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Abstract

This supplemental document presents details concerning analytical derivations that support the theo-
rems made in the main text “Spectral Compressed Sensing via Structured Matrix Completion”, accepted
to the 30th International Conference on Machine Learning (ICML 2013). One can find here the detailed
proof of Theorems 1- 3.

1 A Summary of Notation
Let the singular value decomposition (SVD) of Xe be Xe = UΛV ∗. Denote by

T :=
{
UM∗ + M̃V ∗ : M ∈ C(n1−k1+1)(n2−k1+1)×r;M̃ ∈ Ck1k2×r

}
the tangent space with respect to Xe, and T⊥ the orthogonal complement of T . Denote by PU (resp. PV ,
PT ) the orthogonal projections onto the column (resp. row, tangent) space of Xe, i.e. for any M

PUM = UU∗M ; PVM = MV V ∗; PT = PU + PV − PUPV .

We let PT⊥ = I − PT be the orthogonal complement of PT , where I denotes the identity operator.
We denote by ‖M‖∗, ‖M‖F, ‖M‖ the nuclear norm, the Frobenious norm, and the spectral norm (or

operator norm) of M , respectively. The inner product between two matrices is defined as

〈B,C〉 = trace (B∗C) .

Besides, we denote by Ωe(i, l) the set of locations of the enhanced matrix Xe containing copies of xi,l.
Due to the Hankel and block-Hankel structures, one can easily verify the following: for any Ωe(i, l), there
exists at most one index lying in any given row of the enhanced form, and at most one index coming from
any given column. For each (i, l) ∈ [n1] × [n2], we use A(i,l) to denote a basis matrix that extracts the
average of all entries in Ωe (i, l). Specifically,

(
A(i,l)

)
α,β

:=

{
1√
|Ωe(i,l)|

, if (α, β) ∈ Ωe (i, l) ,

0, else.
(1)

We will use ωi,l := |Ωe (i, l)| as a short hand notation.

2 A List of Main Theorems
For convenience of presentation, we restate our main theorems in this section, which are the subjects to
prove in this manuscript.
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Definition 1. [Incoherence]Let Xe denote the enhanced matrix associated with X, and suppose the SVD
of Xe is given by Xe = UΛV ∗. Then X is said to have incoherence (µ1, µ2, µ3) if they are respectively the
smallest values obeying

σmin (GL) ≥ 1

µ1
, σmin (GR) ≥ 1

µ1
; (2)

max
(i,l)∈[n1]×[n2]

1

|Ωe(i, l)|2

∣∣∣∣∣∣
∑

(α,β)∈Ωe(i,l)

(UV ∗)α,β

∣∣∣∣∣∣
2

≤ µ2r

n2
1n

2
2

; (3)

∀(k, l) ∈ [n1]× [n2] :
∑

(α,β)∈[n1]×[n2]

ωα,β
∣∣〈UU∗A(k,l)V V ∗,A(α,β)

〉∣∣2 ≤ µ3r

n1n2
ωk,l. (4)

Theorem 1. Let X be a n1 × n2 data matrix, and Ω the random location set of size m. Define cs :=

max
(
n1n2

k1k2
, n1n2

(n1−k1+1)(n2−k2+1)

)
. If all measurements are noiseless, then there exists a constant c1 > 0 such

that under either of the following conditions:
i) Condition (2), (3) and (4) hold and

m > c1 max (µ1cs, µ3cs, µ2) r log2 (n1n2) ; (5)

ii) Condition (2) holds and
m > c1µ

2
1c

2
sr

2 log2(n1n2); (6)

then X is the unique solution of EMaC with probability exceeding 1− 1
n2
1n

2
2
.

The performance in the presence of noise is states as follows.

Theorem 2. Consider a 2-fold Hankel matrix Xe of rank r, and suppose that the total power of the noise
is δ. Let X̂ be the optimizer of EMaC-Noisy. Under the conditions of Theorem 1, one can bound∥∥∥Xe − X̂e

∥∥∥
F
≤

{
2
√
n1n2 + 8n1n2 +

8
√

2n2
1n

2
2

m

}
δ

with probability exceeding 1− 1
n2
1n

2
2
.

Their counterpart for the Hankel matrix completion problem is stated in the following theorem.

Theorem 3. Consider a 2-fold Hankel matrix Xe of rank r. The bounds in Theorem 1 and 2 continue to
hold, if the incoherence µ1 is measured as the smallest number that satisfies

∀ (i, l) ∈ [n1]× [n2],
∥∥UU∗A(i,l)

∥∥2

F ≤
µ1csr

n1n2
, and

∥∥A(i,l)V V ∗
∥∥2

F ≤
µ1csr

n1n2
. (7)

The proof in the noiseless setting (i.e. Theorem 1 and the noiseless part of Theorem 3) is provided in
Section 3. The analyses of the noisy counterparts (i.e. Theorem 2 and the noisy part of Theorem 3) are
built upon the noiseless situation, which is deferred to Appendix G.

