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1. Proof of Corollary 2.2

Recall that

I(a, b) = Pr(θ ≥ 0.5|θ ∼ Beta(a, b)) (1)

=
1

B(a, b)

∫ 1

0.5

ta−1(1− t)b−1dt,

where B(a, b) is the beta function.

It is easy to see that I(a, b) > 0.5 ⇐⇒ I(a, b) > 1 −
I(a, b). We re-write 1− I(a, b) as follows

1− I(a, b) =
1

B(a, b)

∫ 0.5

0

ta−1(1− t)b−1dt

=
1

B(a, b)

∫ 1

0.5

tb−1(1− t)a−1dt,

where the second equality is obtained by setting t :=
1− t. Then we have:

I(a, b)− (1− I(a, b))

=
1

B(a, b)

∫ 1

0.5

(ta−1(1− t)b−1 − tb−1(1− t)a−1)dt

=
1

B(a, b)

∫ 1

0.5

ta−1(1− t)b−1

((
t

1− t

)a−b
− 1

)
dt

Since t > 0.5, t
1−t > 1. When a > b,

(
t

1−t

)a−b
> 1

and hence I(a, b)− (1− I(a, b)) > 0, i.e, I(a, b) > 0.5.

When a = b,
(

t
1−t

)a−b
≡ 1 and I(a, b) = 0.5. When

a < b,
(

t
1−t

)a−b
< 1 and I(a, b) < 0.5.

2. Proof of Proposition 2.3

We use the proof technique in (Xie & Frazier, 2012)
to prove Proposition 2.3. By Proposition 2.1, we first

obtain the value function:

V (S
0
)
.
= sup

π
Eπ
 ∑
i∈HT

1(i ∈ H∗) +
∑
i6∈HT

1(i 6∈ H∗)
∣∣∣FT

 (2)

= sup
π

Eπ
(
K∑
i=1

h(P
T
i )

)
.

To decompose the final accuracy
∑K
i=1 h(PTi ) in-

to the intermediate reward at each stage, we de-
fine G0 =

∑K
i=1 h(P 0

i ) and Gt+1 =
∑K
i=1 h(P t+1

i ) −∑K
i=1 h(P ti ). Then,

∑K
i=1 h(PTi ) can be decomposed

as:
∑K
i=1 h(PTi ) ≡ G0 +

∑T−1
t=0 Gt+1. The value func-

tion can now be re-written as follows:

V (S0) = G0(S0) + sup
π

T−1∑
t=0

Eπ(Gt+1)

= G0(S0) + sup
π

T−1∑
t=0

Eπ (E(Gt+1|Ft)) .

= G0(S0) + sup
π

T−1∑
t=0

Eπ
(
E(Gt+1|St, it)

)
.

Here, the first inequality is true because G0 is deter-
minant and independent of π, the second inequality
is due to the tower property of conditional expecta-
tion and the third inequality holds because P t+1

i and
P ii , and thus, Gt+1 depend on Ft only through St and
it. We define intermediate expected reward gained by
labeling the it-th instance at the state St as follows:

R(St, it) = E(Gt+1|St, it)

= E

(
K∑
i=1

h(P t+1
i )−

K∑
i=1

h(P ti )|St, it

)
= E

(
h(P t+1

it
)− h(P tit)|S

t, it
)
. (3)
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The last equation is due to the fact that only P tit will be
changed if the it-th instance is labeled next. With the
expected reward function in place, our value function
takes the following form:

V (S0) = G0(s) + sup
π

Eπ
(
T−1∑
t=0

R(St, it)
∣∣∣S0

)
. (4)

3. Proof of Proposition 3.1

To prove the failure of deterministic KG, we first show
a key property for the expected reward function:

R(a, b) =
a

a+ b
(h(I(a+ 1, b))− h(I(a, b))) (5)

+
b

a+ b
(h(I(a, b+ 1))− h(I(a, b))) .

Lemma 3.1. When a, b are positive integers, if a = b,

R(a, b) = 0.52a

aB(a,a) and if a 6= b, R(a, b) = 0.

To prove lemma 3.1, we first present several basic prop-
erties for B(a, b) and I(a, b), which will be used in all
the following theorems and proofs.

1. Properties for B(a, b):

B(a, b) = B(b, a) (6)

B(a+ 1, b) =
a

a+ b
B(a, b) (7)

B(a, b+ 1) =
b

a+ b
B(a, b) (8)

2. Properties for B(a, b):

I(a, b) = 1− I(b, a) (9)

I(a+ 1, b) = I(a, b) +
0.5a+b

aB(a, b)
(10)

I(a, b+ 1) = I(a, b)− 0.5a+b

bB(a, b)
(11)

The properties for I(a, b) are derived from the ba-
sic property of regularized incomplete beta func-
tion 1.

