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Abstract

In this paper we introduce Maximum Vari-
ance Correction (MVC), which finds large-
scale feasible solutions to Maximum Variance
Unfolding (MVU) by post-processing embed-
dings from any manifold learning algorithm.
It increases the scale of MVU embeddings
by several orders of magnitude and is nat-
urally parallel. This unprecedented scala-
bility opens up new avenues of applications
for manifold learning, in particular the use
of MVU embeddings as effective heuristics
to speed-up A* search. We demonstrate un-
matched reductions in search time across sev-
eral non-trivial A* benchmark search prob-
lems and bridge the gap between the man-
ifold learning literature and one of its most
promising high impact applications.

1. Introduction

Manifold learning has become a strong sub-field of
machine learning with many mature algorithms (Saul
et al., 2006; Lee & Verleysen, 2007), often accompa-
nied by large scale extensions (Platt, 2004; Silva &
Tenenbaum, 2002; Weinberger et al., 2007) and thor-
ough theoretical analysis (Donoho & Grimes, 2002; Pa-
protny et al., 2012). Until recently, this success story
was not matched by comparably strong applications.
Rayner et al. (2011) propose to use the Euclidean em-
bedding of a search space graph as a heuristic for A*
search (Russell & Norvig, 2003). The graph-distance
between two states is approximated by the Euclidean
distance between their respective embedded points.

Exact A* search with informed heuristics is an ap-
plication of great importance in many areas of real
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life. For example, GPS navigation systems need to
find the shortest path between two locations efficiently
and repeatedly (e.g. each time a new traffic update has
been received, or when the driver makes a wrong turn).
As the processor capabilities of these devices and the
patience of the users are both limited, the quality of
the search heuristic is of great importance. This im-
portance only increases as increasingly low powered
embedded devices (e.g. smart-phones) are equipped
with similar capabilities. Other applications include
massive online multiplayer games, where agents need
to identify the shortest path along a map which can
change dynamically through actions by other users.

For an embedding to be a A* heuristic, it must sat-
isfy two properties: 1. admissible (distances are never
overestimated), 2. consistent (a triangular inequality
like property is preserved). To be maximally effec-
tive, a heuristic should have a minimal gap between
its estimate and the true distance—i.e. all pair-wise
distances should be maximized under the admissibil-
ity and consistency constraints. In the applications
highlighted by Rayner et al. (2011), a heuristic must
require small space to be broadcasted to the end-
users. The authors show that the constraints of Maxi-
mum Variance Unfolding (MVU) (Weinberger & Saul,
2006)! guarantee admissibility and consistency, while
the objective maximizes distances and reduces space
requirement of heuristics from O(n?) to O(dn). In
other words, the MVU manifold learning algorithm is
a perfect fit to learn Euclidean heuristics for A* search.

Unfortunately, it is fair to say that due to its semi-
definite programming (SDP) formulation (Boyd &
Vandenberghe, 2004), MVU is amongst the least scal-
able manifold learning algorithms and cannot embed
state spaces beyond 4000 states—severally limiting the
usefulness of the proposed heuristic in practice. Al-
though there have been efforts to increase the scala-
bility of MVU (Weinberger et al., 2005; 2007), these

!Throughout this paper we refer to MVU as the formu-
lation with inequality constraints.
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lead to approximate solutions which no longer guaran-
tee admissibility or consistency of heuristics.

In this paper we propose a novel algorithm, Max-
imum Variance Correction (MVC), which improves
the scalability of MVU by several orders of magni-
tude. In a nutshell, MVC post-processes embeddings
from any manifold learning algorithm, to strictly sat-
isfy the MVU constraints by rearranging embedded
points within local patches. Hereby MVC combines
the strict finite-size guarantees of MVU with the large-
scale capabilities of alternative algorithms. Further, it
bridges the gap between the rich literature on manifold
learning and what we consider its most promising and
high-impact application to date—the use of Euclidean
state-space embeddings as A* heuristics.

