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Abstract

In this supplementary material, we present the complete details for all the proofs. Also, we provide further numerical
simulations.

1 Introduction

In this material, we provide the proofs for the theorems in the submission, as well as further numerical simulations.

As we have noted in the submission, once the support of regressor β∗ has been identified, the problem of estimating its
non-zero coefficients reduces to one from the classical low-dimensional regime; that is, we need to estimate k values from n
linear observations, where n & k. Therefore, our bounds on the `2 estimation errors (Theorem 5 and part 2 of Theorem 7 in the
main submission) follow from guarantees on support recovery and `2 error bounds for the low-dimensional problem.

The remainder of this material is organized as follows. In Section 2 we state and prove `2 error bounds for the low-
dimensional problem. In Section 3 we prove our guarantees for support recovery in the high-dimensional regimes, and combine
it with the low-dimensional results to obtain `2 error bounds. We also prove the minimax lower-bounds in this section. Section
4 provides additional numerical simulations.

2 The Low-Dimensional Problem

We first consider the low-dimensional version of the problem where β∗ ∈ Rk, with k . n. As noted above, in the high-
dimensional sparse-regression setting, once we know the support of β∗, this is precisely the resulting problem. Recall that our
basic assumptions in the main submission is that X , W and e obey the Sub-Gaussian Design Model, which is restated below:

Definition 1. Sub-Gaussian Design Model: We assumeX ,W and e are sub-Gaussian with parameters ( 1
nΣx,

1
n ), ( 1

nΣw,
1
nσ

2
w)

and ( 1
nσ

2
e ,

1
nσ

2
e), respectively. We assume they are independent of each other.

We note that in this section our results require no assumptions on the independence of the columns ofX , W , or, therefore,
of Z; that is, we assume we operate under the sub-Gaussian design model. When k . n log p, the problem is strongly convex,
and in the clean-covariate setting where we know X exactly and completely, the solution is given by the standard least-square
estimator:

β̂ = (X>X)−1X>y = arg min
β
β>(X>X)β − 2y>Xβ. (1)
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In this setting, well-known results establish, among other measures of closeness to β∗, the following (here and in the sequel
λmin(A) and λmax(A) denote the smallest and largest eigenvalue of the matrix A):

Theorem 2 ([6]). Suppose that (according to the sub-Gaussian design model defined above) X is sub-Gaussian with param-
eters ( 1

nΣx,
1
n ), and the noise vector e is sub-Gaussian with parameters ( 1

nσ
2
e ,

1
nσ

2
e). Moreover, suppose that n & k log p

λmin(Σx) .
Then with high probability, the estimator above satisfies:

‖β̂ − β∗‖2 .
σe

λmin(Σx)

√
k log p

n
.

When we know only Z ( a noisy or partially deleted version of X), we consider a modified version of the estimator. Let
us generically denote by Σ̂ the estimator for X>X , and by γ̂ our estimate for X>y. Thus, in place of β̂ = (X>X)−1X>y

given in (1), our proposed estimator for β̂ naturally becomes:

β̂ = (Σ̂)−1γ̂ = arg min
β
β>(Σ̂)β − 2γ̂>β, (2)

where we require Σ̂ to be positive semidefinite. For this estimator, we have the following simple but general result.

Theorem 3. Suppose the following strong convexity condition holds: λmin

(
Σ̂
)
≥ λ > 0. Then the estimation error satisfies:∥∥∥β̂ − β∗∥∥∥

2
. 1

λ

∥∥∥γ̂ − Σ̂β∗
∥∥∥

2
.

Proof. Let ∆ = β̂ − β∗. By optimality of β̂, we have (β∗ + ∆)>(Σ̂)(β∗ + ∆) − 2γ̂>(β∗ + ∆) ≤ β∗>(Σ̂)β − 2γ̂>β∗.
Rearranging terms gives ∆>Σ̂∆ ≤ 2(γ̂> − β∗>Σ̂)∆. Under the strong convexity assumption, the l.h.s. is lower-bounded by
λ ‖∆‖22. The r.h.s. is upper-bounded by 2

∥∥∥γ̂ − Σ̂β∗
∥∥∥

2
‖∆‖2 thanks to Cauchy-Schwarz. The result then follows.1

This result is simple and generic. We specialize to the case of additive noise, and missing variables. In particular, the pair
(Σ̂, γ̂) depends on the assumption of what is known.

Additive Noise

For additive noise, the models we use are as follows.

1. Knowledge of Σw: we assume we either know or somehow can estimate the noise covariance, Σw = E
[
W>W

]
.

2. Knowledge of Σx: in this case, we assume that we either know or somehow can estimate the covariance of the true
covariates, Σx = E

[
X>X

]
.

3. Instrumental Variables: in this setting, we assume there are variables U ∈ Rn×m with m ≥ k, whose rows are correlated
with the rows ofX , but independent ofW and e, and that the realization of U is known or can be estimated. Instrumental
variables are common in the econometrics literature [2, 1], and are often used when X is not available. In [3] the authors
consider instrumental variables for high-dimensional problems when X is observed without noise. To the best of our
knowledge, no rigorous finite sample results have been obtained for this approach when one has available a noisy or
partially erased version of the covariate matrix X .

We have the following results for the case of additive noise: Z = X +W .

1Our notation “.” means that we ignore constants that are independent of any scaling variables. We use this throughout.
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Corollary 4 (Knowledge of Σw). Suppose n & (1+σ2
w)2

λmin(Σx)k log p. Then, w.h.p., the estimator built using Σ̂ = Z>Z − Σw and
γ̂ = Z>y, satisfies ∥∥∥β̂ − β∗∥∥∥

2
.

(
σw + σ2

w

)
‖β∗‖2 + σe

√
1 + σ2

w

λmin(Σx)

√
k log p

n
.

Remark. (1) When σw = 0, the bound reduces to the standard bound for the least-squares estimator, and it implies exact
recovery when σw = σe = 0. (2) If we only have an upper bound, Σw � Σw, then using the same analysis one can show:

∥∥∥β̂ − β∗∥∥∥
2
.

[(
σw + σ2

w

)
‖β∗‖2 + σe

√
1 + σ2

w

]√
k log p
n + λmax(Σw − Σw)‖β∗‖2

λmin(Σx)− λmax(Σw − Σw)
.

Corollary 5 (Knowledge of Σx). Suppose n & log p. Then, w.h.p., the estimator built using Σ̂ = Σx and γ̂ = Z>y, satisfies∥∥∥β̂ − β∗∥∥∥
2
.