Proof. When a = b, by Corollary 2.2, we have I(a +
1, b) > 0.5, I(a, b) = 0.5 and I(a, b+ 1) < 0.5. There-
fore, the expected reward (5) takes the following form:

R(a, b) = 0.5(I(a+ 1, a)− I(a, a)) +

0.5((1− I(a, a+ 1))− I(a, a))

= I(a+ 1, a)− I(a, a)

=
0.52a

aB(a, a)

1http://dlmf.nist.gov/8.17

When a > b, since a, b are integers, we have a ≥ b+ 1
and hence I(a+ 1, b) > 0.5, I(a, b) > 0.5, I(a, b+ 1) ≥
0.5 according to Corollary 2.2. The expected reward
(5) now becomes:

R(a, b) =
a

a+ b
I(a+ 1, b) +

b

a+ b
I(a, b+ 1)− I(a, b)

=
a

a+ b

1

B(a+ 1, b)

∫ 1

0.5

t · ta−1(1− t)b−1dt

+
b

a+ b

1

B(a, b+ 1)

∫ 1

0.5

ta−1(1− t)(1− t)b−1dt

− I(a, b)

=
1

B(a, b)

∫ 1

0.5

(t+ (1− t)) · ta−1(1− t)b−1dt− I(a, b)

=I(a, b)− I(a, b) = 0.

Here we use (7) and (8) to show that a
a+b

1
B(a+1,b) =

b
a+b

1
B(a,b+1) = 1

B(a,b) .

When a ≤ b− 1, we can prove R(a, b) = 0 in a similar
way.

With Lemma 3.1 in place, the proof for Proposition
3.1 is straightforward. Recall that the deterministic
KG policy chooses the next instance according to

it = arg max
i

R(St, i) ≡ arg max
i

R(ati, b
t
i),

and breaks the tie by selecting the one with the small-
est index. Since R(a, b) > 0 if and only if a = b, at the
initial stage t = 0, R(a0

i , b
0
i ) > 0 for those instances

i ∈ E = {i : a0
i = b0i }. The policy will first selec-

t i0 ∈ E with the largest R(a0
i , b

0
i ). After obtaining

the label yi0 , either a0
i0

or b0i0 will add one and hence
a1
i0
6= b1i0 and R(a1

i0
, b1i0) = 0. The policy will selec-

t another instance i1 ∈ E with the “current” largest
expected reward and the expected reward for i1 after
obtaining the label yi1 will then become zero. As a
consequence, the KG policy will label each instance

in E for the first |E| stages and R(a
|E|
i , b

|E|
i ) = 0 for

all i ∈ {1, . . . ,K}. Then the deterministic policy will
break the tie selecting the first instance to label. From
now on, for any t ≥ |E|, if at1 6= bt1, then the expect-
ed reward R(at1, b

t
1) = 0. Since the expected reward

for other instances are all zero, the policy will still la-
bel the first instance. On the other hand, if at1 = bt1,
and the first instance is the only one with the posi-
tive expected reward and the policy will label it. Thus
Proposition 3.1 is proved.

Remark. For randomized KG, after getting one label
for each instance in E for the first |E| stages, the ex-
pected reward for each instance has become zero. Then
randomized KG will uniformly select one instance to
label. At any stage t ≥ |E|, if there exists one instance

http://dlmf.nist.gov/8.17
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i (at most one instance) with ati = bti, the KG poli-
cy will provide the next label for i; otherwise, it will
randomly select an instance to label.

4. Proof of Theorem 3.2

To prove the consistency of the optimistic KG pol-
icy, we first show the exact values for R+

α (a, b) =
max(R1(a, b), R2(a, b)).

1. When a ≥ b+ 1:

R1(a, b) = I(a+ 1, b)− I(a, b) =
0.5a+b

aB(a, b)
> 0;

R2(a, b) = I(a, b+ 1)− I(a, b) = − 0.5a+b

bB(a, b)
< 0.

Therefore,

R+(a, b) = R1(a, b) =
0.5a+b

aB(a, b)
> 0.

2. When a = b:

R1(a, b) = I(a+ 1, a)− I(a, a) =
0.52a

aB(a, a)
;

R2(a, b) = 1− I(a, a+ 1)− I(a, a) =
0.52a

aB(a, a)
.

Therefore, we have R1 = R2 and

R+(a, b) = R1(a, b) = R2(a, b) =
0.52a

aB(a, a)
> 0.

