and σy (which
affects the roughness and the amount of local minima
of the cost surface), the starting-parameters, and the
structure of the signals within the data. At the most
basic level, the time required to evaluate the cost func-
tion and the gradient for hsicCCA and ktaCCA, as
a function of sample size and data dimension (P for
the x-variable set and Q for the y-variable set), are
presented here. Each variable set is generated using
the standard Gaussian distribution, and the computa-
tions are performed using a laptop with an Intel Core
i7-3517U processor and 8GB RAM.

As seen in Figure 1, the time required for evaluating
the cost function is roughly linear in sample size, and
rather robust against the data dimension. However,
the complexity for gradient evaluation is quadratic in
both the sample size and data dimension.

Although the gradient evaluation is computationally
more intensive than cost function evaluation, the com-
putational bottleneck for hsicCCA and ktaCCA lies in
the step-sizes search step, where the Nelder-Mead al-
gorithm may requires more than 30 evaluations of the
cost function. For example, to compute one pair of
canonical vectors using ktaCCA on a data set with
sample size 1200 and dimension P = Q = 10, each
iteration will require one gradient computation (about
1 second for each evaluation), but may require around
30 cost function evaluations (about 0.4 second for
each evaluation) for step-sizes search using Nelder-
Mead. For 100 iterations, this will take approximately
100× 1 + 100× 30× 0.4 = 1300 seconds.
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Figure 1. Time (in seconds) required to compute hsicCCA
and ktaCCA’s cost functions and their gradients.

3. CCA with Quadratic Features

For the Boston Housing data set, we further consider
CCA and DCCA with quadratic features attached (ab-
breviated as qCCA and qDCCA respectively), i.e. be-
sides the original inputs xi ∈ RP and yi ∈ RQ, we
attach x2i and y2i respectively to xi and yi, where x2i is
the vector whose elements equal the corresponding ele-
ments of xi, but raised to the 2nd power. y2i is defined
similarly. 5-fold cross-validation results are presented
in Figure 2.

The results suggest that quadratic relationship does
exist between the two sets of variables, as qCCA
has provided slightly higher Spearman correlation
scores over other methods through their first canon-
ical projections. However, strong non-linear and non-
quadratic relationship exists, and this relationship is
only extracted by hsicCCA and ktaCCA through their
2nd canonical projections.
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Figure 2. Boston Housing Data Results.