(1 + σw) ‖β∗‖2 + σe
√

1 + σ2
w

λmin(Σx)

√
k log p

n
.

Remark. The bound is linear for σw large, but it does not vanish when σw and σe are zero.

Let σi(A) denote the i-th singular value of A, so, e.g., σ1(A) = σmax(A), the largest singular value of A.

Corollary 6 (Instrumental Variables). Suppose the Instrumental Variable U ∈ Rn×m is zero-mean sub-Gaussian with parame-
ter (ΣU , σ

2
u), and E

[
U>X

]
= ΣUX . Let σ1 = σ1(ΣUX) and σk = σk(ΣUX). If n & max

{
1,

σ2
u(1+σ2

w)

(m/k)σ2
k

}
k log p, then w.h.p.

the estimator built using Σ̂ = Z>UU>Z, and γ̂ = Z>UU>y, satisfies

∥∥∥β̂ − β∗∥∥∥
2
.
√
σ2
w ‖β∗‖

2
+ σ2

e

σ1σu

σ2
k

√
k/m

=

√
σ2
w ‖β∗‖

2
+ σ2

e

(σ1/σu)
√

k
m

· 1

(σk/σ1)
2

√
k log p

n
.

Remark. The first factor can be interpreted as 1/SNR, and the second is a measure of the correlation between X and U (i.e., the
strength of the Instrumental Variable).

Missing Data

For missing data, we assume the erasure probability ρ is known or can be accurately estimated. We use Σ̂ = (Z>Z)�M and
γ̂ = 1

(1−ρ)Z
>y, where Mij = 1

1−ρ if i = j or 1
(1−ρ)2 otherwise, and � denotes element-wise product. We then have:

Corollary 7 (Missing Data). If n & 1
(1−ρ)4λ2

min(Σx)
k log p, w.h.p. our estimator satisfies

∥∥∥β̂ − β∗∥∥∥
2
.

(
1

(1− ρ)2
‖β∗‖2 +

1

1− ρ
σe

)
1

λmin(Σx)

√
k log p

n
.

Remark. Note that as with the previous results, the dependence on ‖β∗‖2 is given explicitly.

We now prove Corollary 4-7. The proofs rely on several supporting concentration results in the next subsection; these
results will also be used in the proof of the high-dimensional results in the next section.

2.1 Supporting Concentration Results

We state some supporting concentration results, and postpone their proofs to the appendix.
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Lemma 8. [4, Lemma 14] Suppose Y ∈ Rn×k is a zero mean sub-Gaussian matrix with parameter ( 1
nΣ, 1

nσ
2). If n & log p ≥

log k, then

P

(∥∥X>X − Σ
∥∥
∞ ≥ c0σ

2

√
log p

n

)
≤ c1 exp (−c2 log p) .

Lemma 9. SupposeX ∈ Rn×k, Y ∈ Rn×m are zero-mean sub-Gaussian matrices with parameters ( 1
nΣx,

1
nσ

2
x),
(

1
nΣy,

1
nσ

2
y

)
.

Then for any fixed vectors v1, v2, we have

P
(∣∣v>1 (Y >X − E

[
Y >X

])
v2

∣∣ ≥ t ‖v1‖ ‖v2‖
)
≤ 3 exp

(
−cnmin

{
t2

σ2
xσ

2
y

,
t

σxσy

})
.

In particular, if n & log p ≥ logm ∨ log k, we have w.h.p.

∣∣v>1 (Y >X − E
[
Y >X

])
v2

∣∣ ≤ σxσy ‖v1‖ ‖v2‖
√

log p

n
.

Setting v1 to be the ith standard basis vector, and using a union bound over i = 1, . . . ,m, we have w.h.p.∥∥(Y >X − E
[
Y >X

])
v
∥∥
∞ ≤ σxσy ‖v‖

√
log p

n
.

As a simple corollary of this lemma, we get the following.

Corollary 10. If X ∈ Rn×k is a zero-mean sub-Gaussian matrix with parameter ( 1
nσ

2
xI,

1
nσ

2
x), and v is a fixed vector in Rn,

then for any ε ≥ 1, we have

P

(∥∥X>v∥∥
2
>

√
(1 + ε)k

n
σx ‖v‖2

)
≤ 3 exp (−ckε) .

Lemma 11. If X ∈ Rn×k, Y ∈ Rn×m are zero mean sub-Gaussian matrices with parameter ( 1
nΣx,

1
nσ

2
x),( 1

nΣy,
1
nσ

2
y), then

P

(
sup

v1∈Rm,v2∈Rk,‖v1‖=‖v2‖=1

∣∣v>1 (Y >X − E
[
Y >X

])
v2

∣∣ ≥ t) ≤ 2 exp

(
−cnmin(

t2

σ2
xσ

2
y

,
t

σxσy
) + 6(k +m)

)
.

In particular, for each λ > 0, if n & max
{
σ2
xσ

2
y

λ2 , 1
}

(k +m) log p, then w.h.p.

sup
v1∈Rm,v2∈Rk

∣∣v>1 (Y >X − E
[
Y >X

])
v2

∣∣ ≤ 1

54
λ ‖v1‖ ‖v2‖ .

2.2 Proof of Corollary 4

Substituting Z = X +W into the definition of γ̂ and Σ̂, we obtain∥∥∥γ̂ − Σ̂β∗
∥∥∥
∞

=
∥∥−X>Wβ∗ + Z>e− (W>W − Σw)β∗

∥∥
∞

≤
∥∥X>Wβ∗

∥∥
∞ +

∥∥Z>e∥∥∞ +
∥∥(W>W − Σw)β∗

∥∥
∞

Using Lemma 9, we have w.h.p. ∥∥X>Wβ∗
∥∥
∞ ≤ σw ‖β‖2

√
log p

n∥∥Z>e∥∥∞ ≤ σe
√

1 + σ2
w

√
log p

n∥∥(W>W − Σw)β∗
∥∥
∞ ≤ σ2

w ‖β‖2

√
log p

n
.
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It follows that ∥∥∥γ̂ − Σ̂β∗
∥∥∥

2
≤
√
k
∥∥∥γ̂ − Σ̂β∗

∥∥∥
∞
≤
[(
σw + σ2

w

)
‖β∗‖2 + σe

√
1 + σ2

w

]√k log p

n
.