3 Main Proof for Exact Recovery
The algorithm EMaC has similar spirit as the well-known matrix completion algorithms [1, 2] except that
we impose Hankel and block-Hankel structures on the matrices. While [2] has derived a general sufficient
condition for exact recovery under any basis (see [2, Theorem 3]), the basis in our case does not exhibit a good
coherence property required in [2], and hence these results cannot yield useful estimates in our framework.
Nevertheless, the beautiful golfing scheme introduced in [2] lays the foundation of our analysis in the sequel.

For concreteness, the analysis in this paper focuses on recovering harmonically sparse signals as stated in
Theorem 1, since proving Theorem 1 is slightly more involved than proving Theorem 3. We note, however,
that our analysis already entails all reasoning required for Theorem 3.
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Before proceeding to the proof, we would first like to stress that the incoherence measure (µ1, µ2, µ3) are
not independent. In addition to them, we define another measure µ4 as the smallest number that satisfies

∀b ∈ [n1]× [n2] :
∑

a∈[n1]×[n2]

ωa |〈PTAb,Aa〉|2 ≤
µ4r

n1n2
ωb, (8)

Some of their mutual connections are listed as follows.

Lemma 1. Suppose that Xe has incoherence (µ1, µ2, µ3, µ4). We have the following.

1. GL = E∗LEL, and GR = (ERE
∗
R)
T ;

2. For any a, b ∈ [n1]× [n2], one has

|〈Ab,PTAa〉| ≤
√
ωb

ωa

3µ1csr

n1n2
; (9)

3. The incoherence measure satisfies

µ2 ≤ µ2
1c

2
sr, µ3 ≤ µ2

1c
2
sr, (10)

and
µ4 ≤ 9µ2

1c
2
sr; (11)

4. The measure µ4 can be bounded by µ1 and µ3 as follows

µ4 ≤ 6µ1cs + 3µ3cs.

Proof. See Appendix A.

Note that the above lemma indicates that our new incoherence measure µ4 can be bounded by the sum
of µ1 and µ3 up to some multiplicative constant. In fact, we will prove instead the following theorem based
on (µ1, µ2, µ4), which is slightly more general than Theorem 1.

Theorem 4. Suppose that X has incoherence measure (µ1, µ2, µ3, µ4). If

m > c0 max (µ1cs, µ2, µ4) r log2 (n1n2) , (12)

then X is the unique solution of EMaC with probability exceeding 1− 1
n2
1n

2
2

Note that Theorem 1 can be delivered as an immediate consequence of Theorem 4 by exploiting the
relations among (µ1, µ2, µ3, µ4) given in Lemma 1.

3.1 Dual Certification
Denote by A(k,l) (M) the projection of M onto the subspace spanned by A(k,l), and define the projection
operator onto the space spanned by all A(k,l) and its orthogonal complement as

A :=
∑

(k,l)∈[n1]×[n2]

A(k,l), and A⊥ = I − A. (13)

Here,
{
A⊥ (M)

}
spans a [k1k2 (n1 − k1 + 1) (n2 − k2 + 1)− n1n2] dimensional subspace.

There are two common ways to describe the randomness of Ω: one corresponds to sampling without re-
placement, and another concerns sampling with replacement (i.e. Ω containsm indices {ai ∈ [n1]× [n2] : 1 ≤ i ≤ m}
that are i.i.d. generated). As discussed in [2, Section II.A], while both situations result in the same order-
wide bounds, the latter situation admits simpler analysis due to independence. Therefore, we will assume
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that Ω is a multiset (possibly with repeated elements) and ai’s are independently and uniformly distributed
throughout the proofs of this paper, and define the associated operators as

AΩ :=

m∑
i=1

Aai . (14)

We also define another projection operator A′Ω similar to (14), but with the sum extending only over distinct
samples. Its complement operator is defined as A′Ω⊥ := A − A′Ω. Note that AΩ (M) = 0 is equivalent to
A′Ω(M) = 0.

With these definitions, EMaC can be rewritten as the following general matrix completion problem:

minimize
M

‖M‖∗ (15)

subject to A′Ω (M) = A′Ω (Xe) ,

A⊥ (M) = A⊥ (Xe) = 0.

To prove exact recovery of convex optimization, it suffices to produce an appropriate dual certificate, as
stated in the following lemma.

