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Abstract

Canonical correlation analysis (CCA) is a
well established technique for identifying lin-
ear relationships among two variable sets.
Kernel CCA (KCCA) is the most notable
nonlinear extension but it lacks interpretabil-
ity and robustness against irrelevant features.
The aim of this article is to introduce two
nonlinear CCA extensions that rely on the
recently proposed Hilbert-Schmidt indepen-
dence criterion and the centered kernel target
alignment. These extensions determine linear
projections that provide maximally depen-
dent projected data pairs. The paper demon-
strates that the use of linear projections al-
lows removing irrelevant features, whilst ex-
tracting combinations of strongly associated
features. This is exemplified through a simu-
lation and the analysis of recorded data that
are available in the literature.

1. Introduction

CCA, developed for discovering linear associations be-
tween two multivariate data sets, dates back to the
early to mid 1930s (Hotelling, 1936). For given high-
dimensional random vectors x ∈ RP and y ∈ RQ,
let xi and yi, i = 1, . . . N , be N independent realiza-
tions of x and y, respectively. As a multivariate data
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analysis tool, CCA extracts canonical vectors u and v
such that uTx and vTy possess a maximum correla-
tion coefficient. These pairs of vectors reveal different
linear associations that are encapsulated within x and
y. During the early development phase, CCA has seen
applications predominantly in the field of psychology.
To date, CCA has a wide range of applications includ-
ing, for example, functional data analysis (Leurgans
et al., 1993) and bioinformatics (Cao et al., 2009).

More recently, the research community proposed reg-
ularized approaches to CCA for simultaneous analysis
of multiple high-dimension data sets (Witten & Tib-
shirani, 2009; Parkhomenko et al., 2009; Hardoon &
Shawe-Taylor, 2011). Also the introduction of non-
linear extensions of CCA has received attention. Ini-
tially based on neural networks (Hsieh, 2000), using
kernel methods (Bach & Jordan, 2002) has become
a notable approach for extracting complex non-linear
associations between data sets, such as those aris-
ing in image analysis and industrial process modelling
(Hardoon et al., 2004; Sharma et al., 2006).

Kernel approaches to CCA, however, are often com-
promised by the following two key issues. Firstly,
KCCA attempts to find canonical scalar functions f
and g such that the correlation between the trans-
formed variables f(x) and g(y) are maximized. Uti-
lizing the kernel trick, KCCA operates in a high-
dimensional reproducing kernel Hilbert space of func-
tions, providing no interpretable results for subsequent
exploratory analysis. Secondly, KCCA considers all
P and Q elements stored in the xi and yi vectors for
model estimation with no filtering procedure to remove
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irrelevant features. This can potentially affect the ro-
bustness of KCCA against redundant variables. While
an appropriate choice of the regularization parameter
may overcome the latter issue (Fukumizu et al., 2007),
the tuning parameter selection problem for KCCA has
not been adequately addressed in the literature.

(Balakrishnan et al., 2012) provides an attempt to ad-
dress these issues by utilizing non-linear transforma-
tions that are modelled by sparse generalized additive
models (Ravikumar et al., 2009). Introducing variable
weights and a variable elimination step has allowed
easier model interpretation and the removal of irrel-
evant variables. However, the use of generalized ad-
ditive models inherently ignores interactions between
variables, hence limiting the flexibility of the model for
non-linear structure discovery. Furthermore, it is not
clear how this method can produce multiple orthogo-
nal functional transforms or weight vectors, properties
respectively enjoyed by KCCA and CCA.

Another approach that attempts addressing these is-
sues is described in (Sharma et al., 2006), where by
modelling f and g using neural networks, the correla-
tion between non-linearly transformed canonical vari-
ates, i.e. f(uTx) and g(vTy), is maximized. However,
highly non-linear signals require complexly structured
networks with multiple layers of neurons to capture;
the need for an appropriate network design and the
computational burden of neural network fitting may
hamper its practical usefulness.