On the other hand, observe that Z is sub-Gaussian with parameter ( 1
nΣx + 1

nΣw,
1
n (1 + σ2

w)). When n & (1+σ2
w)2k log p

λmin(Σx) ,
by Lemma 11 with λ = λmin(Σx), we have λ1

(
Z>Z − (Σx + Σw)

)
≤ 1

54λmin(Σx) w.h.p. It follows that

λmin

(
Σ̂
)

= inf
‖v‖=1

v>Σ̂v = inf
‖v‖=1

v>
(
Σx + Z>Z − (Σx + Σw)

)
v

≥ λmin(Σx)− λ1

(
Z>Z − (Σx + Σw)

)
≥ 1

2
λmin(Σx).

The corollary then follows by applying Theorem 3.

2.3 Proof of Corollary 5

In this case, we have ∥∥∥γ̂ − Σ̂β∗
∥∥∥
∞

=
∥∥(X>X − Σx)β∗ +W>Xβ∗ + Z>e

∥∥
∞

≤
∥∥W>Xβ∗∥∥∞ +

∥∥Z>e∥∥∞ +
∥∥(X>X − Σx)β∗

∥∥
∞

By Lemma 9, we have w.h.p. ∥∥W>Xβ∗∥∥∞ ≤ σw ‖β‖2

√
log p

n∥∥Z>e∥∥∞ ≤ σe
√

1 + σ2
w

√
log p

n∥∥(X>X − Σx)β∗
∥∥
∞ ≤ ‖β∗‖2

√
log p

n
.

So
∥∥∥γ̂ − Σ̂β∗

∥∥∥
2
≤
√
k
∥∥∥γ̂ − Σ̂β∗

∥∥∥
∞

.
[
(1 + σw) ‖β∗‖2 + σe

√
1 + σ2

w

]√
k log p
n .On the other hand, by assumption λmin(Σ̂) =

λmin(Σx). The corollary then follows by applying Theorem 3.

2.4 Proof of Corollary 6

First observe that

λmin(Σ̂) = λmin((X +W )>UU>(X +W ))

= σ2
k(U>X + U>W )

= σ2
k(E

[
U>X

]
+ (U>X − E

[
U>X

]
) + U>W )

≥
[
σk − σ1(U>X − E

[
U>X

]
)− σ1(U>W )

]2
.

By Lemma 11 with λ = σk, we have σ1(U>W ) ≤ 1
4σk and σ1(U>X − E

[
U>X

]
) ≤ 1

4σk under our assumption, so
λmin(Σ̂) ≥ 1

4σ
2
k. On the other hand,∥∥∥Σ̂β∗ − γ̂

∥∥∥
2

=
∥∥∥(X +W )>UU

>
(Wβ∗ − e)

∥∥∥
2

≤
∥∥X>UU>(Wβ∗ + e)

∥∥
2

+
∥∥W>UU>(Wβ∗ + e)

∥∥
2
.

We bound each term.
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1. By Lemma 11 with λ = σ1, we have σ1(U>X) ≤ 3
2σ1. Each entry of Wβ∗ + e is i.i.d. zero-mean sub-Gaussian

with variance bounded by σ2
w ‖β∗‖

2
+ σ2

e . Hence by Lemma 9,
∥∥U>(Wβ∗ + e)

∥∥
2
≤
√
m
∥∥U>(Wβ∗ + e)

∥∥
∞ ≤

σu

√
σ2
w ‖β∗‖

2
+ σ2

e

√
m log p
n . It follows that

∥∥∥(U>X)> U>(Wβ∗ + e)
∥∥∥

2
≤ 2

√
σ2
w ‖β∗‖

2
+ σ2

e

√
σ2
uσ

2
1m log p
n .

2. By Lemma 11 with λ = σ1, we have
∥∥W>U∥∥

op
≤ σ1 under the assumption, so the second term is bounded by

σw ‖β∗‖
√

σ2
uσ

2
1m log p
n .

The result follows from applying Theorem 3.

2.5 Proof of Corollary 7

Let Σz = E
[
Z>Z

]
; we have (Σz)ij = (1 − ρ)(Σx)ij for i = j and (Σz)ij = (1 − ρ)2(Σx)ij for i 6= j. Note that the

observed matrix Z is sub-Gaussian with parameter ( 1
nΣz,

1
n ), which follows from the sub-Gaussianity of X (c.f. [4]). We set

∆z = Z>Z −Σz . By Lemma 8, we know maxi |(∆z)ii| ≤ 1
4 (1− ρ)2λmin(Σx) w.h.p. When this happens, for each unit norm

v, we have

v>(∆z �M)v =
∑
i,j

vivj(∆z)ij
1

(1− ρ)2
+
∑
i

v2
i (∆z)ii

(
1

1− ρ
− 1

(1− ρ)2

)
≤ 1

(1− ρ)2
v>∆zv + ‖v‖2 ρ

(1− ρ)2
max
i
|(∆z)ii|

≤ 1

(1− ρ)2
v>∆zv +

ρ

4
λmin(Σx).

By Lemma 11 with λ = 1
4 (1−ρ)2λmin(Σx), we obtain maxv:‖v‖=1 v

>∆zv ≤ 1
4 (1−ρ)2λmin(Σx), so v>(∆z�M)v ≤ 1

4 (1+

ρ)λmin(Σx). Because Σ̂ = (Σz +Z>Z−Σz)�M = Σx + ∆z �M , it follows that λmin(Σ̂) ≥ λmin(Σx)−λ1 (∆z �M) ≥
1
2λmin(Σx).

On the other hand, observe that

∥∥∥γ̂ − Σ̂β∗
∥∥∥
∞
≤ ‖γ̂ − Σxβ

∗‖∞ +
∥∥∥(Σ̂− Σx)β∗

∥∥∥
∞

≤
∥∥∥∥ 1

1− ρ
Z>Xβ∗ − Σxβ

∗
∥∥∥∥
∞

+

∥∥∥∥ 1

1− ρ
Z>e

∥∥∥∥
∞

+
∥∥∥(Σ̂− Σx)β∗

∥∥∥
∞
.

By Lemma 9, w.h.p. the first term is bounded by 1
1−ρ ‖β

∗‖
√

log p
n , and the second term is bounded by 1

1−ρσe

√
log p
n . The

magnitude of the i-th term of (Σ̂− Σx)β∗ is∣∣((Z>Z − E
[
Z>Z

]
)i− �Mi−)β∗

∣∣ =
∣∣(Z>Z − E

[
Z>Z

]
)i−(M>i− � β∗)

∣∣
≤

∥∥(Z>Z − E
[
Z>Z

]
)(M>i− � β∗)

∥∥
∞ .

