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Abstract
In this paper, we present a method that com-
bines the merits of Bayesian nonparametrics,
specifically stick-breaking priors, and large-
margin kernel machines in the context of se-
quential data classification. The proposed
model employs a set of (theoretically) infi-
nite interdependent large-margin classifiers
as model components, that robustly capture
local nonlinearity of complex data. The em-
ployed large-margin classifiers are connected
in the context of a Markov-switching con-
struction that allows for capturing complex
temporal dynamics in the modeled datasets.
Appropriate stick-breaking priors are im-
posed over the component switching mecha-
nism of our model to allow for data-driven
determination of the optimal number of
component large-margin classifiers, under a
standard nonparametric Bayesian inference
scheme. Efficient model training is per-
formed under the maximum entropy discrim-
ination (MED) framework, which integrates
the large-margin principle with Bayesian pos-
terior inference. We evaluate our method us-
ing several real-world datasets, and compare
it to state-of-the-art alternatives.

1. Introduction

In this work, we focus on the problem of classifying
data with temporal interdependencies by application
of large-margin techniques. In the last years, sev-
eral researchers, inspired from the literature of support
vector machines (SVMs), have proposed large-margin
methods capable of classifying sequential data under
the large-margin paradigm. For example, in Sha &

Proceedings of the 30 th International Conference on Ma-
chine Learning, Atlanta, Georgia, USA, 2013. JMLR:
W&CP volume 28. Copyright 2013 by the author(s).

Saul (2007), a large-margin generative model is pro-
posed for sequential data classification; in Altun et al.
(2004), an extension of SVMs suitable for structured
output prediction is proposed, and is further applied
to sequential data classification. The power and pop-
ularity of such large-margin approaches stems in part
from the fact that their inference and training reduce
to convex optimization problems, thus not suffering
from the possibility of getting stuck to spurious local
optima, which is often the case with alternative ap-
proaches. However, learning only a single large-margin
model may often be less than sufficient to capture the
underlying patterns (e.g., temporal clusters) in mod-
eled data with rich and complex dynamics.

To address this issue, recently, a mixture-of-experts
(Collobert et al., 2002; Fu et al., 2010; Zhu et al., 2011)
model was proposed that uses a set of SVM classifiers,
each one trained to perform modeling in a coherent
subregion of the observations space. As such, each
one of these classifiers, and, hence, the derived model
as a whole, can capture much more subtle underly-
ing patterns than a single SVM expert. However, a
drawback of this approach is its complete lack of an
explicit mechanism for capturing temporal dynamics
in sequential data, encapsulated in the context of an
appropriate component switching mechanism.

Inspired by these advances, in this paper we propose
a Markov-switching mixture of large-margin classifiers
for sequential data classification. A first basic con-
cept underlying our approach is that, in data with
temporal dynamics, one large-margin classifier is not
enough for capturing rich underlying temporal struc-
tures; therefore, use of a set of local experts is needed.
A second key-concept of our approach that differenti-
ates it from existing approaches consists in the intro-
duction of an appropriate mechanism describing how
subsequent observations may belong to different sub-
regions in the considered observations space. Indeed,
simply considering that the data are generated from
these subregions as draws from independent distribu-
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tions is not expected to allow for effective modeling.
Rather, one would expect that such subregions could
be interpreted as temporal states or subpatterns in the
modeled data; therefore, transition from one state to
another should be described by an appropriate model
of temporal dependencies. To account for these facts,
in this work we employ a latent first-order Markov
chain to capture the temporal dynamics of the alloca-
tion of successive observations to the postulated model
component large-margin classifiers.

A challenge in the field of Markov-switching models
consists in the data-driven determination of the num-
ber of their latent states (model components) required
to represent the modeled data (model order). The
most common data-driven methodologies for model or-
der selection are based on the popular Bayesian infor-
mation criterion (BIC) or other related model size se-
lection criteria (McLachlan & Peel, 2000). However,
such model selection methods require training of mul-
tiple models (to select from), a procedure which can
be applied only up to a limited extent, due to its com-
putational demands. In addition, they are also well-
known for their overfitting proneness, hence often lead-
ing to models much larger than necessary (McLachlan
& Peel, 2000).