This article presents extensions of CCA that (i) can be
robust against spurious dimensions and (ii) allow for
multiple and interpretable canonical vectors. These
extensions are motivated by noticing that the esti-
mated non-linear transforms f and g (obtained using
KCCA) can hardly provide any insight regarding the
interrelationships between x and y. This, however, is
one of the benefits of linear CCA, as it utilizes u and
v to formulate hypotheses or to conduct exploratory
data analysis. Hence, a reliable estimation of u and v
in a nonlinear context can reveal important dependen-
cies between two variables sets. The determination of
u and v is achieved by constructing objective functions
for u and v based on two general measures of depen-
dence: (i) the Hilbert-Schmidt Independence Criterion
(HSIC) (Gretton et al., 2005), and (ii) the centered
kernel target alignment (KTA) (Cortes et al., 2012).
Since u and v are projection vectors in the original
data spaces, they can provide interpretable insights
into the relationships between x and y (first issue).
Furthermore, inspecting the canonical variates uTxi
and vT yi as one-dimensional compression guided by
HSIC or KTA, only relevant features are utilized for

non-linearity search, thereby decreasing the sensitiv-
ity of our approaches against irrelevant, noisy features
(second issue). Finally, multiple canonical weight vec-
tors can be easily obtained by iteratively performing
the proposed algorithm on sequential orthogonal sub-
spaces.

2. Preliminaries

This section provides a brief summary of CCA and
KCCA first and introduces HSIC and KTA in Subsec-
tion 2.2, which form the basis of the proposed work.

2.1. CCA and KCCA

Defining X ∈ RN×P and Y ∈ RN×Q, where the ith
rows are xi and yi, respectively, which have column
means of zero, CCA computes two canonical vectors u
and v to maximize the following sample correlation:

cor(uTX, vTY ) =
uTXTY v√

(uTXTXu)(vTY TY v)
(1)

subject to ||u|| = ||v|| = 1

The unity constraint is superfluous here, but the algo-
rithms in Section 4 require its incorporation.

KCCA maximizes cor(f(x), g(y)), i.e. the correlation
between the nonlinear transformations of x and y, by
determining f and g, that is f(x), g(y), within respec-
tive reproducing kernel Hilbert spaces Hx and Hy.
Defining kx(·, ·) and ky(·, ·) by the associated kernel
functions for Hx and Hy respectively, and let Kx and
Ky be the Gram matrices for the N samples of x and
y, i.e. the (i, j)th entry of Kx and Ky are respec-
tively kx(xi, xj) and ky(yi, yj), then the maximum of
cor(f(x), g(y)) can be formulated as:

max
α,β∈RN

αT K̃xK̃yβ√
αT (K̃x − ηI)2αβT (K̃y − ηI)2β)

(2)

where K2 = KTK, η is a regularization constant, and
K̃ is the centered Gram matrix of K, i.e. the (i, j)th
entry of K̃ is:

K̃ij = Kij −
1

N

N∑
i=1

Kij −
1

N

N∑
j=1

Kij +
1

N2

N∑
i=1

N∑
j=1

Kij

The solution to the optimization problem (2) is the
largest generalized eigenvalue of a system of general-
ized eigenvalue problem (Bach & Jordan, 2002).

As xi and yi are non-linearly transformed prior to sam-
ple correlation evaluation, (2) can be seen as a measure
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of non-linear correlation. However, evaluating (2) is
practically inconvenient as it requires a careful choice
of η, and solving the generalized eigenvalue problem
can be computationally intensive. To overcome these
issues, this article utilizes the HSIC and KTA measures
which are introduced next.

2.2. HSIC and KTA

These are two criteria for determining non-linear asso-
ciations that do not require the solution of generalized
eigenvalue problems nor rely on regularization param-
eter by virtue of their constructions. Associated with
Hx and Hy, HSIC is the squared Hilbert-Schmidt norm
of the cross-covariance operator between the probabil-
ity space of x and y (Gretton et al., 2005). The em-
pirical HSIC measure is defined as:

ρh =
1

(N − 1)2
tr(KxK̃y) (3)

The fact that HSIC can be used as a measure of
(in)dependence when associated with a universal ker-
nel has been justified in (Gretton et al., 2005). This
allows HSIC to be used for constructing kernel vari-
ants of independent component analysis (Shen et al.,
2009), supervised and unsupervised dimension reduc-
tion (Fukumizu et al., 2009; Wang et al., 2010), and
feature selection (Song et al., 2012b).