Note that we use Mi− to denote the ith row of the matrix M .

Thus, by Lemma 9 and union bound over i, we have∥∥∥(Σ̂− Σx)β∗
∥∥∥
∞
≤ max

i=1,...n

∥∥(Z>Z − E
[
Z>Z

]
)(M>i− � β∗)

∥∥
∞

≤
√

log p

n
max
i

∥∥M>i− � β∗∥∥2

≤ 1

(1− ρ)2
‖β∗‖∞

√
log p

n
.

6



Combining pieces, we have ∥∥∥γ̂ − Σ̂β∗
∥∥∥

2
≤
√
k
∥∥∥γ̂ − Σ̂β∗

∥∥∥
∞

≤
(

1

(1− ρ)2
‖β∗‖2 +

1

1− ρ
σe

)√
k log p

n
.

The corollary follows by applying Theorem 3.

3 Proofs for the High-Dimensional Problem

In this subsection, we present the details for the proofs of the results in the paper. First, for convenience, we reproduce the
statements of all the results that remain to be proven. Using the supporting concentration results in the last section, we prove
all the results.

3.1 The Statement of the Results

The following four theorems correspond to Theorem 3, 5, 7, 4 in the main paper, respectively.

Theorem 12. Under the Independent sub-Gaussian Design model and Additive Noise model, supp-OMP identifies the correct
support of β∗ with high probability, provided

n & (1 + σ2
w)2k log p,

|β∗i | ≥ 16 (σw ‖β∗‖2 + σe)

√
log p

n
,

for all i ∈ supp(β∗).

Theorem 13. Under the Independent sub-Gaussian Design model and Additive Noise model, the output of estimator (2)
satisfies:

1. (Knowledge of Σw):
∥∥∥β̂ − β∗∥∥∥

2
.
[(
σw + σ2

w

)
‖β∗‖2 + σe

√
1 + σ2

w

]√
k log p
n .

2. (Knowledge of Σx):
∥∥∥β̂ − β∗∥∥∥

2
.
[
(1 + σw) ‖β∗‖2 + σe

√
1 + σ2

w

]√
k log p
n .

Theorem 14. Under the Independent sub-Gaussian Design model and missing data model, supp-OMP identifies the correct
support of β∗ provided

n &
1

(1− ρ)4
k log p,

|β∗i | ≥
16

1− ρ
(‖β∗‖2 + σe)

√
log p

n
,

for all i ∈ supp(β∗). Moreover, the output of estimator (2) with knowledge of ρ satisfies∥∥∥β̂ − β∗∥∥∥
2
.

(
1

(1− ρ)2
‖β∗‖2 +

1

1− ρ
σe

)√
k log p

n
.

Theorem 15. Under the independent Gaussian model, if n .
(
σ2
w +

σ2
zσ

2
e

R2

)
k log

(
p
k

)
or bmin .

√
(σ2
wR

2 + σ2
zσ

2
e) log(p/k)

n ,
thenM0 ≥ 1.
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3.2 Proof of Theorem 12 and 13

To prove the support recovery guarantees (Theorem 15), we use induction. The inductive assumption is that the previous steps
identify a subset I of the true support I∗ = supp(β∗). Let Ir = I∗− I be the remaining true support that is yet to be identified.
We need to prove that at the current step, supp-OMP picks an index in Ir, i.e., ‖hIr‖∞ > |hi| for all i ∈ (I∗)c.

We use a decoupling argument similar to [8]: consider the oracle which runs supp-OMP over only the true support I∗.
Then our supp-OMP identifies I∗ if and only if it identifies it in the same order as the oracle. Therefore we can assume I to be
independent of Xi and Wi for all i ∈ (I∗)c. Note that I may still depend on XI∗ , WI∗ , and e.

Define PI , ZI(Z
>
I ZI)

−1Z>I . We have

‖hIr‖∞ =
∥∥Z>Irr∥∥∞

=
∥∥Z>Ir (I − PI)(XI∗βI∗ + e)

∥∥
∞

=
∥∥Z>Ir (I − PI)(ZI∗β∗I∗ −WI∗β

∗
I∗ + e)

∥∥
∞

=
∥∥Z>Ir (I − PI)(ZIrβ∗Ir −WI∗β

∗
I∗ + e)

∥∥
∞

=
∥∥X>Ir (I − PI)XIrβ

∗
Ir +W>Ir (I − PI)XIrβ

∗
Ir − Z

>
Ir (I − PI)W>I β∗I + Z>Ir (I − PI)e

∥∥
∞

≥ 1√
k − i

(∥∥X>Ir (I − PI)XIrβ
∗
Ir

∥∥
2
−
∥∥W>Ir (I − PI)XIrβ

∗
Ir

∥∥
2
−
∥∥Z>Ir (I − PI)(WIβ

∗
I − e)

∥∥
2

)
; (3)

here in the fifth equality we use the relations ZIr = WIr +XIr andWIβ
∗
I = WI∗β

∗
I∗−WIrβ

∗
Ir

; the latter is due to I = I∗−Ir
by definition of Ir, and the fifth equality follows from expanding these terms. For the first term in (3), we have the following
lemma.

Lemma 16. Under the assumptions of Theorem 12, w.h.p. ∀I1 ⊆ I∗, Ic1 = I∗ − I1,

λmin

(
X>Ic1 (I − PI1)XIc1

)
≥ 1

2
,

λmax

(
W>Ic1 (I − PI1)XIc1

)
≤ 1

8
.

Proof. By Lemma 11 and a union bound, we have w.h.p. ∀I1 ⊆ I∗, λmin

(
X>Ic1XIc1

)
≥ 1

2 . On the other hand, fixing I1 ⊆ I∗,
we have ∥∥∥X>Ic1PI1XIc1

∥∥∥
op

=
∥∥∥X>Ic1ZI1 (Z>I1ZI1)−1

Z>I1XIc1

∥∥∥
op

≤ σ2
1

(
X>Ic1ZI1

)
/σmin

(
Z>I1ZI1

)
.

Again by Lemma 11, σmin

(
Z>I1ZI1

)
≥ 1

2 (1+σ2
w) with probability at least 1−exp

(
cn 1

(1+σ2
w)2 + 12k

)
, and σ2

1

(
X>Ic1ZI1

)
≤ 1

8

with probability at least 1− exp
(
cn 1

(1+σ2
w) + 12k

)
. So a union bound over all I1 yields w.h.p. ∀I1 ⊆ I∗,

∥∥∥X>Ic1PI1XIc1

∥∥∥
op
≤

1
4 . It follows that

λmin

(
X>Ic1 (I − PI1)XIc1

)
≥ λmin

(
X>Ic1XIc1

)
−
∥∥∥X>Ic1PI1XIc1

∥∥∥
op
≥ 1

4
.