Nonparametric Bayesian modeling techniques, espe-
cially Dirichlet process (DP) prior-based models, have
become very popular in statistics over the last few
years, for performing nonparametric density estima-
tion (Walker et al., 1999; Neal, 2000; Muller & Quin-
tana, 2004). Briefly, a realization of a DP prior-based
model can be seen as an infinite mixture of distri-
butions with given parametric shape (e.g., Gaussian,
HMM, etc.). Indeed, although theoretically a DP prior
gives rise to an infinite number of parameters for the
model, it turns out that inference for the model is pos-
sible, since only the parameters of a finite number of
model components need to be represented explicitly
(Neal, 2000; Antoniak, 1974).

Motivated by these results, formulation of our model is
based on the introduction of appropriate nonparamet-
ric priors over the employed large-margin component
classifiers of our model. Specifically, we utilize ap-
propriate stick-breaking priors under a truncated non-
parametric Bayesian inference scheme (Sethuraman,
1994). This way, our model combines the advantages
of Bayesian nonparametrics to allow for automatic,
data-driven determination of the appropriate number
of model components (states), and large-margin clas-
sifiers to capture local nonlinearity in the context of a
convex optimization scheme, not suffering from getting
trapped into spurious local optima.

To perform inference, we employ the maximum en-
tropy discrimination (MED) framework (Jaakkola
et al., 1999), which integrates the large-margin princi-
ple with Bayesian posterior inference in an elegant and
computationally efficient fashion, allowing to leverage
existing high-performance techniques for DP and SVM
models. We dub our approach the infinite Markov-
switching maximum entropy discrimination machine
(iM2EDM) for sequential data classification.

The remainder of this work is organized as follows:
In Section 2, we briefly review the theoretical back-
ground of our method, namely DP priors and the MED
framework. In Section 3, we introduce the iM2EDM
approach, and derive its training and inference algo-
rithms. In Section 4, we perform experimental eval-
uations, considering several applications dealing with
semantic classification in real-world video sequences.
In the final section of this paper, we summarize and
discuss our results.

2. Theoretical Background

2.1. Dirichlet process models

DP models were first introduced in Ferguson (1973).
A DP is characterized by a base distribution G0 and a
positive scalar α, usually referred to as the innovation
parameter, and is denoted as DP(G0, α). Essentially,
a DP is a distribution placed over a distribution. Let
us suppose we randomly draw a sample distribution G
from a DP, and, subsequently, we independently draw
N random variables {Θ∗n}Nn=1 from G:

G|{G0, α} ∼ DP(G0, α) (1)

Θ∗n|G ∼ G, n = 1, . . . N (2)

Integrating out G, the joint distribution of the vari-
ables {Θ∗n}Nn=1 can be shown to exhibit a clustering
effect. Specifically, given the first N − 1 samples of G,
{Θ∗n}N−1

n=1 , it can be shown that a new sample Θ∗N is
either (a) drawn from the base distribution G0 with
probability α

α+N−1 , or (b) is selected from the exist-
ing draws, according to a multinomial allocation, with
probabilities proportional to the number of the previ-
ous draws with the same allocation (Blackwell & Mac-
Queen, 1973).

A characterization of the (unconditional) distribution
of the random distribution G drawn from a Dirichlet
process DP(G0, α) is provided by the stick-breaking
construction of Sethuraman (1994). Consider two
infinite collections of independent random variables
v = (vc)

∞
c=1, {Θc}∞c=1, where the vc are drawn from
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the Beta distribution Beta(1, α), and the Θc are inde-
pendently drawn from the base distribution G0. The
stick-breaking representation of G is then given by
(Sethuraman, 1994)

G =

∞∑
c=1

πc(v)δΘc (3)

where

πc(v) = vc

c−1∏
j=1

(1− vj) ∈ [0, 1] (4)

vc|α ∼ Beta(1, α) (5)

and
∞∑
c=1

πc(v) = 1 (6)