The KTA criterion has the following definition:

ρa =
tr(KxK̃y)√

tr(KxK̃x)tr(KyK̃y)
(4)

Comparing (3) and (4), the KTA criterion is simply
a normalized version of HSIC. Despite this similarity
between KTA and HSIC, KTA has mainly been used
for kernel selection and kernel learning (Cortes et al.,
2012), areas of application rather dissimilar to the ap-
plications of HSIC mentioned above.

3. CCA based on HSIC and KTA

This section motivates the rationale behind the two
algorithms to overcome the inherent limitations of
KCCA, i.e. (i) the lack of interpretability due to
the transformation of the data vectors into abstract
Hilbert spaces and (ii) the inability of removing irrel-
evant features from the original variables. The two
algorithms rely on the following objective function to
estimate canonical vectors with respect to pre-defined
measures of empirical non-linear correlation ncor(., .)
between uTx and vTy:

max
u,v;||u||=||v||=1

ncor(uTx, vTy) (5)

Although KCCA provides a nonlinear correlation mea-
sure using f(x) and g(y), the proposed algorithms uti-
lize the conceptually simpler HSIC and KTA criteria.
Incorporating the HSIC criterion, the first proposed
CCA variant, hsicCCA, computes u and v to maxi-
mize:

ρh(u, v) =
1

(N − 1)2
tr(KuK̃v) s.t. ||u|| = ||v|| = 1

(6)
where Ku and Kv are Gram matrices for pro-
jected data uTxi and vT yi, i.e. their (i, j)th en-
try are ku(xi, xj) = kx(uTxi, u

Txj) and kv(yi, yj) =
ky(vT yi, v

T yj) respectively. To highlight the relation-
ship between CCA and hsicCCA, it is easy to show
that using a linear kernel, (6) reduces to:

ρh(u, v) = (uTXTY v)2 s.t. ||u|| = ||v|| = 1 (7)

(7) is equivalent (up to squaring) to the diagonal CCA
(DCCA) criterion introduced by (Witten & Tibshi-
rani, 2009), which has been further developed into
sparse CCA for high-dimensional genomic data anal-
ysis. It should be noted that DCCA assumes that el-
ements within x and y are uncorrelated, which makes
DCCA a regularized form of CCA, particularly suit-
able for low-sample and high-dimensional data anal-
ysis when the correlation among the variables within
each data set cannot be effectively estimated.

Next, incorporating the KTA criterion into (5), the
second proposed algorithm of this article, ktaCCA,
maximizes:

ρa(u, v) =
tr(KuK̃v)√

tr(KuK̃u)tr(KvK̃v)
(8)

subject to ||u|| = ||v|| = 1

which gives rise to the ktaCCA algorithm, i.e. the
second algorithms proposed in this article. Utilizing
linear kernel functions, (8) reduces to the squared cri-
terion of classical CCA (1). The objective functions
for hsicCCA and ktaCCA are, hence, extensions of
DCCA and CCA, respectively, to extract non-linear
associations. As both algorithms rely on the original
variables instead of their nonlinear transformations,
the interpretability concern of KCCA does not arise
for the hsicCCA and ktaCCA variates.

Moreover, the fact that (i) DCCA is a regularized ver-
sion of CCA and (ii) hsicCCA and ktaCCA reduce to
DCCA and CCA, respectively, if linear kernels func-
tions are used, also highlights that hsicCCA is a reg-
ularized version of ktaCCA. According to (Gretton
et al., 2005) and (Cortes et al., 2012), HSIC and KTA
have different concentration bounds, depending on the
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choice of the kernel. The above considerations suggest
that hsicCCA and ktaCCA can be viewed as natural
nonlinear extensions of CCA. In section 5 we intro-
duce the simulation study and other data experiments
to shed light on the similarities and differences between
the two methods.