Lemma 2. For a location set Ω that contains m random indices. Suppose that the sampling operator AΩ

obeys ∥∥∥PTAPT − n1n2

m
PTAΩPT

∥∥∥ ≤ 1

2
. (16)

If there exists a matrix W that obeys
A′Ω⊥ (UV ∗ + W ) = 0, (17)

‖PT (W )‖F ≤
1

2n2
1n

2
2

, (18)

and
‖PT⊥ (W )‖ ≤ 1

2
. (19)

Then Xe is the unique optimizer of (15) or, equivalently, X is the unique minimizer of EMaC.

Proof. See Appendix B.

Condition (16) will be analyzed in Section 3.2, while a valid certificate W will be constructed in Section
3.3. These are the objectives of the remaining part of the section.

3.2 Deviation of
∥∥PTAPT − n1n2

m
PTAΩPT

∥∥
Lemma 2 requires that AΩ is sufficiently incoherent with respect to T . The following lemma quantifies the
projection of each A(k,l) onto the tangent space T .

Lemma 3. Suppose that (2) holds, then∥∥UU∗A(k,l)

∥∥2

F
≤ µ1csr

n1n2
,
∥∥A(k,l)V V ∗

∥∥2

F
≤ µ1csr

n1n2
,
∥∥PT (A(k,l)

)∥∥2

F
≤ 2µ1csr

n1n2
(20)

for all (k, l) ∈ [n1]× [n2].

Proof. See Appendix C.

As long as (20) holds, the deviation of PTAΩPT can be bounded reasonably well in the following lemma.
This establishes Condition (16) required by Lemma 2.
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Lemma 4. Suppose that ∥∥PT (A(k,l)

)∥∥2

F
≤ 2µ1csr

n1n2
,

for (k, l) ∈ [n1]× [n2]. Then for any small constant δ ≤ 2, one has∥∥∥n1n2

m
PTAΩPT − PTAPT

∥∥∥ ≤ δ (21)

with probability exceeding 1− 2n1n2 exp
(
− δ2m

16µ1csr

)
.

Proof. See Appendix D.

The above two lemmas taken collectively lead to the following fact: for any given constant ε < e−1 <
1
2 ,
∥∥n1n2

m PTAΩPT − PTAPT
∥∥ ≤ ε holds with probability exceeding 1 − (n1n2)

−4, provided that m >
c1µ1csr log (n1n2) for some constant c1 > 0.

3.3 Construction of Dual Certificate
Now we are in a position to construct the dual certificate, for which we will employ the golfing scheme
introduced in [2]. Suppose that we generate j0 independent random location multisets Ωi (1 ≤ i ≤ j0), each
containing m

j0
i.i.d. samples. This way the distribution of Ω is the same as Ω1 ∪ Ω2 ∪ · · · ∪ Ωj0 . Note that

Ωi’s correspond to sampling with replacement. Let ρ := m
n1n2

and q := ρ
j0

denote the undersampling factors
of Ω and Ωi, respectively.

Consider a small constant ε < 1
e , and choose j0 := 3 log 1

ε
n1n2. The construction of the dual then

proceeds as follows:

Construction of a dual certificate W via the golfing scheme.
1. Set B0 = 0, and j0 := 3 log 1

ε
(n1n2).

2. For all i (1 ≤ i ≤ j0), let Bi = Bi−1 +
(

1
qAΩi +A⊥

)
PT (UV ∗ −Bi−1) .

3. Set W := − (UV ∗ −Bj0).

We will establish that W is a valid dual certificate if we can show that W satisfies the conditions stated
in Lemma 2, which we will verify step by step.

First, by construction, we have the identities(
A′Ω +A⊥

)
(Bi) = Bi,

for all 1 ≤ i ≤ j0. Since UV ∗ + W = Bj0 , this validates that A′Ω⊥ (UV ∗ + W ) = 0, as required in (17).
Secondly, if one defines the deviation of PTBi from UV ∗ as

F i := UV ∗ −Bi,

and hence W = F j0 , then one can verify that

PT (F i) = PT (UV ∗)− PT
(
Bi−1 +

(
1

q
AΩi +A⊥

)
PT (UV ∗ −Bi−1)

)
=

(
PT − PT

(
1

q
AΩi +A⊥

)
PT
)

(F i−1) .

Lemma 4 asserts the following: if qn1n2 ≥ c1µ1csr log (n1n2) or, equivalently, m ≥ c̃1µ1csr log2(n1n2), then
with overwhelming probability one has∥∥∥∥PT − PT (1

q
AΩi +A⊥

)
PT
∥∥∥∥ =

∥∥∥∥PTAPT − 1

q
PTAΩiPT

∥∥∥∥ ≤ ε < 1

2
.
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This allows us to bound ‖PT (F i)‖F as follows

‖PT (F i)‖F ≤ ε
i ‖PT (F 0)‖F ≤ ε

i ‖UV ∗‖F = εi
√
r,

which immediately validates Condition (18):

‖PT (W )‖F = ‖PT (F j0)‖F ≤ ε
j0
√
r <

1

2n2
1n

2
2

.