Note that, typically, due to the significant effect of
the innovation parameter α on the internal data allo-
cation mechanism of the DP, an appropriate prior is
also imposed over α in the context of model inference.
Usually, a conjugate Gamma prior is imposed, s.t.

p(α) = G(α|η1, η2) (7)

2.2. Maximum entropy discrimination

Let us denote as x ∈ Rd an observation vector from
a modeled input space, and as y the classification la-
bel assigned to it, taking values from the finite set
{1, . . . , L}. Let us also consider a large-margin clas-
sifier for this problem, and denote as F (y,x;w) its
discriminant function with parameter vector w. In
conventional large-margin classifiers, such as SVMs,
a point-estimate is obtained for the parameter vector
w by resolving a (typically convex) constrained opti-
mization problem. A major drawback of such point-
estimates is their lack of a direct probabilistic inter-
pretation. As a consequence, such approaches prove to
underperform, and be vulnerable to input noise, since
point-estimates cannot account for the uncertainty in
the modeled datasets.

MED is a method that allows for resolving these issues
of conventional large-margin classifiers, by learning a
distribution q(w) obtained as the solution of the fol-
lowing entropic regularized risk minimization problem
(Jaakkola et al., 1999)

min
q(w)

KL (q(w)||p(w))) + γ R(q(w)) (8)

where p(w) is a prior imposed over the parameter
vector w, γ is a positive regularization constant, and
KL (q||p)) stands for the Kullback-Leibler divergence
between q(w) and p(w). R(q(w)) is the hinge-loss

function; it encodes the large-margin principle under-
lying the considered classifier, and is defined as

R(q(w)) ,∑
n

max
y

(
δn(y) + 〈F (y,xn;w)− F (yn,xn;w)〉q(w)

)
(9)

where {xn, yn}Nn=1 is the set of available training ex-
amples (input/output pairs), δn(y) is usually defined
as a binary function equal to one if the computed out-
put y and the true (training) label yn are different, and
〈·〉q(·) is the expectation of a quantity with respect to
the posterior distribution q(·).

Finally, under the MED framework, the prediction rule
of the derived large-margin classifier becomes

y∗ = arg max
y
〈F (y,x;w)〉q(w) (10)

essentially utilizing the expectation of the employed
discriminant function with respect to the parameters
posterior q(w) to obtain predictions in a way similar
to conventional large-margin approaches.

The Bayesian-style formulation of MED renders it an
elegant means of integrating the ideas of large-margin
learning and Bayesian generative modeling, and in-
cludes SVM-type models as a special case. In addition,
MED allows for incorporating latent variables in the
derived models (Lewis et al., 2006), which comprise a
key-tool in machine learning, as well as for performing
structured output prediction (Zhu & Xing, 2009).

3. Proposed Approach

3.1. Model Formulation

As we have already discussed, using a single global
MED/large-margin classifier to model the complex un-
derlying patterns in sequential observations is rather
unlikely to yield models with satisfactory recognition
performance. In addition, existing mixture-of-expert
approaches (e.g., Fu et al., 2010; Zhu et al., 2011) are
not designed for handling sequential data with under-
lying temporal patterns and dynamics. Apparently, in
such a setting, the temporally dependent observations
cannot be accurately modeled as draws from indepen-
dent distributions.

Under these considerations, we introduce the iM2EDM
method; it comprises a set of large-margin classifiers,
each one fitted to capture complex structure in a sub-
part of the observations space (model state). The pat-
tern under which successive observations are generated
from different model states is captured by means of
a latent first-order Markov chain that interconnects
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the component large-margin classifiers of the model
(states).