Similarly, by Lemma 11 and the union bound, we have w.h.p. ∀I1 ⊆ I∗,
∥∥∥W>Ic1XIc1

∥∥∥
op
≤ 1

16 and
∥∥∥W>Ic1PI1XIc1

∥∥∥
op
≤ 1

16 ,

hence λmax

(
W>Ic1 (I − PI1)XIc1

)
≤
∥∥∥W>Ic1XIc1

∥∥∥
op

+
∥∥∥W>Ic1PI1XIc1

∥∥∥
op
≤ 1

8 .

Therefore, the first term in (3) is lower bounded by 1
4

∥∥β∗Ir∥∥2
, and the second term is upper bounded by 1

8

∥∥β∗Ir∥∥2
.

8



Now consider the third term in (3). By Lemma 11 and a union bound, we have w.h.p. σ1 (WI1) ≤ 3
2σw for all I1.

Lemma 9 gives ‖e‖2 ≤
3
2σe. It follows that ‖(I − PI1)(WI1βI1 − e)‖2 ≤ σ1(I − PZI1

)
(
σ1 (WI1)

∥∥β∗I1∥∥2
+ ‖e‖2

)
≤

3
2

(
σw
∥∥β∗I1∥∥2

+ σe

)
. Set vI1 = (I −PI)(WIβI − e). Because ZIc1 and vI1 are independent, Corollary 10 gives

∥∥∥Z>Ic1vI1∥∥∥2
≤√

(1+ε)(k−i)(1+σ2
w)

n ‖vI1‖2 with probability at least 1 − 3 exp
(
ckε2

)
. Using a union bound over all I1, we conclude that the

third term is bounded w.h.p. by 4

√
(1+σ2

w)(k−i) log p
n

(
σw ‖β∗I ‖2 + σe

)
.

Combining the above bounds, we have

‖hIr‖∞ ≥
1√
k − i

[
1

4

∥∥β∗Ir∥∥2
− 1

8

∥∥β∗Ir∥∥2
− 4

√
(1 + σ2

w)(k − i) log p

n
(σw ‖β∗I ‖2 + σe)

]
,

which is greater than 1
8
√
k−i

∥∥β∗Ir∥∥2
if all the non-zero entries of β∗ are greater than 16 (σw ‖β∗‖2 + σe)

√
(1+σ2

w) log p
n .

On the other hand, by similar argument as above we have ‖(I − PI)(ZIrβIr −WI∗βI∗ + e)‖2 ≤
3
2

(∥∥β∗Ir∥∥2
+ σw ‖β∗I ‖2 + σe

)
.

Note that for each i ∈ I∗c, Zi is independent of ZI , XI∗ and e. Applying Corollary 10 gives w.h.p.

|hi| =
∣∣Z>i (I − PI)(XI∗βI∗ + e)

∣∣
=

∣∣Z>i (I − PI)(ZIrβIr −WI∗βI∗ + e)
∣∣

≤ 4

√
(1 + σ2

w) log p

n

(∥∥β∗Ir∥∥2
+ σw ‖β∗I ‖2 + σe

)
,

which is smaller than 1
8
√
k−i

∥∥β∗Ir∥∥2
provided n & (1 + σ2

w)2k log p, and the nonzeros of β∗ are greater than

4 (σw ‖β∗‖2 + σe)

√
(1 + σ2

w) log p

n

. Using a union bound shows this holds for all i ∈ I∗c.

We conclude that ‖hIr‖∞ > |hi| for all i ∈ I∗c w.h.p. This completes the proof of Theorem 12. Once the correct support
of β∗ is identified, the problem of estimating the non-zero coefficients of β∗ reduces to a low-dimensional problem. Therefore,
Theorem 13 follows immediately from Theorem 12, and Corollary 4 and 5.

3.3 Proof of Theorem 14

Note that Z is sub-Gaussian with parameter
√

1
n . Similarly to the proof of Theorem 12, we use induction, the decoupling

argument, and the same notation. Therefore, to prove the first part of the theorem, it suffices to show ‖hIr‖∞ ≥ |hi| for all
i ∈ (I∗)c.

We have

‖hIr‖∞ =
∥∥Z>Ir (I − PI)(XI∗βI∗ + e)

∥∥
∞

≥ 1√
k − i

∥∥Z>Ir (I − PI)
(
XIrβ

∗
Ir + (XI − ZI)β∗I + e

)∥∥
2

≥ 1√
k − i

(∥∥Z>Ir (I − PI)XIrβ
∗
Ir

∥∥
2

+
∥∥Z>Ir (I − PI)(XI − ZI)β∗I

∥∥
2
−
∥∥Z>Ir (I − PI)e

∥∥
2

)
Consider the first term. We have λmin(Z>IrXIr ) ≥ 1

2 (1−ρ) by Lemma 11. We also have λmin(Z>I ZI) ≥ 1
2 (1−ρ), σ1(Z>IrZI) ≤

1
8 (1 − ρ)2, σ1(Z>I XIr ) ≤ 1

8 (1 − ρ)2 by the same lemma. It follows that λ1(Z>IrPIXIr ) = λ1(Z>IrZI(Z
>
I ZI)

−1Z>I XIr ) ≤

9



σ2
1(Z>I ZIr )/λmin(Z>I ZI) ≤ 1

4 (1−ρ)3. We conclude that λmin(Z>Ir (I−PI)ZIr ) ≥ λmin(Z>I ZI)−λ1(Z>IrPIZIr ) ≥ 1
4 (1−ρ).

So the first term is at least 1−ρ
4
√
k−i

∥∥β∗Ir∥∥2
.

For the second term, we apply Lemma 11 to obtain that w.h.p., σ1(XI − ZI) ≤ 2. It follows that

‖(I − PI)(XI − ZI)βI‖2 ≤ 2 ‖βI‖2 .

By Corollary 10 and a union bound, we obtain

∥∥Z>Ir (I − PI)(XI − ZI)β∗I
∥∥

2
≤ 2 ‖βI‖2

√
(k − i) log p

n
,

which is smaller than 1−ρ
8 (1− ρ)

∥∥β∗Ir∥∥2
if the non-zeros are bigger than 16

1−ρ ‖βI‖2
√

log p
n .