3. When b− 1 ≥ a:

R1(a, b) = I(a, b)− I(a+ 1, b) = − 0.5a+b

aB(a, b)
< 0;

R2(a, b) = I(a, b)− I(a, b+ 1) =
0.5a+b

bB(a, b)
> 0.

Therefore

R+(a, b) = R2(a, b) =
0.5a+b

bB(a, b)
> 0.

For better visualization, we plot values of R+(a, b) for
different a, b in Figure 1.

As we can see R+(a, b) > 0 for any positive integers
(a, b), we first prove that lima+b→∞R+(a, b) = 0 in
the following Lemma.

Lemma 4.1. Properties for R+(a, b):

1. R(a, b) is symmetric, i.e., R+(a, b) = R+(b, a).

a

b
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Figure 1. Illustration of R+(a, b).

2. lima→∞R+(a, a) = 0.

3. For any fixed a ≥ 1, R+(a + k, a − k) = R+(a −
k, a+ k) is monotonically decreasing in k for k =
0, . . . , a− 1.

4. When a ≥ b, for any fixed b, R+(a, b) is mono-
tonically decreasing in a. By the symmetry of
R+(a, b), when b ≥ a, for any fixed a, R+(a, b)
is monotonically decreasing in b.

By the above four properties, we have
lim(a+b)→∞R+(a, b) = 0.

Proof. We first prove these four properties.

• Property 1: By the fact that B(a, b) = B(b, a),
the symmetry of R+(a, b) is straightforward.

• Property 2: For a > 1, R+(a,a)
R+(a−1,a−1) = 2a−1

2a < 1

and hence R+(a, a) is monotonically decreasing in
a. Moreover,

R+(a, a) = R+(1, 1)
a∏
i=2

2i− 1

2i

= R+(1, 1)

a∏
i=2

(1− 1

2i
)

≤ R+(1, 1)e−
∑a
i=2

1
2i

Since lima→∞
∑a
i=2

1
2i = ∞ and R+(a, a) ≥ 0,

lima→∞R+(a, a) = 0.

• Property 3: For any k ≥ 0,

R+(a+ (k + 1), a− (k + 1))

R+(a+ k, a− k)

=
(a+ k)B(a+ k, a− k)

(a+ k + 1)B(a+ (k + 1), a− (k + 1))

=
a− (k + 1)

a+ (k + 1)
< 1.
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• Property 4: When a ≥ b, for any fixed b:

R+(a+ 1, b)

R+(a, b)
=

aB(a, b)

2(a+ 1)B(a+ 1, b)

=
a(a+ b)

2a(a+ 1)
< 1.

According to the third property, when a+ b is an even
number, we have R+(a, b) < R+(a+b

2 , a+b
2 ). According

to the fourth property, when a + b is an odd number
and a ≥ b + 1, we have R+(a, b) < R+(a − 1, b) <
R+(a+b−1

2 , a+b−1
2 ); while when a+b is an odd number

and a ≤ b − 1, we have R+(a, b) < R+(a, b − 1) <
R+(a+b−1

2 , a+b−1
2 ). Therefore,

R+(a, b) < R+

(
ba+ b

2
c, ba+ b

2
c
)
.

According to the second property such that
lima→∞R+(a, a) = 0, we conclude that
lim(a+b)→∞R+(a, b) = 0.

Using Lemma 4.1, we first show that, in any sample
path, the optimistic KG will label each instance in-
finitely many times as T goes to infinity. Let ηi(T ) be
a random variable representing the number of times
that the i-th instance has been labeled until the stage
T using optimistic KG. Given a sample path ω, let
I(ω) = {i : limT→∞ ηi(T )(ω) < ∞} be the set of in-
stances that has been labeled only finite number of
times as T goes to infinity in this sample path. We
need to prove that I(ω) is an empty set for any ω. We
prove it by contradiction. Assuming that I(ω) is not

empty, then after a certain stage T̂ , instances in I(ω)
will never be labeled. By Lemma 4.1, for any j ∈ Ic,
limT→∞R+(aTj (ω), bTj (ω)) = 0. Therefore, there will

exist T̄ > T̂ such that:

max
j∈Ic

R+(aT̄j (ω), bT̄j (ω)) < max
i∈I

R+(aT̂i (ω), bT̂i (ω))

= max
i∈I

R+(aT̄i (ω), bT̄i (ω)).

Then according to the optimistic KG policy, the next
instance to be labeled must be in I(ω), which leads to
the contradiction. Therefore, I(ω) will be an empty
set for any sample path ω.