Let us consider an L-class classification problem, with
class variables y ∈ {1, . . . , L}, and M -dimensional in-
put observations x ∈ RM . Derivation of our model
commences by introducing a latent Markov chain com-
prising infinite (latent) states, and considering that
each modeled observation is associated with one la-
tent model state. Let st ∈ {1, . . . ,∞} be a latent vari-
able denoting the model state that generates the tth
pair of input/output observations {xt, yt}. To obtain
an appropriate prior construction, we impose suitable
stick-breaking priors over the latent state variables st,
following the discussions of Section 2.1. Specifically,
we impose stick-breaking priors over the latent state
transitions in the Markov chain, of the form

p(st = j|st−1 = i;$ij) = $ij(v
$), t > 1 (11)

where the $ij(v
$) are the probabilities generated by

a stick-breaking process with stick-variables v$, such
that v$ = (v$ij )∞i,j=1

$ij(v
$) = v$ij

j−1∏
k=1

(1− v$ik) (12)

v$ij ∼ Beta(1, α$i ) (13)

α$i ∼ G(η1, η2) (14)

and
∞∑
j=1

$ij(v
$) = 1, ∀i (15)

Similar, we impose a stick-breaking prior for the initial
state prior probabilities πi of the latent Markov chain,
such that vπ = (vπi )∞i=1

p(s1 = i|πi) = πi(v
π) (16)

πi(v
π) = vπi

i−1∏
k=1

(1− vπk ) (17)

vπi ∼ Beta(1, απ) (18)

απ ∼ G(ε1, ε2) (19)

and
∞∑
i=1

πi(v
π) = 1 (20)

Subsequently, on the basis of this construction, and
conditional on the latent Markov chain states gener-
ating each observation, we employ a set of conditional
discriminant functions for our model of the form

F (yt,xt|st = c;W ) = w′cf(yt,xt) (21)

where we let W = {wc}∞c=1, and denote as f(y,x)
an ML-dimensional vector comprising L subvectors,
with the yth one being equal to x, and all the others
equal to 0. Each one of the used discriminant functions
F (yt,xt|st = c;W ) captures complex non-linearities
in a subpart of the observations space, related to an
underlying subpattern in the modeled data, and asso-
ciated with the corresponding (cth) latent model state.
Regarding the model parameters wc, we choose to im-
pose a standard Gaussian prior over them, of the form

p(wc) = N (wc|0, I), ∀c (22)

The above prescribed prior construction, given by Eqs.
(11)-(22), defines the proposed iM2EDMmodel. Then,
if we consider a pair of input/output observation se-
quences {X,Y }, with X = {xt}Tt=1 and Y = {yt}Tt=1,
the overall discriminant function of iM2EDM yields

F (Y,X) =

∞∑
i=1

q(s1 = i) 〈w′i〉q(wi) f(y1,x1)

+

∞∑
i=1

∞∑
j=1

T∑
t=2

q(st = j|st−1 = i)
〈
w′j
〉
q(wj)

f(yt,xt)

(23)
Finally, similar to the discussions of Section 2.2, the
prediction rule for our iM2EDM model, with discrim-
inant function (23), eventually yields

Y ∗ = arg max
Y

F (Y,X) (24)

3.2. Model Training

To learn the optimal (approximate) posterior distribu-
tions over the model parameters, i.e., W , vπ, v$, and
α = {{α$i }i, απ}, as well as over the latent variables
of state allocation S = {st}Tt=1, we resort to the MED
framework. For this purpose, we need to introduce an
appropriate loss function for the prediction rule (24)
of our model. Following the discussions of Section 2.2,
we introduce a hinge-loss function, yielding

R(q(S,W )) , max
Y ∗

[ T∑
t=1

δt(y
∗
t ) + F (Y ∗, X)− F (Y,X)

]
(25)

where
∑T
t=1 δt(y

∗
t ) is equivalent to the Hamming dis-

tance between the estimated labels sequence Y ∗ and
the correct one Y . Then, based on the principles of
the MED framework, our learning problem reduces to
solving the following entropic regularized risk mini-
mization problem

min
q(Ψ)

KL (q(Ψ)||p(Ψ))) + γ R(q(S,W )) (26)
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where we denote Ψ , {W,S,v$,vπ,α}.