Our contributions are summarized as follows: 1) We
introduce MVC, a fully parallelizable algorithm that
scales up and speeds up MVU by several orders of
magnitudes. 2) We provide a formal proof that any so-
lution of our relaxed problem formulation still satisfies
all MVU constraints. 3) We demonstrate on several A*
search benchmark problems that the resulting heuris-
tics lead to impressive reductions in search-time—even
beating the competitive differential heuristic (Ng &
Zhang, 2002) by a large factor on all data sets.

2. Background and related work

There have been several recent publications that in-
crease the scalability of manifold learning algorithms.
Vasiloglou et al. (2008); Weinberger et al. (2007);
Weinberger & Saul (2006) directly scale up MVU by
relaxing its constraints and restricting the solution to
the space spanned by landmark points or the eigenvec-
tors of the graph laplacian matrix. Silva & Tenenbaum
(2002); Talwalkar et al. (2008) scale up Isomap (Tenen-
baum et al., 2000b) with Nystrém approximations.
Our work is complementary as we refine these embed-
dings to meet the MVU constraints while maximizing
the variance of the embedding.

Shaw & Jebara (2009) introduce structure preserv-
ing embedding, which learns embeddings that strictly
preserve graph properties (such as nearest neighbors).
Zhang et al. (2009) also focus on local patches of man-
ifolds, however preserves discriminative ability rather
than the finite-size guarantees of MVU.

From a technical stand-point, our paper is probably
most similar to Biswas & Ye (2004) which uses a semi-
definite program for sensor network embedding. Due
to the nature of their application, they deal with dif-
ferent constraints and objectives.

2.1. Graph Embeddings

We briefly review MVU and Isomap as algorithms for
proximity graph embedding. For a more detailed sur-
vey we recommend (Saul et al., 2006). Let G = (V, E)
denote the graph with undirected edges E and nodes
V, with |V| = n. Edges (i,j) € E are weighted by
some d;; >0. Let d;; denote the shortest path distance
from node 7 to j. Manifold learning algorithms embed
the nodes in V into a d-dimensional Euclidean space,
X1, .., X, € RY, such that [|x; — x|z ~ &

Maximum Variance Unfolding formulates this
task as an optimization problem that maximizes the
variance of the embedding, while enforcing strict con-
straints on the local edge distances:

n
2
2~
i=1

[Ixi = %2 < di
n

S

i=1

The last constraint centers the embedding at the ori-
gin, to remove translation as a degree of freedom in
the optimization. Because the data is centered, the
objective is identical to maximizing the variance, as
>ix? =05 > llxi — x;||?. Although (1) is non-
convex, Weinberger & Saul (2006) show that with a
rank relaxation, x € R™, this problem can be rephrased
as a convex semi-definite program by optimizing over
the inner-product matrix K, with k;; = x; X;:

maximize
X1,...,Xn ERE

subject to V(i,j) e B (1)

max}i{mize trace(K)

subject to ki — 2k7] + kjj < dzzj V(l,j) ek
> kij=0 )
i,
K > 0.

The final constraint K > 0 ensures positive semi-
definiteness and guarantees that K can be de-
composed into vectors xi,...,x, with a straight-
forward eigenvector decomposition. To ensure strictly
r—dimensional output, the final embedding is pro-
jected into RY with principal component analysis
(PCA). (This is identical to composing the vectors x;
out of the r leading eigenvectors of K.) The time-
complexity of MVU is O(n? +¢?®) (where c is the num-
ber of constraints in the optimization problem), which
makes it prohibitive for larger data sets.

Graph Laplacian MVU (gl-MVU), Weinberger &
Saul (2006); Wu et al. (2009), is an extension of MVU
that reduces the size of K by matrix factorization,
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K = Q'LQ. Here, Q are the bottom eigenvectors
of the Graph Laplacian, also referred to as Laplacian
Eigenmaps (Belkin & Niyogi, 2002). All local dis-
tance constraints are removed and instead added as a
penalty term into the objective. The resulting algo-
rithm scales to larger data sets but makes no exact
guarantees about the distance preservations.