Let Y si be the random variable which takes the val-
ue 1 if the s-th label of the i-th instance is 1 and
the value −1 if the s-th label is 0. It is easy to see
that E(Y si |θi) = Pr(Y si = 1|θi) = θi. Hence, Y si ,
s = 1, 2, . . . are i.i.d. random variables. By the fact
that limT→∞ ηT (i) = ∞ in all sample paths and us-
ing the strong law of large number, we conclude that,

conditioning on θi, i = 1, . . . ,K, the conditional prob-
ability of

lim
T→∞

aTi − bTi
ηi(T )

= lim
T→∞

∑ηi(T )
s=1 Y si
ηi(T )

= E(Y si |θi) = 2θi−1

for all i = 1, . . . ,K, is one. According to Propo-
sition 2.1., we have HT = {i : aTi ≥ bTi } and
H∗ = {i : θi ≥ 0.5}. The accuracy is Acc(T ) =
1
K (|HT ∩H∗|+ |Hc

T ∩ (H∗)c|) . We have:

Pr( lim
T→∞

Acc(T ) = 1|{θi}Ki=1)

=Pr
(

lim
T→∞

(|HT ∩H∗|+ |Hc
T ∩ (H∗)c|) = K|{θi}Ki=1

)
≥Pr

(
lim
T→∞

aTi − bTi
ηi(T )

= 2θi − 1,∀i = 1, . . . ,K|{θi}Ki=1

)
=1,

whenever θi 6= 0.5 for all i. The last inequali-
ty is due to the fact that, as long as θi is not
0.5 in any i, any sample path that gives the event

limT→∞
aTi −b

T
i

ηi(T ) = 2θi − 1,∀i = 1, . . . ,K also gives the

event limT→∞(aTi −bTi ) = sgn(2θi−1)(+∞), which fur-
ther implies limT→∞(|HT ∩H∗|+ |Hc

T ∩ (H∗)c|) = K.

Finally, we have:

Pr
(

lim
T→∞

Acc(T ) = 1
)

=E{θi}Ki=1

[
Pr
(

lim
T→∞

Acc(T ) = 1|{θi}Ki=1

)]
=E{θi:θi 6=0.5}Ki=1

[
Pr
(

lim
T→∞

Acc(T ) = 1|{θi}Ki=1

)]
=E{θi:θi 6=0.5}Ki=1

[1] = 1,

where the second equality is because {θi : ∃i, θi = 0.5}
is a zero measure set.

5. Incorporate Workers’ Reliability

We assume there are K instances with the soft-label
θi ∼ Beta(a0

i , b
0
i ) and M workers with the reliability

ρj ∼ Beta(c0j , d
0
j ). Given the decision on labeling the i-

th instance by the j-th worker, we have the probability
of the outcome Zij :

Pr(Zij = 1|θi, ρj) = θiρj + (1− θi)(1− ρj) (12)

Pr(Zij = −1|θi, ρj) = (1− θi)ρj + θi(1− ρj) (13)

We approximate the posterior so that at any stage for
all i, j, θi and ρj will follow Beta distributions. In par-
ticular, assuming at the current state θi ∼ Beta(ai, bi)
and ρj ∼ Beta(cj , dj), the posterior distribution con-
ditioned on Zij takes the following form:

p(θi, ρj |Zij = 1) =
Pr(Zij = 1|θi, ρj)Beta(ai, bi)Beta(cj , dj)

Pr(Zij = 1)

p(θi, ρj |Zij = −1) =
Pr(Zij = −1|θi, ρj)Beta(ai, bi)Beta(cj , dj)

Pr(Zij = −1)



Appendix

where the likelihood Pr(Zij = z|θi, ρj) for z = 1,−1 is
defined in (12) and (13) respectively and

Pr(Zij = 1) = E(Pr(Zij = 1|θi, ρj))
= E(θi)E(ρj) + (1− E(θi))(1− E(ρj))

=
ai

ai + bi

cj
cj + dj

+
bi

ai + bi

dj
cj + dj

.

Pr(Zij = −1) = E(Pr(Zij = −1|θi, ρj))
= (1− E(θi))E(ρj) + E(θi)(1− E(ρj))

=
bi

ai + bi

cj
cj + dj

+
ai

ai + bi

dj
cj + dj

.