Consider the third term. In the proof of Theorem 12 we have shown that ‖e‖2 ≤ σe, so ‖(I − PI)e‖2 ≤ σe. w.h.p.

By Corollary 10 and a union bound, it follows that
∥∥Z>Ir (I − PI)e

∥∥
2
≤
√

(k−i) log p
n σe, which is smaller than 1−ρ

16

∥∥β∗Ir∥∥2
if

non-zeros are bigger than 16
1−ρσe

√
log p
n .

Combining the above bounds, we conclude that ‖hIr‖∞ ≥
1−ρ

8
√
k−i‖βIr‖2 if all the non-zero entries of β∗ is greater than

16
1−ρ (‖β∗‖2 + σe)

√
log p
n .

We now consider |hi| for i ∈ (I∗)c. We have

‖(I − PI)(XI∗βI∗ + e)‖2 ≤ ‖XI∗βI∗ + e‖2

≤ 3

2
‖β∗‖2 + σe.

So by independence of Zi and XI∗ and Corollary 10, we obtain

|hi| =
∣∣Z>i (I − PI)(XI∗βI∗ + e)

∣∣
≤

√
log p

n
(
3

2
‖β∗‖2 + σe),

which is small than 1−ρ
8
√
k−i

∥∥β∗Ir∥∥2
if all the non-zeros of β∗ are bigger than 16

1−ρ (‖β∗‖2 +σe)
√

log p
n . This completes the proof

for the first part of the theorem. The second part of the theorem follows from the first part and Corollary 7.

3.4 Proof of Theorem 15

We use a standard information-theoretical argument. Suppose P = {β1, . . . , βM} be a (δ, p) packing set of the target set T ,
which means P ⊆ T and for all βj , βl ∈ P , j 6= l, we have ‖βj − βl‖p ≥ δ. A standard argument [10] converts the problem
of bounding the minimax error to a hypothesis testing problem over P . In particular, we have we have

min
β̂

max
β∗∈T

E
∥∥∥β̂ − β∗∥∥∥

p
≥ δ

2
min
β̃

P
(
β̃ 6= B

)
(4)

where β̃ is an estimator that takes values in P , and B is uniformly distributed over P . The probability on the R.H.S. can be
bounded by Fano’s inequality:

min
β̃

P
(
β̃ 6= B

)
≥ 1− I(y, Z;B) + log 2

logM
= 1− I(y;B|Z) + log 2

logM
;

10



here the equality holds because Z and B are independent and thus if follows from the chain rule that I(y, Z;B) = I(Z;B) +
I(y;B|Z) = I(y;B|Z).

We now upper-bound the mutual information. For each j = 1, . . . ,M , let Pj , P(y|B = βj , Z) be the distribution of y
given B = βj when Z is observed. Following [9, 7, 5], we bound I(y;B|Z) using the KL-divergence:

I(y;B|Z) =
1

M

M∑
ij=1

EZ

[
D

(
Pj‖

1

M

M∑
l=1

Pl

)]
≤ 1

M2

∑
i,l=1

EZ [D (Pj‖Pl)]

where we use the convexity of KL-divergence in the inequality. Under the independent Gaussian Design model, we have
Σx = σ2

xI and Σw = σ2
wI , where σ2

x = 1 denotes the variance of the entries of X . In this case, the KL-divergence D (Pj‖Pl)
can be computed explicitly. This is done in [5], which gives

D (Pj‖Pl) =
1

2σ2
· σ

4
x

σ4
z

‖Z(βj − βl)‖22 ,

where σ2 , σ2
xσ

2
w

σ2
z
R2 + σ2

e . Taking the expectation over Z, we get

EZ [D (Pj‖Pl)] =
nσ4

x

2 (σ2
xσ

2
wR

2 + σ2
zσ

2
e)
‖βj − βl‖22 .

Combining pieces, we conclude that

M0 = min
β̂

max
β∗∈T

E
∥∥∥β̂ − β∗∥∥∥

0
≥ δ

4

provided

1−
nσ4

x

2(σ2
xσ

2
wR

2+σ2
zσ

2
e) ·

1
M2

∑M
i,l=1 ‖βj − βl‖

2
2 + log 2

logM
≥ 1

2
. (5)

It remains to that show Eq.(5) holds by choosing the appropriate P , M and δ.

1) Let P ⊂ Rp be the set of vectors which have exactly k entries equal to R√
k

and other entries zeros. Clearly P is a (1, 0)

packing set of T1(R, k) with logM = log |P | = log
(
p
k

)
≥ k log p

k . Moreover, for every j, l, ‖βj−βl‖2 ≤ ‖βj‖2+‖βl‖2 ≤ 2R.

One verifies that Eq. (5) holds when n ≤ c1
(
σ2
w +

σ2
zσ

2
e

R2

)
k log

(
p
k

)
for some absolute constant c1.

2) Set M = p− (k−1). Define βj be such that βji = R√
k−1

, i = 1, . . . , k−1, βj = bmin, βi = 0, i = k+ 1, . . . , p, i 6= j.

Let P =
{
βj , j = 1, . . . ,M

}
. Clearly P is a (1, 0) packing set of T2(R, bmin). Moreover, for every j, l, ‖βj−βl‖2 ≤

√
2bmin.

One verifies that Eq. (5) holds when bmin ≤ c2
√

(σ2
wR

2 + σ2
zσ

2
e) log(p/k)

n for some absolute constant c2.

4 Additional Numerical Simulations

In this supplementary material section we provide additional numerical simulations for which space did not permit in the
submission. These corroborate the theoretical results presented in the submission, as well as shed further light on the per-
formance of supp-OMP for noisy and missing data. Our results illustrate, in particular, several key points. First, in both the
low-dimensional and high-dimensional settings, empirical results demonstrate that the scaling promised in the corollaries to
Theorem 3 and Theorem 12 is correct. We demonstrate this by rescaling the error of our experiments, normalizing by the
predicted contribution to the error of n, k and p, in order to highlight the dependence on σw. Our experiments show a clear
alignment of the actual results along the predicted results. The results of this section also show the different regimes of efficacy
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of our different estimators for the noisy-covariate setting. Finally, we also compare to the projected gradient method in [4],
and demonstrate that in addition to faster running time, we seem to obtain better empirical results at all values of the sparsity
parameter, and noise intensity/erasure probability.

We present the low-dimensional results first, and then the high-dimensional results.