Isomap, Tenenbaum et al. (2000a), preserves the
global structure of the graph by directly preserving
the graph distances between all pair-wise nodes:

min Z((xz —x;)% — (5%.)2. (3)

X1,e. X ERYD
2,7

Tenenbaum et al. (2000a) show that (3) can be approx-
imated as an eigenvector decomposition by applying
multi-dimensional scaling (MDS) (Kruskal, 1964) on
the shortest path distances (i, 7). The landmark ex-
tension (Silva & Tenenbaum, 2002) leads to significant
speed-ups with Nystrom approximations of the graph-
distance matrix. For simplicity, we refer to it also as
“Isomap” throughout this paper.

2.2. Euclidean Heuristic

The A* search algorithm finds the shortest path be-
tween two nodes in a graph. In the worst case,
the complexity of the algorithm is exponential in the
length of the shortest path, but the search time can be
drastically reduced with a good heuristic, which esti-
mates the graph distance between two nodes. Rayner
et al. (2011) suggest to use the distance h(i,j) =
lx; — x;|l2 of the MVU graph embedding as such a
heuristic, which they refer to as Fuclidean Heuristic.
A* with this heuristic provably converges to the exact
solution, as the heuristic is admissible and consistent.
More precisely, for all nodes 1, j, k the following holds:

Admissibility:

Consistency:

Ix; — xkll2 < dik (4)
[xi = xjll2 < dir + [lxx —x5ll2 (5)

The proof is straight-forward. As the shortest-path
between nodes 7 and j in the embedding consists of
edges which are all underestimated, it must be under-
estimated itself and so is [|x; — x;||2 (which implies
admissibility). Consistency follows from the triangu-
lar inequality in combination with(4).

The closer the gap in the admissibility inequality (4),
the better is the search heuristic. The perfect heuristic
would be the actual shortest path, h(i,j) = d;; (with
which A* could find the exact solution in linear time
with respect to the length of the shortest path). The
MVU objective maximizes all pairwise distances, and
therefore minimizes exactly the gap in (4). Conse-
quently, MVU is the perfect optimization problem to

find a Euclidean Heuristic—however in its original for-
mulation it can only scale to n & 4000. In the following
we will scale up MVU to much larger data sets.

3. Maximum Variance Correction

In this section, we introduce our MVC algorithm. In-
tuitively, MVC combines the scalability of gl-MVU and
Isomap with the strong guarantees of MVU: It uses
the former to obtain an initial embedding of the data
and then post-processes it into a local optimum of the
MVU optimization. The post-processing only involves
re-optimizations of local patches, which is fast and can
be decomposed into independent sub-problems.

Initialization. = We obtain an initial embedding
X1, ..., Xy, of the graph with any (large-scale) manifold
learning algorithm (e.g. Isomap, gl-MVU or Eigen-
maps). The resulting embedding is typically not a
feasible solution to the exact MVU problem, because
it violates many distance inequality constraints in (1).
To make it feasible, we first center it and then rescale
the entire embedding such that all inequalities hold
with at least one equality,

1 dij
= Ai_i Ai7 ith — i ij 6
x; = a(X n;_lx) with o= min (6)

(i,§)EE ||)A{l — )A(]H '
After the translation and rescaling in (6) we obtain a
solution in the feasible set of MVU embeddings, and
therefore also an admissible and consistent Euclidean
Heuristic. In practice, this heuristic is of very limited
use because it has a very large admissibility gap (4).
In the following sections we explain how to transform
the embedding to maximize the MVU objective, while
remaining inside the MVU feasible region.

3.1. Local patching

The (convex) MVU optimization is an SDP, which in
their general formulation scale cubic in the input size
n. To scale-up the optimization we therefore utilize
a specific property of the MVU constraints: All con-
straints are strictly local as they only involve directly
connected nodes. This allows us to divide up the
graph embedding into local patches and re-optimize
the MVU optimization on each patch individually.
This approach has two clear advantages: the local
patches can be made small enough to be re-optimized
very quickly and the individual patch optimizations
are inherently parallelizable—leading to even further
speed-ups on modern multi-core computers. A chal-
lenge is to ensure that the local optimizations do not
interfere with each other and remain globally feasible.