4. Estimation Procedure

This section introduces a gradient-descent algorithm
for solving (6) and (8). While other choices of kernel
are available, this article employs the Gaussian RBF
kernel exclusively. Allowing different bandwidth pa-
rameters for kx(·) and ky(·), these kernel functions are:

kx(xi, xj) = exp(−σx||xi − xj ||2)

ky(yi, yj) = exp(−σy||yi − yj ||2)

The kernel functions for the projected representations
therefore become:

ku(xi, xj) = exp(−σx||uT (xi − xj)||2)

kv(yi, yj) = exp(−σy||vT (yi − yj)||2)

Ignoring the constant term, the gradient of (6) with
respect to uT and vT are:

∂ρh(u, v)

∂uT
= −2σxu

T
N∑
i=1

N∑
j=1

Ku
ijK̃

v
ij(xi−xj)(xi−xj)T

(9)

∂ρh(u, v)

∂vT
= −2σyv

T
N∑
i=1

N∑
j=1

K̃u
ijK

v
ij(yi − yj)(yi − yj)T

(10)
For ktaCCA (8), the gradients of log(ρa(u, v)) will in-
stead be considered. The gradients of log(ρa(u, v))
with respect to uT and vT are:

∂ log(ρa(u, v))

∂uT
= uT

N∑
i=1

N∑
j=1

Wu
ij(xi − xj)(xi − xj)T

(11)

∂ log(ρa(u, v))

∂vT
= vT

N∑
i=1

N∑
j=1

W v
ij(yi − yj)(yi − yj)T

(12)
where:

Wu
ij = −2σxK

u
ij(

K̃v
ij

tr(KuK̃v)
−

K̃u
ij

tr(KuK̃u)
)

W v
ij = −2σyK

v
ij(

K̃u
ij

tr(KuK̃v)
−

K̃v
ij

tr(KvK̃v)
)

Detailed derivations of (9-12) will be presented in the
supplementary.

For estimating u and v, this article considers a gradi-
ent descent algorithm, with a modified gradient to en-
sure the unit length constraint is satisfied at each step
(Edelman et al., 1998). See Algorithm 1 for the train-
ing algorithm of hsicCCA. The algorithm for train-
ing ktaCCA is based on replacing the objective func-
tion (6) with the log-based objective function of (8),
and by replacing the gradients (9,10) with the gradi-
ents (11,12). Optimal step-sizes θu, θv in Algorithm 1
can be found numerically, e.g. using the Nelder-Mead
method.

Similar to classical CCA, upon finding an estimate
for u and v, one can obtain further canonical weight
vectors by solving (6) or (8) with xi − uuTxi and
yi − vvT yi to obtain u2 and v2, i.e. solving (6)
or (8) using the residuals resulting from projecting
the data xi and yi to the orthogonal subspace of u
and v respectively. This procedure can be repeated
for finding u3, v3, u4, v4, etc. The maximum num-
ber of projections that can be obtained is therefore
min(rank(X), rank(Y )). It should be noted that the
resulting sets of vectors u1, u2, . . . are mutually orthog-
onal, and the same property applies to v1, v2, . . .. To
implement this procedure, however, one must initial-
ize the new projection vectors such that the initialized
vector is orthogonal to all the previously obtained pro-
jection vectors in Algorithm 1.

The bandwidth parameter σx is chosen using the “me-
dian trick” (Song et al., 2012a), i.e. the median Eu-
clidean distance between all pairs of (xi, xj), and σy is
chosen similarly. Note that the median distance can
change after the orthogonal residual subspace projec-
tion step described in the previous paragraph, and
therefore the bandwidth parameters for estimating
u1, v1, u2, v2, . . . are different.

5. Experiments

We use simulated and real datasets which have been
used in the literature to investigate our two proposed
methods in contrast with CCA, KCCA and DCCA. To
avoid the problem of local minima, multiple random
restarts are employed in each experiment.

5.1. Simulation

The simulation example, where source signals are ar-
tificially generated, along with some noise variables,
tests the performance of KCCA and the various CCA
variants to recover the source signals in the pres-
ence of noise and irrelevant variables. Here x =
(x1,x2,x3,x4,x5)T and y = (y1,y2,y3,y4)T are de-
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Algorithm 1 Gradient Descent for hsicCCA

Input: data xi, yi, number of factors M , stopping
criterion e
for m = 1 to M do
σx = median(dist(xi)), σy = median(dist(yi))
t = 1
initialize umt, vmt
repeat
obj = ρh(umt, vmt)
Compute Kumt ,Kvmt , K̃umt , K̃vmt