To solve (26), we further assume that the sought (ap-
proximate) posterior factorizes similar to the consid-
ered prior p(Ψ): q(Ψ) = q(W )q(S)q(v$)q(vπ)q(α).
Under this assumption, usually referred to as the
mean-field approximation (Chandler, 1987; Winn &
Bishop, 2005), our learning problem eventually be-
comes

min
q(W ),q(S),q(v$),q(vπ),q(α)

{
KL (q(W )||p(W ))

+ 〈logq(S)〉q(S) + KL(q(α)||p(α))

+ 〈logq(vπ)〉q(vπ) + 〈logq(v$)〉q(v$)

−〈logp(S,v$,vπ|α)〉q(S),q(vπ),q(v$),q(α)

+ γ R(q(S,W ))

}
(27)

Apparently, under the infinite dimensional setting of
our model, optimization of the risk function (27) is in-
tractable, as it entails an infinite number of optimized
factors. To resolve this issue, and render our model
training algorithm computationally feasible, we trun-
cate the imposed stick-breaking priors (Blei & Jordan,
2006): we fix a value C and let the posteriors over the
v$ij and the vπi have the property q(v$iC = 1) = 1, ∀i,
and q(vπC = 1) = 1. In other words, we set πc(vπ) and
$ic(v

$) equal to zero for c > C. Note that, under this
setting, our iM2EDM model still involves a full stick-
breaking prior; truncation is not imposed on the model
itself, but only on its (approximate) posterior distri-
bution to allow for a tractable inference procedure.
Hence, the truncation level C is a free parameter, and
not part of the prior model specification.

Posteriors over the model parameters. Solving
problem (27), the posterior over wc yields

q(wc) = N (wc|µc, I) (28)

where

µc =
∑
t

q(st = c)
∑
y

λyt [f(yt,xt)− f(y,xt)] (29)

where the multipliers λyt are computed by resolving
the dual quadratic programming problem

max
λ
−1

2

∑
c

µ′cµc +
∑
t

∑
y

λyt δt(y)

s.t. 0 ≤
∑
y

λyt ≤ γ, ∀t
(30)

Similar, regarding the stick-breaking variables, we
have

q(v$ij ) = Beta(β̃$ij , β̂
$
ij ) (31)

where

β̃$ij = 1 +

T∑
t=2

q(st = j|st−1 = i) (32)

β̂$ij = 〈α$i 〉q(α$i ) +

C∑
%=j+1

T∑
t=2

q(st = %|st−1 = i) (33)

and
q(vπi ) = Beta(β̃πi , β̂

π
i ) (34)

where
β̃πi = 1 + q(s1 = i) (35)

β̂πi = 〈απ〉q(απ) +

C∑
%=i+1

q(s1 = %) (36)

Finally, the innovation parameters yield

q(α$i ) = G(α$i |η̃$i , η̂$i ) (37)

where
η̃$i = η1 + C − 1 (38)

η̂$i = η2 −
C−1∑
j=1

[
ψ(β̂$ij )− ψ(β̃$ij + β̂$ij )

]
(39)

and
q(απ) = G(απ|ε̃π, ε̂π) (40)

where
ε̃π = ε1 + C − 1 (41)

ε̂π = ε2 −
C−1∑
i=1

[
ψ(β̂πi )− ψ(β̃πi + β̂πi )

]
(42)

Posteriors over the latent variables. Minimizing
the criterion (27) w.r.t. q(S), we obtain

q(S) =
1

Q
π∗s1

T−1∏
t=1

$∗stst+1

T∏
t=1

p∗(yt,xt|st) (43)

where
π∗c , exp

[
〈logπc(v

π)〉q(vπ)

]
(44)

$∗stst+1
, exp

[〈
log$stst+1

(v$)
〉
q(v$)

]
(45)

p∗(yt,xt|st = c) , exp
(∑

y

λytµ
′
c [f(yt,xt)− f(y,xt)]