Graph partitioning. There are several ways to di-



Maximum Variance Correction

vide the graph G = (V, E) into r mutually exclusive
connected components. We use repeated breadth first
search (BFS) (Russell & Norvig, 2003) because of its
simplicity, fast speed and guarantee that all partitions
are connected components. Specifically, we pick a node
¢ uniformly at random and apply BFS to identify the
m closest nodes according to graph distance, that are
not already assigned to patches. These nodes form a
new patch G, =(V,,, E,). The partitioning is continued
until all nodes in V' are assigned to exactly one parti-
tion, resulting in approximately r = [n/m] patches.?
The final partitioning satisfies V = V3 U--- UV, and
Vp N Vy={} for all p, q.

We distinguish between two types of nodes within a
partition V,, (illustrated in figure 1). A node i€V, is
an inner point (blue circle) of V), if all edges (,j) € E
connect it to other nodes j € V),; ¢ is an anchor point
(red circle) of V}, if there exists an edge (¢,7) € E to
some j ¢ V. Let V7 denote the set of all inner nodes
and V' the set of all anchor points in V,. By definition,
these sets are mutually exclusive and together contain
all points, i.e. VP NV ={} and V, = VUV

Similarly, all edges in E can be divided into three mu-
tual exclusive subsets (see figure 1): edges between
inner points (E**, blue); between anchor points (E%*,
red); between anchor and inner points (E%*, purple).

Optimization. We first re-state the non-convex
MVU optimization (1), slightly re-formulated to in-
corporate the graph partitioning. As each input is
either an anchor point or an inner point of its respec-
tive patch, we can denote the set of all inner points
as V¥ = Up V' and the set of all anchor points as
Ve = Up V. If we re-order the summations and con-
straints by these sets, we can re-phrase the non-convex
MVU optimization (1) as

. . 2 2
ma)i?’gilze Z X; + Z aj,
i€Ve keva
subject to  ||x; — x,||2 < dij V(i,j) € BT

l|xi —ag|l2 < dix V(i,k) € E*" (7)

lla; —ajll2 < dij Y(i,5) € E**
Yot Y x-o

a;eVa x; €V

For clarity, we denote all anchor points as a;’s and
inner points as x;’s and with a slight abuse of notation
write a; € V4.

Optimization by patches. The optimization (7) is

identical to the non-convex MVU formulation (1) and

2The exact number of patches and number of nodes per
patch vary slightly, depending on the connectivity of the
graph, but all |V,| < m.

@ inner point
@ anchor point
\ — e

Figure 1. Drawing of a patch with inner and anchor points.

just as hard to solve. To reduce the computational
complexity we make two changes: we remove the cen-
tering constraint and fix the anchor points in place.
The removal of the centering constraint is a harm-
less relaxation because the fixed anchor points already
remove translation as a degree of freedom and fixate
the solution very close to zero-mean. (The objective
changes slightly, but in practice this has minimal im-
pact on the solution.) The fixing of the anchor points
allows us to break down the optimization into r inde-
pendent sub-problems. This can be seen from the fact
that by definition all constraints in E** never cross
patch boundaries, and constraints in £* only connect
points within a patch with fixed points. Constraints
over edges in F* can be dropped entirely, as edges
between anchor points are necessarily fixed also. We
obtain r independent optimization problems of the fol-
lowing type:

. 2
maximize X;
x, €V iez\;p ¢
. . 8
subject to  [|x; — x;l|2 < dij V(i,j) € E," ()

|[xi —agl|l2 < dir. V(i,k) € EJ*.

The solutions of the r sub-problems (8) can be com-
bined and centered, to form a feasible solution to (7).

Convex patch re-optimization. Similar to the
non-convex MVU formulation (1), optimization (8) is
also non-convex and non-trivial to solve. However,
with a change of variables and a slight relaxation we
can transform it into a semi-definite program. Let
n, = |V,|. Given a patch G,, we define a matrix
X = [x1,...,%,,] € R¥"™, where each column cor-
responds to one embedded input of V,’—the variables

we want to optimize. Further, let us define the matrix
K¢ R(d+n,,)><(d+np) as:

I X
K:(XT H) where H=XTX. (9)

The vector e; ; € R"™ is all-zero except the i*" element
is 1 and the j*" element is —1. The vector e; is all-zero

except the i*" element is —1. With this notation, we
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obtain
(05e;;) TK(0;e55) = [Ix;i —x;]13
(arie;) K(ag;e;) = [x; — ax)3,

(10)

where (0; e;;) € R(4+7») denotes the vector e;; padded
with zeros on top and (ay;e;) € R(@"») the concate-
nation of a; and e;.