The posterior distributions p(θi, pj |Zij = z) no longer
takes the form of the product of Beta distributions on
θi and pj . Therefore, we use variational approximation
by first assuming the conditional independence of θi
and ρj :

p(θi, ρj |Zij = z) ≈ p(θi|Zij = z)p(ρj |Zij = z)

In particular, we have the exact form for the marginal
distributions:

p(θi|Zij = 1) =
θiE(ρj) + (1− θi)(1− E(ρj))

Pr(Zij = 1)
Beta(ai, bi)

p(ρj |Zij = 1) =
E(θi)ρj + (1− E(θi))(1− ρj)

Pr(Zij = 1)
Beta(cj , dj)

p(θi|Zij = −1) =
(1− θi)E(ρj) + θi(1− E(ρj))

Pr(Zij = −1)
Beta(ai, bi)

p(ρj |Zij = −1) =
(1− E(θi))ρj + E(θi)(1− ρj)

Pr(Zij = −1)
Beta(cj , dj)

To approximate the marginal distribution as Beta dis-
tribution, we use the moment matching technique. In
particular, we approximate

θi|(Zij = z) ≈ Beta(ãi(z), b̃i(z)),

such that

Ẽz(θi)
.
= Ep(θi|Zij=z)(θi) =

ãi(z)

ãi(z) + b̃i(z)
, (14)

Ẽz(θ
2
i )

.
= Ep(θi|Zij=z)(θ

2
i ) =

ãi(z)(ãi(z) + 1)

(ãi(z) + b̃i(z))(ãi(z) + b̃i(z) + 1)
,

(15)

where ãi(z)

ãi(z)+b̃i(z)
and ãi(z)(ãi(z)+1)

(ãi(z)+b̃i(z))(ãi(z)+b̃i(z)+1)
are the

first and second order moment of Beta(ãi(z), b̃i(z)).
To make (14) and (15) hold, we have:

ãi(z) = Ẽz(θi)
Ẽz(θi)− Ẽz(θ2

i )

Ẽz(θ2
i )−

(
Ẽz(θi)

)2 , (16)

b̃i(z) = (1− Ẽz(θi))
Ẽz(θi)− Ẽz(θ2

i )

Ẽz(θ2
i )−

(
Ẽz(θi)

)2 . (17)

Similarly, we approximate

ρj |(Zij = z) ≈ Beta(c̃j(z), d̃j(z)),

such that

Ẽz(ρj)
.
= Ep(ρj |Zij=z)(ρj) =

c̃j(z)

c̃j(z) + d̃j(z)
, (18)

Ẽz(ρ
2
j )

.
= Ep(ρj |Zij=z)(ρ

2
j ) =

c̃j(z)(c̃j(z) + 1)

(c̃j(z) + d̃j(z))(c̃j(z) + d̃j(z) + 1)
,

(19)

where
c̃j(z)

c̃j(z)+d̃j(z)
and

c̃j(z)(c̃j(z)+1)

(c̃j(z)+d̃j(z))(c̃j(z)+d̃j(z)+1)
are the

first and second order moment of Beta(c̃j(z), d̃j(z)).
To make (14) and (15) hold, we have:

c̃j(z) = Ẽz(ρj)
Ẽz(ρj)− Ẽz(ρ2

j )

Ẽz(ρ2
j )−

(
Ẽz(ρj)

)2 , (20)

d̃j(z) = (1− Ẽz(ρj))
Ẽz(ρj)− Ẽz(ρ2

j )

Ẽz(ρ2
j )−

(
Ẽz(ρj)

)2 . (21)

Furthermore, we can compute the exact values for

Ẽz(θi), Ẽz(θ2
i ), Ẽz(ρj) and Ẽz(ρ2

j ) as follows.

Ẽ1(θi) =
E(θ2i )E(ρj) + (E(θi)− E(θ2i ))(1− E(ρj))

p(Zij = 1)

=
ai((ai + 1)cj + bidj)

(ai + bi + 1)(aicj + bidj)
.

Ẽ1(θ
2
i ) =

E(θ3i )E(ρj) + (E(θ2i )− E(θ3i ))(1− E(ρj))
p(Zij = 1)

=
ai(ai + 1)((ai + 2)cj + bidj)

(ai + bi + 1)(ai + bi + 2)(aicj + bidj)
.

Ẽ−1(θi) =
(E(θi)− E(θ2i ))E(ρj) + E(θ2i )(1− E(ρj))

p(Zij = −1)

=
ai(bicj + (ai + 1)dj)

(ai + bi + 1)(bicj + aidj)
.

Ẽ−1(θ
2
i ) =

(E(θ2i )− E(θ3i ))E(ρj) + E(θ3i )(1− E(ρj))
p(Zij = −1)

=
ai(ai + 1)(bicj + (ai + 2)dj)

(ai + bi + 1)(ai + bi + 2)(bicj + aidj)
.