)
(46)

and Q is a normalizing constant. From (46), it follows
that the expression of q(S) for our model is analogous
to the expression of q(S) pertaining to a first-order hid-
den Markov model (HMM) (McLachlan & Peel, 2000),
with initial state prior probabilities equal to π∗c , state-
transition priors equal to $∗ij , and state-conditional
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likelihoods equal to p∗(yt,xt|st = c). Therefore, com-
putation of both the state-transition posteriors q(st =
j|st−1 = i), ∀t > 1, and ∀i, j, as well as the state
assignment posteriors q(st = c),∀c, t, of the iM2EDM
can be performed by considering the analogous (proxy)
HMM described previously, and running the forward-
backward algorithm (Rabiner, 1989) for that HMM.
This way, we obtain the sought latent variable poste-
riors for our model in an elegant and computationally
efficient manner.

3.3. Prediction Generation

Given a trained iM2EDM, when a new test sequence
X = {xt}Tt=1 is provided, the prediction task consists
in computing the optimal corresponding class labels
sequence Y = {yt}Tt=1, by application of the prediction
rule (24).

For this to happen, we need to compute the initial
state posteriors q(s1 = i) and the state-transition pos-
teriors q(st = j|st−1 = i) for the test sequence X ′.
This can be conducted in a fashion similar to the MED
training algorithm of our model: specifically, to obtain
the sought posteriors, we consider the regularized risk
minimization problem

min
q(S)

KL (q(S)||p(S))) + γ R(q(S,W )) (47)

which is clearly analogous to the approach we used for
model training, and yields exactly the same posterior
expressions for q(S) as those obtained in Section 3.2.2.

However, a careful inspection of Eqs. (43) and (46)
shows that computation of these posteriors, q(S), re-
quires knowledge of the class labels Y , which are
the unknown sought quantities of our prediction al-
gorithm. Therefore, application of the prediction rule
(24) of the iM2EDM yields a computationally cumber-
some dynamic programing optimization procedure.

To ameliorate these drawbacks, we devise an alter-
native approximate algorithm for prediction gener-
ation under the proposed iM2EDM method. Our
approximation, inspired by the mean-field principle
(Winn & Bishop, 2005; Chandler, 1987), and the point-
pseudo-likelihood technique of Qian & Titterington
(1991a;b), is an iterative algorithm comprising the fol-
lowing steps:

1. Initially, an approximate estimate of Y is ob-
tained by resolving (24), with the posteriors q(S)
in (23) replaced with the corresponding posterior
expectations of the prior configurations πc(vπ)
and $ij(v

$). In other words, we optimize (24)

by approximating F (Y,X) with

F (Y,X) ≈
∞∑
i=1

〈πi(vπ)〉q(vπ) 〈w
′
i〉q(wi) f(y1,x1)

+

∞∑
i=1

∞∑
j=1

T∑
t=2

〈$ij(v
$)〉q(v$)

〈
w′j
〉
q(wj)

f(yt,xt)

(48)
Note that (48) yields a greedy optimization pro-
cedure.

2. Using the so-obtained estimates Y , we compute
the posteriors q(S) using the proxy HMM de-
scribed previously.

3. We run the optimization process (24), with the
F (Y,X) given now by the exact expression (23),
and considering the posteriors q(S) as known
quantities (obtained in the previous step). This
way, the q(S) are removed from the optimization
of (23); hence, the initial dynamic programming
problem reduces to a simple greedy optimization,
similar to the one induced by (48).

4. We repeat steps 2 and 3 until convergence.

3.4. Relation to existing approaches

Our method follows the MED paradigm, which com-
bines the ideas of large-margin classification and
Bayesian inference techniques. It also exploits the mer-
its of Bayesian nonparametrics, to allow for automatic
model order determination. In that sense, our ap-
proach is related to the iSVM approach (Zhu et al.,
2011); iSVM is an infinite mixture model of large-
margin (SVM) classifiers. The inference algorithm of
our model shares several common steps with the vari-
ational algorithm of iSVM. On the other hand, iSVM
employs a likelihood model, while the proposed model
strictly follows the MED framework, without a data
likelihood model. In this latter aspect, our method
shares similar concept with the nonparametric MED
model for matrix factorization of Xu et al. (2012).