4.1 The Low-Dimensional Case

We report some simulation results on our low-dimensional results from Section 2. These results are also relevant to the high-
dimension setting, as our OMP algorithm reduces a high-dimensional problem to a low-dimensional one once it identifies the
correct support. Note that each of our bounds in Corollary 4 to Corollary 7 scales with log p

n , which is to be expected. Therefore,
we focus on verifying the scaling with the other parameters such as k, σw, ρ and ‖β∗‖.

We first look at the case with additive noise. We fix n = 3200, σe = 0 and Σx = I , and sample all matrices from a
Gaussian distribution. k and σw take values in 2, 3, . . . , 7 and [0, 2], respectively. For each k, we generate the true β∗ as a
random ±1 vector; note that ‖β∗‖ =

√
k, which also scales with k. Figure 1 (a) shows the `2 recovery error under different

k and σw using the estimator built from knowledge of Σw, where one can see the quadratic dependence on σw. Corollary 4
predicts that, with fixed n, the error scales proportional to (σw + σ2

w)‖β∗‖
√
k log p = (σw + σ2

w)k
√

log p; in particular, if we
plot the error versus the control parameter (σw + σ2

w)k, all curves should roughly become straight lines through the origin and
align with each other. Indeed, this is precisely what we see; the results, representing results averaged over 100 trials, are plotted
in Figure 1 (b).

Similarly, we performed simulations for the estimators built from knowledge of Σx and from Instrumental Variables. In
the latter case, the Instrumental Variable is generated by U = XΓ+E, where Γ ∈ Rk×m with m = 2k and the entries of Γ and
E being i.i.d. standard Gaussian variables; in this case we have σ1(ΣUX) ≈ σk(ΣUX) = Θ(

√
m) and σu =

√
k. Corollaries

5 and 6 predict that the `2 errors are proportional to the control parameters (1 +σw)k and σwk. respectively. These predictions
again match well our simulation results shown in Figure 2 (a) and (b).

In addition, we compare the performance of the estimators built from Σw and Σx. Figure 3 shows their recovery error
under different σw with k = 7. The results match the theory, and in particular show that the scaling depends as predicted on
σw: The Σw-estimator performs better for small σw, and in particular, delivers exact recovery when σw = 0; the Σx-estimator
is more favorable for large σw due to its linear dependence on σw (versus quadratic), but the error does not go to zero when
σw → 0. The crossover occurs roughly at σw = 1.

Finally, we turn to the case with missing data. We perform simulations with parameters n = 2000, k ∈ {2, . . . , 7},
ρ ∈ [0, 0.8], and β∗ generated in the same way as above (so that ‖β∗‖ = k). With n fixed, Corollary 7 guarantees that the
recovery error is bounded by O( k

(1−ρ)2 ). The simulation results in Figure 4 seem to outperform this bound, as the error goes to

zero when ρ → 0. If we plot the error versus the control parameter k
√
ρ

1−ρ , then the curves become roughly straight lines and
align. It would be interesting in the future to tighten our bound to match this scaling.

4.2 The High-Dimensional Case

In this subsection, we study the performance of our supp-OMP algorithm for the high-dimensional setting, and compare with
the projected gradient method in [4]. We first consider the additive noise case and use the following settings: p = 450, n =
400, σe = 0,Σx = I , k ∈ {2, . . . , 7}}, and σw ∈ [0, 1]. We compare supp-OMP using the Σw-estimator and the projected
gradient method using the corresponding Σ̂ and γ̂. Figure 5 (a) plots the `2 errors. One observes that OMP outperforms the
projected gradient method in all cases.

We also want to point out that supp-OMP enjoys more favorable running time in our experiments, although we do not
perform a formal comparison since this depends on the particular implementation of both methods. As is clear from the
description of the algorithm, supp-OMP has exactly the same running time as standard OMP.

12



0 0.5 1 1.5 2
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

σ
w

L
2
 n

o
rm

 e
rr

o
r

 

 

k=2

k=3

k=4

k=5

k=6

k=7

0 10 20 30 40 50
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

Control Parameter

L
2
 n

o
rm

 e
rr

o
r

 

 

k=2

k=3

k=4

k=5

k=6

k=7

(a) (b)

Figure 1: `2 recovery error of the Σw-estimator for additive noise versus (a) the noise magnitude σw and (b) the control
parameter (σw + σ2

w)k. As predicted by Corollary 4, all curves in (b) are roughly straight lines and align. Each point is an
average over 200 trials.
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Figure 2: (a) `2 recovery error of the Σx-estimator for additive noise versus the control parameter (1 + σw)k. (b) `2 recovery
error of the IV-estimator versus the control parameter σwk. As predicted by Corollary 5 and 6, all curves are roughly straight
lines and align. Each point is an average over 100 trials.
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Figure 3: Comparison between recovery errors of the Σw- and Σx-estimators for additive noise. Each point is an average over
100 trials.
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Figure 4: `2 recovery error for missing noise versus (a) the erasure probability ρ and (b) the control parameter ρ
√
k. Each point

is an average over 200 trials.
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Figure 5: Comparison of the `2 recovery error of supp-OMP and the projected gradient method under knowledge of (a) Σw, (b)
Σx, and (c) an Instrumental Variable. The error is plotted against the control parameter (a) (σw + σ2

w)k, (b) (1 + σw)k, and (c)
σwk. Circles correspond to the projected gradient method and dots to supp-OMP. As claimed, supp-OMP performs better in all
cases considered. Each point is an average over 200 trials.

We also consider supp-OMP with the Σx- and IV-based estimators. Although not discussed in [4], it is natural to consider
the corresponding variants of the projected gradient method which use the Σ̂ and γ̂ from knowledge of Σx or IVs (c.f. (13)
in [4]). We plot the recovery errors for our two estimators in Figure 5 (b) and (c), and again observe better performance of
supp-OMP than the projected gradient method.

We next study the case with missing data with the following setting: p = 750, n = 500, σe = 0,Σx = I , k ∈ {2, . . . , 7}},
and ρ ∈ [0, 0.5]. The results are displayed in Figure 6, in which supp-OMP shows better performance.

Finally, although we only consider X with independent columns in this paper, and assume the sparsity level k is known,
we believe that both these restrictions can be removed. For now, we corroborate this claim via simulation. Figure 6 (a) shows
the results under the following choice of covariance matrix of X:

(Σx)ij =

{
1 i = j

0.2 i 6= j.

Again, supp-OMP dominates the projected gradient method in terms of empirical performance. Moreover, the performance
degradation due to correlation appears to be less pronounced in supp-OMP (compare Figure 6 (a) and (b)).