Through (10), all constraints in (8) can be re-
formulated as a linear form of K (after squaring). The
Np 2

objective reduces to trace(H) = ., x7. The result-
ing optimization problem becomes:

max trace(H)
X, H

s.t. (O;eij)TK(O;eij) é dfj
(an;e;) ' K(ay;e;) < d2,
H=X"X

- (h %)
(11)

The constraint H = XT"X fixes the rank of H and is
not convex. To mitigate, we relax it into H > XTX.
In the following section we prove that this weaker
constraint is sufficient to obtain MVU-feasible solu-
tions. The Schur Complement Lemma (Boyd & Van-
denberghe, 2004) states that H = X' X if and only if
K > 0, which we enforce as an additional constraint:

V(i,j) € B2
V(i k) € Bo*

max trace(H)
X,H

(ar;e) K(ay;e;) < d2, V(i k) € B (12)

I X

The optimization (12) is convex and scales O((n, +
d)®). Tt monotonically increases the objective in (7)
and converges to a fixed point. For a maximum
patch-size m, i.e. n, <m for all p, each iteration of
MVC scales linearly with respect to n, with complexity
O([21(m+d)?). As the choice of m is independent of
n, it can be fixed to a medium-sized value e.g. m =500
for maximum efficiency. The 7~ [ -] sub-problems are
completely independent and can be solved in parallel,
leading to almost perfect parallel speed-up on comput-
ing clusters. Algorithm 1 states MVC in pseudo-code.

3.2. MVU feasibility

We prove that the MVC algorithm returns a feasible
MVU solution and consequently gives rise to a well
defined Euclidean Heuristic. First we need to show

Algorithm 1 MVC (V.,E)

: compute initial solution X with gl-MVU or Isomap
center and rescale X according to (6)
repeat
identify r random sub-graphs (Vi, E1), ..., (Vs E;)
parfor p=1tor do
solve (12) for (V,, E,) to obtain X,
end parfor
concatenate all X, into X and center.
until variance of embedding X has converged.
: return X

_

that the relaxation from H = XX to H = XX
does not cause any constraint violations.

Lemma 1. The solution X of (12) satisfies all con-
straints in (8).

Proof. We first focus on constraints on (i,j) € Ej*.
The first constraint in (12) guarantees

H;; — 2H;; + H;; < dj;. (13)

The last constraint of (12) and the Schur Complement
Lemma enforce that H— XTX > 0. Thus,

e;;(H - XTX)eij Z 0

& e;(XTX)e;; < e/ He; (14)
& xt x4 < Hy - 2H, 1+ Hy,
& x-x3 <Hy-2H, +Hy  (15)

The first result follows from the combination of (13)
and (15). Concerning constraints (i, ) € E;*, the sec-
ond constraint in (12) guarantees that

ai — 2&;)(2' + Hii < d?k: (16)

With a similar reasoning as for (14) we obtain
e/ (XTX)e; < e/ He; and therefore x? < H;;. Com-
bining this inequality with (16) leads to the result:

llagx — xZ||§ < ai —2a;x; + Hy; < dfk. [ |

Theorem 1. The embedding obtained with the MVC
Algorithm 1 is in the feasible set of (1).

Proof. We apply an inductive argument. The initial
solution after centering and re-scaling according to (6)
is MVU feasible by construction. By Lemma 1, the
solution of (12) for each patch satisfies all constraints
in £7% and Ej® in (8). As each distance constraint
in (7) is associated with exactly one patch, all its con-
straints in E** and E°* are satisfied. Constraints in
E% are fixed and satisfied by the induction hypoth-
esis. Centering X satisfies the last constraint in (7)
and leaves all distance constraints unaffected. As (7)
is equivalent to (1), we obtain an MVU feasible solu-
tion at the end of each iteration in Algorithm 1, which
concludes the proof. B
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Isomap: var=5456

MVC: iter=1, var=8994

MVC: iter=2, var=10274

MVC: iter=4, var=11046
>0.20

0.15
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Figure 2. Visualization of several MVC iterations on the 5-puzzle data set (m = 30). The edges are colored proportional
to their relative admissibility gap &, as defined in (17). The top left image shows the (rescaled) Isomap initialization. The
successive graphs show that MVC decreases the edge admissibility gaps and increases the variance with each iteration
(indicated in the title of each subplot) until it converges to the same variance as the MVU solution (bottom right).