4. Experiments

In the following, we experimentally evaluate our ap-
proach using real-world datasets. We compare the per-
formance of our approach to large-margin HMMs (LM)
(Sha & Saul, 2007), moderate-order CRFs of 5th order
(5-CRF) (Ye et al., 2009), the hidden Markov support
vector machine (HMSVM) approach of Altun et al.
(2004), and the iSVM approach of Zhu et al. (2011)
with RBF kernels. Our source codes were developed
in MATLAB R2012a.
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Table 1. Sports Video Mining: Recognition rates (%).
Class 5-CRF iSVM LM HMSVM iM2EDM

long play 71.46 64.19 70.62 72.65 74.58
short play 74.63 61.88 70.28 73.05 77.71

kick 73.88 66.36 75.77 76.44 79.55
field goal play 74.35 69.12 71.39 73.17 77.49
central-view 73.12 68.35 71.68 73.40 78.44
left-view 73.83 66.40 71.24 70.09 76.09
right-view 74.09 64.84 70.43 72.43 77.62

end-zone-view 75.55 70.01 75.06 74.66 79.03

Figure 1. Sports Video Mining: Few example frames.

4.1. Sports Video Mining

In this experiment, we consider the problem of sports
video mining in football videos. We follow the exper-
imental setup of (Ding & Fan, 2009). We detect four
camera view classes, namely central, left, right, and
end-zone, and four play types, namely long play, short
play, kick, and field goal play.

Feature Extraction. To capture camera view infor-
mation, we use the color distribution and the yard line
angle (Dingand & Fan, 2007). For this purpose, we es-
timate the spatial color distribution, and perform edge
detection using the Canny algorithm, which we com-
bine with the Hough transform to detect the yard lines
and to compute their angles. Regarding play type in-
formation extraction, we utilize for this purpose cam-
era motion information (panning and tilting), as this
information is sufficient to characterize different play
types: strong panning is usually associated with a long
play, while a weak panning effect is usually associated
with short plays (Ding & Fan, 2009). To compute
the two kinds of camera motion, we choose the optical
flow-based method of Srinivasan et al. (1997).

Experimental Setup and Results. We evalu-
ate the efficacy of the proposed approach by using
a database comprising twelve 30-min NFL American
football games. The videos are of 720 × 576 resolution,
and were preprocessed so as to remove commercials
and replays. As such, from each video, a series of play
shots was obtained, with each video being typically
segmented into 138–189 shots, and each shot compris-
ing 600–900 frames. We provide few example frames
of the used videos in Fig. 1.

Table 2. Depth image sequence segmentation experiments:
Error rates obtained by the evaluated methods.

Method Mean Error Rate (%) p-value
5-CRF 27.13 10−9

LM 27.56 10−9

HMSVM 26.80 10−8

iSVM 30.41 10−9

iM2EDM 23.16

From this raw data, we extract the feature descriptors
presented previously, and use them to train and eval-
uate the considered models. We use cross-validation
in the following fashion: in each cycle, we use 75% of
the available shots for training, and the rest for testing.
We run the same experiment 10 times, using each time
different splits of the available video shots into train-
ing and test sets, to account for the effect of random
selection of samples.

In Table 1, we provide the obtained performances of
the evaluated algorithms (average results per detected
class over the conducted 10 repetitions of our experi-
ments). As we observe, our method works clearly bet-
ter than all the considered approaches. Further, ex-
ploiting the availability of multiple performance mea-
surements for the evaluated algorithms (over 10 exper-
iment repetitions), we evaluate the statistical signifi-
cance of the obtained average performance differences
using the Student’s-t test. Generated p-values of the
Student’s-t test below 0.05 strongly indicate that the
average performance statistics of two compared meth-
ods provide a very good assessment of their actual
performance difference. Running the Student’s-t test,
we obtained p-values ranging from 10−4 in the case of
the 5-CRF method (compared against our method) to
10−9 in the case of the iSVM; thus, the Student’s-t
test found that the obtained performance differences
between our method and its competitors are strongly
statistically significant in all cases.
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Figure 2. Depth image sequence segmentation experiments: Some characteristic frames.