η = −∂ρh(u,v)∂u

∣∣
u=umt

, γ = −∂ρh(u,v)∂v

∣∣
v=vmt

humt = η − (ηTumt)umt, n
umt = humt/|humt |

hvmt = γ − (γT vmt)vmt, n
vmt = hvmt/|hvmt |

u(θu) = umt cos θu + numt sin θu
v(θv) = vmt cos θv + nvmt sin θv
(θu, θv) = argminθu,θv{−ρh(u(θu), v(θv))}
t = t+ 1
update umt = u(θu), v = v(θv)

until (ρh(umt, vmt)− obj)/obj < e
um = umt, vm = vmt
xi = xi − umuTmxi, yi = yi − vmvTmyi

end for
Output: u1, . . . , uM , v1, . . . , vM

fined as follows:

z ∼ uniform(−π, π)

x1 = sin(z) + εx1
;y1 = cos(z) + εy1

x2 ∼ N(0, 1),x3 ∼ N(0, 1);y2 = cos(x2 + x3) + εy2

x4 ∼ N(0, 1);y3 = x4 + εy3

x5 ∼ N(0, 1)

y4 ∼ N(0, 1)

εx1
, εy1

∼ N(0, σ = 0.1); εy2
, εy3

∼ N(0, σ = 0.5)

Here, x1 and y1 form a circle, while x2 + x3 and y2

form a cosine curve, and x4 and y3 are linearly cor-
related. N=100 samples are generated from x and y
described above. The objective here is to examine how
well hsicCCA, ktaCCA, CCA, DCCA, and KCCA can
extract the three source signals.

The canonical variates resulting from the four CCA
variants are shown in Figure 1. Whilst each method
can discover the linear relationship between x3 and y4,
only ktaCCA and hsicCCA can discover the remain-
ing two non-linear patterns. Indeed, the three pairs
of projection vectors u1, v1, u2, v2, u3, v3 obtained from
ktaCCA are (rounded to one significant digit):

u1 = (0,−0.1,−0.2,−1, 0)T ; v1 = (0,−0.1,−1, 0)T

u2 = (0,−0.7,−0.7, 0.2, 0)T ; v2 = (0.1,−1, 0.1,−0.2)T
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Figure 1. The projected canonical variates for the simula-
tion study. The title of each plot represents the method
and the order of the canonical variates.

u3 = (1, 0, 0, 0, 0)T ; v3 = (−1,−0.1, 0, 0)T

The canonical weight vectors obtained by hsicCCA are
similar, up to certain sign changes1.

More precisely, (u1, v1) above reveals that x4 is corre-
lated with y3 (i.e. the linear relation), (u2, v2) suggests
that a combination of x2 and x3 is strongly related
to y2 (i.e. the cosine relation), and (u3, v3) indicates
the dependency between x1 and y1 (i.e. the circle).
It should be noted that the vectors alone are unable
to describe the type of relationships (linear or non-
linear), but they allow identifying the linear combina-
tions of elements between the two data sets which are
strongly associated.

Note from Figure 1 that the cosine signal and the cir-
cular signal are discovered by hsicCCA and ktaCCA in
different orders, suggesting that hsicCCA and ktaCCA
algorithms may differ in performance, depending on
the structure of the interrelationship between the two
sets of variables.

For the analysis of KCCA’s results, note that although

1Sign changes preserve both the HSIC and KTA mea-
sures here, due to simple invariant properties of the Gaus-
sian kernel. Details are omitted for brevity.
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KCCA can only provide the transformed variables
f1(xi), f2(xi), . . . and g1(yi), g2(yi), . . ., it is still pos-
sible to investigate whether KCCA has identified the
true source signals by investigating the sample corre-
lation between the true signals and the KCCA trans-
formed variables (Table 1). The circular signal is diffi-
cult to interpret, as there are many transformations for
z which can generate a circle. A more detailed anal-
ysis has shown that KCCA has learned the cos(2z)
function through its 5th pair of canonical functions.
Furthermore, the 2nd pair of canonical functions have
extracted the linear signal between x3 and y4, and
the 3rd pair have discovered the cosine signal between
x2 + x3 and y2. The results of Table 1 also suggest
that the first pair of canonical functions has partially
extracted the cosine signal, as indicated by the mod-
erate sample correlation in the first column of Table 1.
However, it is difficult to argue intuitively why there
are two pairs of canonical functions (i.e. the first pair
and the third pair) extracting the same cosine signal.