4. Experimental Result

We evaluate our algorithm on a real world short-
est path application data set and on two well-known
benchmark AI problems.

Game Maps is a real world map dataset with 3,155
states from the international success multi-player game
Biowares Dragon Age: Origins™™ .3 A game map is a
maze that consists of empty spaces (states) and ob-
stacles. Cardinal moves take unit costs while diagonal
moves cost 1.5. The search problem is to find an op-
timal path between a given start and goal state, while
avoiding all obstacles. Although not large-scale, this
data set is a great example for an application where
the search heuristic is of extraordinary importance.
Speedy solvers are essential to reduce upkeep costs
and to ensure a positive user experience. In the game,
many player and non-player characters interact and
search problems have to be solved frequently as agents
move. The shortest path solutions cannot be cached
as the map changes dynamically with player actions.

M-Puzzle Problem (Jones, 2008) is a NP-hard slid-
ing puzzle, often used as a benchmark problem for
search algorithms/heuristics. It consists of a frame of
M square tiles and one tile missing. All tiles are num-
bered and a state constitutes any order from which a
path to the unique state with sorted (increasing) tiles
exists. An action is to move a cardinal neighbor tile

3http://en.wikipedia.org/wiki/Dragon_Age:
_Origins

of the empty space into the empty space. The task is
to find a shortest action sequence from a pre-defined
start to a goal state. We evaluate our algorithm on the
5- (for visualization), 7- and 8-puzzle problem (3 x 2,
4x2 and 3x3 frames), which contain 360, 20160 and
181440 states respectively.

Blocks World (Gupta & Nau, 1992) is a NP-hard
problem with the goal to build several pre-defined
stacks out of a set of numbered blocks. Blocks can
be placed on the top of others or on the ground. Any
block that is currently under another block cannot be
moved. The goal is to find a minimum action sequence
from a start state to a goal state. We evaluate our al-
gorithm on block world problems with 6 blocks (4,051
states) and 7 blocks (37,633 states), respectively.

Problem characteristics. The three types of prob-
lems not only feature different sized state spaces but
also have different state space characteristics. Game
maps has random obstacles that prevents movement
for some state pairs, and thus has an irregular state
space. The puzzle problems have a more regular search
space (which lie on the surface of a sphere, see figure 2)
with stable out-degree for each state. The state space
of the blocksworld problems is also regular (it lies in-
side a sphere); however, the out-degree varies largely
across states. For example, in 7-blocks, the state in
which every block is placed on the ground has 42 edges,
while the state in which all blocks are stacked in a sin-
gle column has only 1 edge. We set d;; =1 for all edges
in blocksworld and M-puzzle problems.
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Table 1. Relative A* search speedup over the differential heuristic (in expanded nodes) and embedding variance (x10°).

game map 6-blocksworld 7-puzzle 7-blocksworld 8-puzzle
Method speedup var speedup var speedup  var | speedup var | speedup var
Diff. Heuristic 1 N/A 1 N/A 1 N/A 1 N/A 1 N/A
Eigenmap 0.32 0.88 0.66 0.058 0.81 3.52 0.61 0.50 0.76 13.47
Isomap 0.50 12.13 0.61 0.046 0.84 3.73 0.65 0.46 0.67 10.62
MVU 1.12 37.27 1.23 0.154 N/A N/A N/A N/A N/A N/A
gl-MVU 0.41 7.54 1.18 0.138 1.14 6.66 1.05 1.20 0.88 17.79
MVC-10 (eigenmap) 0.88 31.31 1.49 0.22 1.41 9.59 1.33 1.88 1.47 43.48
MVC-10 (isomap) 1.09 36.96 1.56 0.22 1.43 9.62 1.25 1.71 1.45 43.08
MVC-10 (gl-mvu) 0.90 32.98 1.96 0.27 1.45 9.82 1.67 2.27 1.52 45.75
MVC (eigenmap) 1.06 35.92 2.08 0.29 1.45 9.86 2.17 2.93 1.54 46.52
MVC (isomap) 1.12 37.22 2.22 0.30 1.47 9.85 2.22 2.95 1.54 46.58
MVC (gl—mvu) 1.11 36.47 2.27 0.30 1.45 9.86 2.22 2.95 1.61 49.06