4.2. Activity recognition in depth image
sequences

In this experiment, we evaluate our method in seg-
menting and classifying depth image sequences, which
depict humans performing actions in an assistive liv-
ing environment. More specifically, our experiments
are based on the dataset described in Ni et al. (2011).
This dataset includes several actions from which we
have selected the following: (1) get up from bed, (2) go
to bed, (3) sit down, (4) eat meal, and (5) drink water.
Some example frames from the considered dataset are
depicted in Fig. 2. We seek to recognize these actions
(1)-(5), using as our observable input the sequence of
vectors x extracted as described next.

From this dataset, we extract features similar to Ni
et al. (2011), by computing motion history images
along the depth change directions. To calculate depth
change, we use depth maps computed by a KinectTM

device. Kinect depth maps, however, contain a sig-
nificant amount of noise. After frame differencing
and thresholding, we noticed that motion was encoded
even in areas with only still objects. To tackle this
problem, we use median filtering. In the temporal do-
main, each pixel value is replaced by the minimum
of its neighbors. Eventually, from these motion his-
tory images, we extract the first 12 complex Zernike
coefficients (both norm and angle) (Kosmopoulos &
Chatzis, 2010), and use them as our feature vectors.

In our experiments, each action is contained in 35
video sequences. Each one of these sequences, de-
rived from the dataset of Ni et al. (2011), contains
at least two of the considered actions (sequentially ap-
pearing). This setting enables us to assess the capacity
of the evaluated algorithms to recognize these actions
in real-world activities (in an assistive living environ-
ment). We subsample these video sequences by a fac-
tor of 2, similar to Ni et al. (2011). We use cross-
validation in the following fashion: in each cycle, we
use 15 randomly selected video sequences to perform
training, and keep the rest 20 for testing. We run the
same experiment 50 times to account for the effect of
random selection of samples. Recognition consists in
assigning each feature vector to a corresponding action
class. We provide the obtained average performance
results (mean obtained error) over the conducted ex-

periment repetitions in Table 2, where we also illus-
trate the obtained p-values of the Student’s-t test.
As we observe, our method obtains competitive re-
sults, yielding statistically-significant performance dif-
ferences over the considered alternative methods.

4.3. Discussion on Computational Complexity

The computational costs of both the training and pre-
diction algorithms of our model are comparable to
those of iSVM. This is due to the very efficient na-
ture of the forward-backward algorithm used in model
training, and the approximation of the original pre-
dictive functional of our model by treating q(S) as a
known, iteratively updated quantity. Note also that, in
all our experiments, the iterative prediction algorithm
of our model converged in less than 10 repetitions.

5. Conclusions and Future Work

In this paper, we presented a Markov switching model
comprising an infinite set of component large-margin
classifiers for sequential data. Our model is capa-
ble of capturing subtle temporal patterns underlying
sequential data observations; further, by leveraging
the strengths of Bayesian nonparametrics, specifically
stick-breaking priors, it allows for data-driven determi-
nation of the appropriate number of component large-
margin classifiers. Model training and inference was
made possible by utilizing the MED framework in the
context of an efficient truncated representation of the
stick-breaking process. We illustrated the efficacy of
our approach using two real-wold datasets, and com-
paring its performance to state-of-the-art alternatives.

Future goals in this line of research comprise imposing
kernel functions on the input observations x, instead
of the linear construction of the component-wise dis-
criminant functions F (y,x|s), implied by the way we
have defined the auxiliary functions f(y,x) in Section
3.1. This development will allow for our method to
handle cases where the nature of the modeled sequen-
tial observations is not vectorial (feature vectors), but
graphs, trees, or other types of structured input.

We shall provide demos of our method at:
http://www.cut.ac.cy/eecei/staff//sotirios.chatzis.

http://www.cut.ac.cy/eecei/staff//sotirios.chatzis
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