Ẽ1(ρj) =
E(θi)E(ρ2j ) + (1− E(θi))(E(ρj)− E(ρ2j ))

p(Zij = 1)

=
cj(ai(cj + 1) + bidj)

(cj + dj + 1)(aicj + bidj)
.

Ẽ1(ρ
2
j ) =

E(θi)E(ρ3j ) + (1− E(θi))(E(ρ2j )− E(ρ3j ))
p(Zij = 1)

=
cj(cj + 1)(ai(cj + 2) + bidj)

(cj + dj + 1)(cj + dj + 2)(aicj + bidj)
.
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Algorithm 2 Optimistic Knowledge Gradient with
Workers’ Reliability

Input: Parameters of prior distributions for in-
stances {a0

i , b
0
i }Ki=1 and for workers {c0j , d0

j}Mj=1. The
total budget T .
for t = 0, . . . , T − 1 do

1. Select the next instance it to label and the
next worker jt to label it according to:

(it, jt) = argmax
i∈{1,...,K},j∈{1,...,M}

(
R+(ati, b

t
i, c

t
j , d

t
j)
)
.

Here

R
+

(a
t
i, b

t
i, c

t
j , d

t
j) = max(R1(a

t
i, b

t
i, c

t
j , d

t
j), R2(a

t
i, b

t
i, c

t
j , d

t
j)).

2. Acquire the label Zitjt ∈ {−1, 1} of the i-th
instance from the j-th worker.
3. Update the posterior by setting:

at+1
it

= ãtit(Zitjt) bt+1
it

= b̃tit(Zitjt)

ct+1
jt

= c̃tjt(Zitjt) dt+1
jt

= d̃tjt(Zitjt),

and all parameters for i 6= it and j 6= jt remain
the same.

end for
Output: The positive set HT = {i : aTi ≥ bTi }.

Ẽ−1(ρj) =
(1− E(θi))E(ρ2j ) + E(θi)(E(ρj)− E(ρ2j ))

p(Zij = −1)

=
cj(bi(cj + 1) + aidj)

(cj + dj + 1)(bicj + aidj)
.

Ẽ−1(ρ
2
j ) =

(1− E(θi))E(ρ3j ) + E(θi)(E(ρ2j )− E(ρ3j ))
p(Zij = −1)

=
cj(cj + 1)(bi(cj + 2) + aidj)

(cj + dj + 1)(cj + dj + 2)(bicj + aidj)
.

Assuming at a certain stage, θi for the i-th instance
has the Beta posterior Beta(ai, bi) and ρj for the j-th
worker has the Beta posterior Beta(cj , dj). The reward
of getting label 1 for the i-th instance from the j-th
worker and getting label -1 are:

R1(ai, bi, cj , dj) = h(I(ãi(z = 1), b̃i(z = 1)))− h(I(ai, bi)) (22)

R2(ai, bi, cj , dj) = h(I(ãi(z = −1), b̃i(z = −1)))− h(I(ai, bi)),
(23)

where ãi(z = ±1) and b̃i(z = ±1) are defined in (20)
and (21), which further depend on cj and dj . With
the reward in place, we present the optimistic knowl-
edge gradient algorithm for budget allocation with the
modeling of workers’ reliability in Algorithm 2.

6. Extensions

6.1. Incorporating Feature Information

When each instance is associated with a p-dimensional
feature vector xi ∈ Rp, we incorporate the feature in-
formation in our budget allocation problem by assum-
ing:

θi = σ(〈w,xi〉)
.
=

1

1 + exp{−〈w,xi〉}
, (24)

where σ(x) = 1
1+exp{−x} is the sigmoid function and

w is assumed to be drawn from a Gaussian prior
N(µ0,Σ0). At the t-th stage with the state St =
(µt,Σt) and w ∼ (µt,Σt), one decides to label the
it-th instance according to a certain policy (e.g., KG)
and observes the label yit ∈ {−1, 1}. The posteri-
or distribution p(w|yit , St) ∝ p(yit |w)p(w|St) has the
following log-likelihood:

ln p(w|yit , St)
= ln p(yit |w) + ln p(w|St) + const

=1(yit = 1) lnσ(〈w,xit〉) + 1(yit = −1) ln (1− σ(〈w,xit〉))

− 1

2
(w − µt)

′Ωt(w − µt) + const,

where Ωt = (Σt)
−1 is the precision matrix. To ap-

proximate p(w|yit ,µt,Σt) by a Gaussian distribution
N(µt+1,Σt+1), we use the Laplace method (see Chap-
ter 4.4 in (Bishop, 2007)). In particular, we define the
mean of the posterior Gaussian using the MAP (max-
imum a posteriori) estimator of w:

µt+1 = arg max
w

ln p(w|yit , St). (25)

And µt+1 can be solved by Newton’s method. and the
precision matrix:

Ωt+1 = −∇2 ln p(w|yit , St)
∣∣
w=µt+1

= Ωt + σ(µ′t+1xit+1)(1− σ(µ′t+1xit+1))xit+1x
′
it+1

.