These results suggest that although KCCA has iden-
tified all of the three signals, they are not being dis-
covered by the first three pairs of canonical functions
(f1, g1), (f2, g2), and (f3, g3). As the first three pairs
of KCCA canonical functions are supposed to cap-
ture the three strongest associations, and that there
are only three signals being generated by the simula-
tion model, KCCA has apparently extracted certain
redundant signals, demonstrating its lack of robust-
ness against irrelevant variables.

Table 1. Absolute sample correlation between true signal
and KCCA transformed signal. High correlations are bold-
faced.

f1(x) f2(x) f3(x) f4(x) f5(x)

cos(2z) 0.13 0.08 0.12 0.05 0.92
cos(x2 + x3) 0.51 0.21 0.83 0.06 0.06

x4 0.06 0.94 0.18 0.02 0.08

g1(y) g2(y) g3(y) g4(y) g5(y)

cos(2z) 0 0.09 0.11 0.05 0.91
y2 0.45 0.28 0.85 0.09 0.05
y3 0.1 0.95 0.15 0.02 0.03

5.2. Canadian Weather Data

This data set records P = Q = 12 monthly average
temperatures and the associated monthly average pre-
cipitations from N = 35 weather stations located at
different parts of Canada (Ramsay & Silverman, 1997).
As the true underlying variable interrelationships are

unknown in this study, the application of KCCA is
not considered here due to its lack of interpretabil-
ity. The performance of CCA, DCCA, hsicCCA and
ktaCCA in extracting the association between temper-
ature and precipitation will be compared based on the
cross-validation principle to be statistically sound.
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Figure 2. Canonical variates for the Canadian weather
data. See caption of Figure 1. The subtitles present the
Spearman correlation for the projected canonical variates.

Note that finding a good non-linear correlation mea-
sure for quantitative comparison is not trivial; the
HSIC and KTA measures are not on the same scale,
which circumvents a direct comparison of the com-
puted dependence measures. Further, using HSIC and
KTA as performance measures may provide a biased
advantage for hsicCCA and ktaCCA, respectively, as
these are methods built upon HSIC and KTA. Other
measures such as KCCA contain tuning parameters,
which are difficult to determine a priori. Fortunately,
most non-linear associations discovered by the com-
pared methods are monotone, and hence the Spearman
correlation (Kruskal, 1958), a principled measure for
monotone non-linear correlation, is a suitable measure
for quantitative comparisons in this experiment.

Figure 2 presents the results obtained from fitting the
four CCA variants on all N = 35 samples. The Spear-
man correlations are recorded in the subtitles of each
plot. This figure shows that DCCA can only identify
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one moderately correlated pattern, while hsicCCA and
ktaCCA can discover a series of strong non-linear pat-
terns. Furthermore, the patterns discovered by hsic-
CCA and ktaCCA, based on the Spearman statistic,
are all highly correlated. On the surface, CCA may
have identified certain strongly correlated linear sig-
nals, but in a low-sample and high-dimensional setting,
the above observation may be a result of over-fitting.
The cross-validation analysis below will demonstrate
that this is indeed the case.

●
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Figure 3. Canadian weather data: cross-validated absolute
Spearman correlations for the 1st set of canonical variates.

The application of cross-validation relied on 20
random-splits with the inclusion of 25 samples to iden-
tify models using each of the four CCA variants. The
Spearman correlation was then determined using the
remaining 10 samples for each of the 20 random splits.
Figure 3 shows box plots of the absolute Spearman
correlation based on these splits for the first set of
canonical vectors. The large range of low Spearman
correlation values indicates over-fitting for standard
CCA, while DCCA, being a regularized variant of
CCA, has produced higher Spearman correlations with
slightly less variation. As the strongest signal between
the temperature and precipitation data is non-linear,
however, ktaCCA and hsicCCA have produced signifi-
cantly larger Spearman values than CCA and DCCA.

5.3. Boston Housing Data

This case study reported here relates to the Boston
Housing Data (Harrison & Rubinfeld, 1978), a data
set known to contain various non-linear signals. Af-
ter removing variables containing categorical and dis-
crete values, the variables “nitric oxide concentration”
(nox), “proportion of units built prior to 1940” (age)
and “percentage of lower status population” (lstat)
will form one data set, and the variables “average
room number” (rm), “distances to employment cen-
ters” (dis), and “median home value” (medv) will form
the other data set. The number of samples in this data
set is N = 506, while P = Q = 3.
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Figure 4. The two canonical variates for the Boston data.
See caption of Figures 1 and 2.