A Proof of Supporting Concentration Results

In this section, we provide the proofs to the concentration results for sub-Gaussian random variables that we make extensive
use of in Section 2 and 3. We repeat the statements of the results below for convenience.

Lemma 9. Suppose X ∈ Rn×k, Y ∈ Rn×m are zero-mean sub-Gaussian matrices with parameters ( 1
nΣx,

1
nσ

2
x),(

1
nΣy,

1
nσ

2
y

)
. Then for any fixed vector v1,v2, we have

P
(∣∣v>1 (Y >X − E

[
Y >X

])
v2

∣∣ ≥ t ‖v1‖ ‖v2‖
)
≤ 3 exp

(
−cnmin

{
t2

σ2
xσ

2
y

,
t

σxσy

})
.

In particular, if n & log p ≥ logm, log k, we have w.h.p.

∣∣v>1 (Y >X − E
[
Y >X

])
v2

∣∣ ≤ σxσy ‖v1‖ ‖v2‖
√

log p

n
.
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Figure 6: Comparison of the `2 recovery error of supp-OMP and the projected gradient method for missing data. The error
is plotted against the control parameter k

√
ρ

(1−ρ) . (a) Independent columns of X , and (b) Correlated columns. Dots correspond
to supp-OMP and circles to the projected gradient method. Our results show that supp-OMP performs better in all cases
considered. Each point is an average over 50 trials.

Setting v1 to be the ith standard basis vector, and using a union bound over i = 1, . . . ,m, we have w.h.p.

∥∥(Y >X − E
[
Y >X

])
v
∥∥
∞ ≤ σxσy ‖v‖

√
log p

n
.

Proof. Rescaling as necessary, we assume σx = σy = 1 and ‖v1‖ = ‖v2‖ = 1. Define Φ(x) = ‖x‖2 − E
(
‖x‖2

)
.

Then
∣∣v>1 (Y >X − E

[
Y >X

])
v2

∣∣ = 1
2 |Φ(Xv2 + Y v1)− Φ(Xv2)− Φ(Y v1)|. Note that Xv2 +Y v1 = [X,Y ][v>2 ,v

>
1 ]>,

where X ′ = [X,Y ] is zero-mean sub-Gaussian with parameter ( 1
nE
[
X ′>X ′

]
, 1
n ). Applying (70) in [4] to each of the three

terms gives ∣∣v>1 (Y >X − E
[
Y >X

])
v2

∣∣ ≥ t,
with probability at most exp

(
−cnmin

{
t2, t

})
.

Corollary 10. If X ∈ Rn×k is a zero-mean sub-Gaussian matrix with parameter ( 1
nσ

2
xI,

1
nσ

2
x), and v is a fixed vector in

Rn, then for any ε ≥ 1, we have

P

(∥∥X>v∥∥
2
>

√
(1 + ε)k

n
σx ‖v‖2

)
≤ 3 exp (−ckε)

Proof. By assmption,X> is zero-mean sub-Gaussian with parameter ( 1
k
k
nσ

2
xI,

1
k
k
nσ

2
x) Note that have

∥∥X>v∥∥2

2
≤
∣∣v>(XX> − k

nσ
2
xI)v

∣∣+
k
nσ

2
x ‖v‖

2
2. Applying the last lemma with t = k

nσ
2
xε, ε ≥ 1 to the first term, we obtain

P
(
k

∣∣∣∣v>(XX> − k

n
σ2
xI)v

∣∣∣∣ > k

n
σ2
xε ‖v‖

2

)
≤ 3 exp

(
−ckmin

{
ε2, ε

})
= 3 exp (−ckε) .

The corollary follows.
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Lemma 11. If X ∈ Rn×k, Y ∈ Rn×m are zero mean sub-Gaussian matrices with parameter ( 1
nΣx,

1
nσ

2
x),( 1

nΣy,
1
nσ

2
y),

then

P

(
sup

v1∈Rm,v2∈Rk,‖v1‖=‖v2‖=1

∣∣v>1 (Y >X − E
[
Y >X

])
v2

∣∣ ≥ t) ≤ 2 exp

(
−cnmin(

t2

σ2
xσ

2
y

,
t

σxσy
) + 6(k +m)

)
.

In particular, for each λ > 0, if n & max
{
σ2
xσ

2
y

λ2 , 1
}

(k +m) log p, then w.h.p.

sup
v1∈Rm,v2∈Rk

∣∣v>1 (Y >X − E
[
Y >X

])
v2

∣∣ ≤ 1

54
λ ‖v1‖ ‖v2‖

Proof. Rescaling as necessary, we assume σx = σy = 1. LetA1, be a 1/3-cover of v1 = {v ∈ Rm, ‖v‖ ≤ 1}; it is known that
|A1| ≤ 92m, and for each v, there is a u(v) ∈ A1 such that ‖∆(v)‖ , ‖v − u(v)‖ ≤ 1

3 . Similarly we can find a 1/3-cover
A2 of v2 = {v ∈ Rk, ‖v‖ ≤ 1} with |A2| ≤ 92k. Defining Φ(v1,v2) = v>1

(
Y >X − E

[
Y >X

])
v2, then

sup
v1∈v1,v2∈v2

|Φ(v1,v2)| ≤ max
u1∈A1,u2∈A2

|Φ(u1, u2)|+ sup
v1∈v1,v2∈v2

|Φ(∆(v1), u(v2))|

+ sup
v1∈v1,v2∈v2

|Φ(u(v1),∆(v2))|+ sup
v1∈v1,v2∈v2

|Φ(∆(v1),∆(v2))| .

Becaue 3∆(v1), u(v1) ∈ v1, and 3∆(v2), u(v2) ∈ v2, it follows that

sup
v1∈v1,v2∈v2

|Φ(v1,v2)| ≤ max
u1,u2∈A

|Φ(u1, u2)|+
(

1

3
+

1

3
+

1

9

)
sup

v1∈v1,v2∈v2

|Φ(v1,v2)| ,

hence supv1∈v1,v2∈v2
|Φ(v1,v2)| ≤ 9

2 maxu1,u2∈A |Φ(u1, u2)| . Using the last lemma and a union bound, we obtain

P
(

9

2
max

u1,u2∈A
|Φ(u1, u2)| ≥ t

)
≤ 92k+2m · exp

(
−cnmin

{
t2, t

})
≤ exp

(
−cnmin

{
t2, t

}
+ 6(k +m)

)
.
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