By Sherman-Morrison formula, the covariance matrix

Σt+1 = (Ωt+1)
−1

=Σt −
σ(µ′t+1xit)(1− σ(µt+1xit))

1 + σ(µ′t+1xit)(1− σ(µ′t+1xit))x
′
it

Σtxit
Σtxit+1x′itΣt.

We also calculate the transition probability of yit = 1
and yit = −1 as follows:

Pr(yit = 1|St, it) =

∫
p(yit = 1|w)p(w|St)dw

=

∫
σ(w′xi)p(w|St)dw

≈ σ(µiκ(s2
i )),
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where κ(s2
i ) = (1 + πs2

i /8)−1/2 and µi = 〈µt,xi〉 and
s2
i = x′iΣtxi.

To calculate the reward function, in addition to the
transition probability, we also need to compute:

P ti = Pr(θi ≥ 0.5|Ft)

= Pr

(
1

1 + exp{−w′txi}
≥ 0.5

∣∣∣wt ∼ N(µt,Σt)

)
= Pr(w′txi ≥ 0|wt ∼ N(µt,Σt))

=

∫ ∞
0

(∫
w

δ(c− 〈w,xi〉)N(w|µt,Σt)dw

)
dc,

where δ(·) is the Dirac delta function.Let

p(c) =

∫
w

δ(c− 〈w,xi〉)N(w|µt,Σt)dw.

Since the marginal of a Gaussian distribution is still
a Gaussian, p(c) is a univariate-Gaussian distribution
with the mean and variance:

µi = E(c) = 〈E(w),xi〉 = 〈µt,xi〉
s2
i = Var(c) = (xi)

′Cov(w,w)xi = (xi)
′Σtxi.

Therefore, we have:

P ti =

∫ ∞
0

p(c)dc = 1− Φ

(
−µi
si

)
, (26)

where Φ(·) is the Gaussian CDF.

With P ti and transition probability in place, the ex-
pected reward in value function takes the following
form :

R(St, it) = E

(
K∑
i=1

h(P t+1
i )−

K∑
i=1

h(P ti )
∣∣∣St, it) . (27)

We note that since w will affect all P ti , the summation
from 1 to K in (27) can not be omitted and hence (27)
cannot be written as E

(
h(P t+1

it
)− h(P tit)|S

t, it
)

in (3).
In this problem, the myopic KG or optimistic KG need
to solve O(2TK) optimization problems to compute
the mean of the posterior as in (25), which could be
computationally quite expensive. One possibility to
address this problem is to use the variational Bayesian
logistic regression (Jaakkola & Jordan, 2000), which
could lead to a faster optimization procedure.

6.2. Multi-Class Setting

In multi-class setting with C different classes, we as-
sume that the i-th instance is associated with a proba-
bility vector θi = (θi1, . . . θiC), where θic is the proba-
bility that the i-th instance belongs to the class c and

∑C
i=1 θic = 1. We assume that θi has a Dirichlet prior

θi ∼ Dir(α0
i ) and our initial state S0 is a K×C matrix

with α0
i as its i-th row. At each stage t with the cur-

rent state St, we determine an instance it to label and
collect its label yit ∈ {1, . . . , C}, which follows the cat-

egorical distribution: p(yit) =
∏C
c=1 θ

I(yit=c)
itc

. Since
the Dirichlet is the conjugate prior of the categorical
distribution, the next state induced by the posterior
distribution is: St+1

it
= Stit + δyit and St+1

i = Sti for
all i 6= it. Here δc is a row vector with one at the c-
th entry and zeros at all other entries. The transition
probability:

Pr(yit = c|St, it) = E(θitc|St) =
αtitc∑C
c=1 α

t
itc

.

In multi-class problem, at the final stage T when all
budget is used up, we construct the set HT

c for each
class c to maximize the conditional expected classifi-
cation accuracy:

{HTc }
C
c=1 = arg max

Hc⊆{1,...,C},Hc∩Hc̃=∅
E
(
K∑
i=1

C∑
c=1

I(i ∈ Hc)I(i ∈ H∗c )

∣∣∣∣∣FT
)

= arg max
Hc⊆{1,...,C},Hc∩Hc̃=∅

K∑
i=1

C∑
c=1

I(i ∈ Hc) Pr
(
i ∈ H∗c |FT

)
.