Experimental setting. Besides MVC, we evaluate
four graph embedding algorithms: MVU (Weinberger
& Saul, 2006), Isomap (Tenenbaum et al., 2000b),
(Laplacian) Eigenmap (Belkin & Niyogi, 2002) and gl-
MVU (Wu et al., 2009). The last three are used as
initializations for MVC. Following Rayner et al. 2011,
the embedding dimension is d = 3 for all experiments.
For gl-MVU, we set the dimension of graph Laplacian
to be 40. For datasets of size greater than 10K, we set
10K landmarks for Isomap. For MV C we use a patch-
size of m =500 throughout (for which problem (12) can
be solved in less than 20s on our lab desktops).

Visualization of MVC iterations (m = 30). Fig-
ure 2 visualizes successive iterations of the d = 3 di-
mensional MVC embedding of the 5—puzzle problem.
All edges are colored proportionally to their relative
admissibility gap,

dij — ||xi — %]

§ij = (17)

[Ixi — x|
The plot in the top left shows the original Isomap ini-
tialization after re-scaling, as defined in (6). The plot
in the bottom right shows the actual MVU embed-
ding from (2)—which can be computed precisely be-
cause of the small problem size. Intermediate plots
show the embeddings after several iterations of MVC.
Two trends can be observed: 1. the admissibility gap
decreases with MVC (all edges are blue in the final
embedding) and 2. the variance Y, x? of the embed-
ding, i.e. the MVU objective, increases monotonically.
The final embedding has the same variance as the ac-
tual MVU embedding. The figure also shows that the
5—puzzle state space lies on a sphere, which is a beau-
tiful example that visualization of states spaces in it-
self can be valuable. For example, the discovery of
specific topological properties might lead to a better
understanding of the state space structure and aid the
development of problem specific heuristics.

Setup. As a baseline heuristic, we compare all
results with a differential heuristic (Ng & Zhang,
2002). The differential heuristic pre-computes the ex-

act distance from all states to a few pivot points in a
(randomly chosen) set S C V. The graph distance
between two states a,b is then approximated with
maxses [0(a, s) — (b, s)| <d(a,b). In our experiments
we set the number of pivots to 3 so that differential
heuristics and embedding heuristics share the same
memory limit. Figure 3 (right) shows the total ex-
panded nodes as a function of the solution length, aver-
aged over 100 start/goal pairs for each solution length.
The figure compares MVC with various initializations,
the differential heuristic and the MVU algorithm on
the 6-blocksworld puzzle. Speedups (reported in Ta-
ble 1) measure the reduction in expanded states during
search, relative to the differential heuristic, averaged
over 100 random (start, goal) pairs across all solution
lengths.

Comprehensive evaluation. Table 1 shows the A*
search performances of Euclidean heuristics obtained
by the MVC initializations, MVC after only 10 iter-
ations (MVC-10) and after convergence (bottom sec-
tion). Table 1 also shows the MVU objective/variance,
Y oxev x2, of each embedding. Several trends can be
observed: 1. MVC performs best when initialized
with gl-MVU-—this is not surprising as gl-MVU has
a similar objective and is likely to lead to better ini-
tializations; 2. all MVC embeddings lead to drastic
speedups over the differential heuristics; 3. the vari-
ance is highly correlated with speedup—supporting
Rayner et al. (2011) that the MVU objective is well
suited to learn Euclidean heuristics; 4. even MVC af-
ter only 10 iterations already outperforms the differen-
tial heuristic on almost all data sets. The consistency
of the speedups and their unusually high factors (up
to 2.22) show great promise for MVC as an embedding
algorithm for Euclidean heuristics.