Figure 4 shows the results of applying the four CCA
variants using all 506 samples. KCCA was not in-
cluded in this comparison, given that the nonlinear re-
lationships are unknown. Figure 4 highlights that all
four methods can identify a correlated signal through
their first canonical projections. However, the next
strongest signal is a non-linear one between “lstat”
and “medv”, extracted only by ktaCCA and hsicCCA.
For example, the 2nd pair of canonical weight vectors
obtained by hsicCCA are (rounded to one significant
digit):

u2 = (0.1,−0.2,1), v2 = (−0.3, 0.1,−1)

where the last element of u2 corresponds to the weight
of “lstat”, and the last element of v2 represents the
weight of “medv”. The five-fold cross-validated results
(Figure 5) further suggests that all CCA variants can
stably extract a strongly correlated pattern by their
first projections, but only ktaCCA and hsicCCA can
extract the non-linear pattern through their second
projections.

Further comparisons of hiscCCA and ktaCCA with
CCA and DCCA based on explicit quadratic features
are available in the supplementary.
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Figure 5. Cross-validated absolute Spearman correlations
for the Boston housing data.
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Figure 6. The 4th and 5th canonical variates for the Gaia
data. See caption of Figures 1 and 2.

5.4. Gaia Data

To investigate the two proposed algorithms’ perfor-
mance on a larger-scale data, this final analysis consid-
ers a data set including 1000 randomly selected sam-
ples out of a total of 8286 samples of photon emission
measures for 16 bands of wavelength intervals, gener-
ated through a computer simulation experiment con-
ducted in (Bailer-Jones, 2010). To explore the inter-
connection between the bands, the first 8 bands are
used to construct the x-variable set, and the other
8 bands form the y-variable set, i.e. N = 1000
and P = Q = 8 in this experiment. As the focus
in this application relates to the large-sample perfor-
mance, only the hsicCCA and the ktaCCA algorithms
are contrasted with the standard linear CCA algo-
rithm. All these methods have discovered three strong
linear connections between the two groups of bands
through their first three canonical projections (results
not shown here). Figure 6, however, shows the 4th and
5th canonical projected variates of the three compared
techniques and outlines that CCA is unable to extract
further significant associations beyond its 3rd canoni-
cal projections, while hsicCCA and ktaCCA can dis-
cover further non-linear association patterns between
the two groups of variables.

6. Discussion

This paper has proposed two nonlinear CCA ex-
tensions which discover multiple pairs of orthogonal
canonical vectors that capture non-linear relationship.
Our proposal has the advantage of interpretability of
results and of dimensionality reduction which can ig-
nore irrelevant dimensions. These are in contrast to
other proposed methods, notably KCCA, whose re-
sults are not directly interpretable and rely on all input
dimensions regardless of their relevance to the under-
lying structure.

The proposed algorithms carry out linear projections
of the original variables first, which are subsequently
used to determine objective functions that relate to
HSIC and KTA. In contrast to KCCA, relying on or-
thogonal projections maintains the ability in identify-
ing and interpreting variable interrelationships. More-
over, both algorithms are capable of extracting linear
and nonlinear interrelationships and are therefore non-
linear extensions to DCCA and CCA.

Through a total of four experiments, the reported work
has demonstrated hsicCCA and ktaCCA’s robustness
against noise and redundant variables, and their abil-
ity to provide interpretable results through the canon-
ical weight vectors. Hence, these algorithms directly
address and overcome the limitation of earlier work on
nonlinear CCA.

The computational complexity for computing the gra-
dients for ktaCCA and hsicCCA are both O(N2(P 2 +
Q2)) (consult the supplementary for detailed speed
trials). Approximation techniques, such as those de-
scribed in (Jegelka & Gretton, 2007), may be used to
reduce the computational burden of both algorithms.
For model selection and regularization purposes, meth-
ods to choose M,σx and σy may be developed. Further
empirical and theoretical analysis may also be pursued
to shed light on the intrinsic similarity and differences
between hsicCCA and ktaCCA.

An R package, “hsicCCA”, that contains the imple-
mentation of the proposed algorithms, is available at
the CRAN R-Repository.
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