(28)

Here, H∗c = {i : θic ≥ θic′ ,∀c′ 6= c} is the true set
of instances in the class c. The set HT

c consists of
instances that belong to class c. Therefore, {HT

c }Cc=1
should form a partition of all instances {1, . . . ,K}. Let

PTic = Pr(i ∈ H∗c |FT ) = Pr(θic ≥ θic̃, ∀ c̃ 6= c|FT ). (29)

To maximize RHS of (28), we have

HT
c = {i : PTic ≥ PTic̃ ,∀c̃ 6= c}. (30)

If there is i belongs to more than one HT
c , we only as-

sign it to the one with the smallest index c. The max-
imum conditional expected accuracy takes the form:

K∑
i=1

(
max

c∈{1...,C}
PTic

)
. (31)

Then the value function can be defined as:

V (S
0
)
.
= sup

π
Eπ
(
K∑
i=1

C∑
c=1

I(i ∈ HTc )I(i ∈ H∗c )
∣∣∣S0

)
(32)

= sup
π

Eπ
(
Eπ
(
K∑
i=1

C∑
c=1

I(i ∈ HTc )I(i ∈ H∗c )
∣∣∣FT)∣∣∣∣S0

)

= sup
π

Eπ
(
K∑
i=1

h(P
T
i )
∣∣∣S0

)
,

where PT
i = (PTi1 , . . . , P

T
iC) and

h(PT
i )

.
= max
c∈{1...,C}

PTic .
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Following Proposition 2.2, let P tic = Pr(i ∈ H∗c |Ft) and
Pt
i = (P ti1, . . . , P

t
iC). By defining intermediate reward

function at each stage:

R(St, it) = E
(
h(Pt+1

it
)− h(Pt

it)|S
t, it
)
.

The value function can be re-written as:

V (S0) = G0(S0) + sup
π

Eπ
(
T−1∑
t=0

R(St, it)
∣∣∣S0

)
,

where G0(S0) =
∑K
i=1 h(P0

i ). Since the reward func-
tion only depends on Stit = αtit ∈ RC+, we can define
the reward function in a more explicit way by defining:

R(α) =

C∑
c=1

αc∑C
c̃=1 αc̃

h(I(α + δc))− h(I(α)).

Here δc be a row vector of length C with one at the
c-th entry and zeros at all other entries; and I(α) =
(I1(α), . . . , IC(α)) where

Ic(α) = Pr(θc ≥ θc̃,∀c̃ 6= c|θ ∼ Dir(α)). (33)

Therefore, we have R(St, it) = R(αtit).

To evaluate the reward R(α), the major bottleneck
is how to compute Ic(α) efficiently. Directly taking
the C-dimensional integration on the region {θc ≥
θc̃,∀c̃ 6= c} ∩∆C will be computationally very expen-
sive, where ∆C denotes the C-dimensional simplex.
Therefore, we propose a method to convert the com-
putation of Ic(α) into a one-dimensional integration.
It is known that to generate θ ∼ Dir(α), it is equiv-
alent to generate {Xc}Cc=1 with Xc ∼ Gamma(αc, 1)
and let θc ≡ Xc∑C

c=1Xc
. Then θ = (θ1, . . . , θC) will fol-

low Dir(α). Therefore, we have:

Ic(α) = Pr(Xc ≥ Xc̃,∀c̃ 6= c|Xc ∼ Gamma(αc, 1)). (34)

It is easy to see that

Ic(α) (35)

=

∫
0≤x1≤xc

· · ·
∫
xc≥0

· · ·
∫
0≤xC≤xc

C∏
c=1

fGamma(xc;αc, 1)dx1 . . . dxC

=

∫
xc≥0

fGamma(xc;αc, 1)
∏
c̃ 6=c

FGamma(xc;αc̃, 1)dxc,

where fGamma(x;αc, 1) is the density function of
Gamma distribution with the parameter (αc, 1) and
FGamma(xc;αc̃, 1) is the CDF of Gamma distribution
at xc with the parameter (αc̃, 1). In many softwares,
FGamma(xc;αc̃, 1) can be calculated very efficiently
without an explicit integration. Therefore, we can e-
valuate Ic(α) by performing only a one-dimensional
numerical integration as in (35). We could also use
Monte-Carlo approximation to further accelerate the
computation in (35).
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