Exceeding MVU. On the 6-blocksworld data set in
table 1, the variance of MVC actually exceeds that
of MVU. In other words, the MVC algorithm finds
a better solution for (1). This phenomenon can be
explained by the fact that the convex MVU prob-
lem (2) is rank-relaxed and the final embedding is ob-
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Figure 3. (Left) the embedding variance of 6-blocksworld plotted over 30 MVC iterations. The variance increases monoton-
ically and even outperforms the actual MVU embedding (Weinberger & Saul, 2006) after only a few iterations. (Right)
the number of expanded nodes in A* search as a function of the optimal solution length. All MVC solutions strictly
outperform the Differential Heuristic (diff) and even expand fewer nodes than MVU.

Table 2. Training time for MVU (Weinberger et al., 2005)
and MVC, reported after initialization, the first 10 itera-
tions (MVC-10), and after convergence.

Method game | 6-block | 7-puzz | 7-block | 8-puzz
\% 3,155 | 4,051 | 20,160 | 37,633 | 181,440
MVU 3h 10h N/A N/A N/A
Eigenmap 1s 1s 4s 2m 7m
Isomap 14s 57s 3m 4m 32m
gl-MVU 2m 1m 1m 8m 15m
MVC-10 (eig) 20m 2m 14m 9m 2h
MVC-10 (iso) 15m 3m 20m 11m 3h
MVC-10 (glm) | 21m 3m 18m 14m 3h
MVC (eig) 36m 9m 72m 53m 6h
MVC (iso) 17m 8m 56m 51m 7h
MVC (glm) 34m 5m 26m 33m Th

tained after projection into a d =3 dimensional sub-
space. As MVC performs its optimization directly
in this d-dimensional sub-space, it can find a better
rank-constrained solution. This effect is further illus-
trated in Figure 3 (left), which shows the monotonic
increase of the embedding variance as a function of
the MVC iterations (on 6-blocksworld). After only a
few iterations, all three MVC runs exceeds the MVU
solution. A similar effect is utilized by Shaw & Je-
bara (2007), who optimize MVU in lower dimensional
spaces directly (but cannot scale to large data sets).
Figure 3 (left) also illustrates the importance of ini-
tialization: MVC initialized with Isomap and gl-mvu
converge to the same (possibly globally optimal) solu-
tion, whereas the run with Laplacian Eigenmaps ini-
tialization is stuck in a sub-optimal solution. Our find-
ings are highly encouraging and show that we might
not only approximate MVU effectively on very large
data sets, but actually outperform it if the intrinsic
dimensionality of the data is higher than the desired
embedding dimensionality d.

Embedding time. Table 2 shows the training time
required for the convex MVU algorithm (2), three
MVC initializations (Eigenmap, Isomap, gl-MVU), the

time for 10 MVC iterations and the time until MVC
converges, across all five data sets. Note that for real
deployment, such as GPS systems, MVC only needs
to be run once to obtain the embedding. The online
calculations of Euclidean heuristics are very fast. All
embeddings were computed on an off-the-shelve desk-
top with two 8-core Intel(R) Xeon(R) processors of
2.67 GHz and 128G'B of RAM. Our MVC implemen-
tation is in MATLABT™ and uses CSDP (Borchers,
1999) as the SDP solver. We parallelize each run of
MVC on eight cores. All three initializations require
roughly similar time (although Laplacian Eigenmaps is
the fastest on all data sets), which is only a small part
of the overall optimization. Whereas MVU requires
10 hours for graphs with |V] =4051 (and cannot be
executed on larger problems), we can find a superior
solution to the same problem in 5 minutes and are able
to run MVC on 45x larger problems in only 7 hours.

5. Conclusion

We have presented MVC, an iterative algorithm to
transform graph embeddings into MVU feasible so-
lution. On several small-sized problems where MVU
can finish, we show that MVC gives comparable or
even better solutions than MVU. We apply MVU on
data sets of unprecedented sizes (n = 180,000) and,
because of linear scalability, expect future (parallel)
implementations to scale to graphs with millions of
nodes. By satisfying all MVU constraints, MVC em-
beddings are provably well-defined Euclidean heuris-
tics for A* search and unleash an exciting new area of
applications to all of manifold learning. We hope it
will fuel new research directions in both fields.
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