Finally, it remains to show that ‖PT⊥ (W )‖ ≤ 1
2 . For any F ∈ T , define the following homogeneity

measure
ν (F ) = max

(k,l)∈[n1]×[n2]

1

ωk,l

∣∣〈A(k,l),F
〉∣∣2 , (22)

which largely relies on the average per-entry energy in each skew diagonal. We would like to show that
ν
((
I − PT

(
1
qAΩi +A⊥

))
F
)
≤ 1

4ν (F ) with high probability. This is supplied in the following lemma.

Lemma 5. Consider any given F ∈ T , and suppose that (2) and (8) hold. If the following bound holds,

m > c7 max {µ4, µ1cs} r log2 (n1n2) ,

then one has
ν

((
PT − PT

(
1

q
AΩi +A⊥

)
PT
)
F

)
≤ 1

4
ν (F ) (23)

for all 1 ≤ i ≤ j0 with probability exceeding 1− (n1n2)
−3.

Proof. See Appendix E.

This lemma basically indicates that a homogeneous F with respect to the observation basis typically
results in a homogeneous

(
PT − PT

(
1
qAΩi +A⊥

)
PT
)

(F ), and hence we can hope that the homogeneity
condition (3) of F 0 can carry over to every PT (F i) (1 ≤ i ≤ j0).

Observe that Condition (3) is equivalent to saying

ν (F 0) = max
(k,l)∈[n1]×[n2]

1

ωk,l

∣∣〈A(k,l),UV ∗
〉∣∣2 = max

(k,l)∈[n1]×[n2]

1

ω2
k,l

∣∣∣∣∣∣
∑

(α,β)∈Ωe(k,l)

(UV ∗)α,β

∣∣∣∣∣∣
2

≤ µ2r

(n1n2)
2 .

One can then verify that for every i (0 ≤ i ≤ j0),

ν (PT (F i)) ≤
1

4
ν (PT (F i−1)) ≤

(
1

4

)i
ν (F 0) ≤

(
1

4

)i
µ2r

(n1n2)
2

holds with high probability if m > c7 max {µ4, µ1cs} r log2 (n1n2) for some constant c7 > 0.
The following lemma then relates the homogeneity measure with

∥∥∥PT⊥ ( 1
qAΩi +A⊥

)
(F i)

∥∥∥.
Lemma 6. For any given F ∈ T such that ν(F ). Then there exist positive constants c8 and c9 such that
for any t ≤

√
ν(F )n1n2, ∥∥∥∥PT⊥ (1

q
AΩi +A⊥

)
(F )

∥∥∥∥ > t

holds with probability at most c8 exp
(
− c9qt

2

ν(F )n1n2

)
.

Proof. See Appendix F.
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Since ν(F i) ≤
(

1
4

)i µ2r
n2
1n

2
2
for all 1 ≤ i ≤ j0 with high probability, then one can bound√

ν(F i)n1n2√
16µ2r

≤
(

1

2

)i+2

.

Lemma 6 immediately yields that for all i (0 ≤ i ≤ j0)

P

{
∀i :

∥∥∥∥PT⊥ (1

q
AΩ +A⊥

)
(F i)

∥∥∥∥ ≤ (1

2

)i+2
}
≥ P

{
∀i :

∥∥∥∥PT⊥ (1

q
AΩ +A⊥

)
(F i)

∥∥∥∥ ≤
√
ν(F i)n1n2√

16µ2r

}

≥ 1− c8n1n2 exp

(
−c9qn1n2

16µ2r

)
≥ 1− c8 (n1n2)

−4
,

holds if qn1n2 > c12 max (µ1cs, µ4, µ2) r log (n1n2) for some constant c12 > 0. This is also equivalent to

m > c13 max (µ1cs, µ4, µ2) r log2 (n1n2)

for some constant c13 > 0. Under this condition, we can conclude

‖PT⊥ (W )‖ ≤
j0∑
i=0

∥∥∥∥PT⊥ (1

q
AΩ +A⊥

)
(F i)

∥∥∥∥
≤

j0∑
i=0

(
1

2

)i+2

<
1

2
.

So far, we have successfully established that with high probability, W is a valid dual certificate, and
hence EMaC admits perfect reconstruction of X.

A Proof of Lemma 1
(1) We first show that E∗LEL and ERE

∗
R coincide with the matrices GL and GT

R. Since Y d is a diagonal
matrix, one can verify the identities(

Y l∗
d Z∗LZLY

l
d

)
i1,i2

=
(
y∗i1yi2

)l
(Z∗LZL)i1,i2 ,

and

(Z∗LZL)i1,i2 =

k2−1∑
k=0

(
z∗i1zi2

)k
=


1−(z∗i1zi2)

k2

1−z∗i1zi2
, if i1 6= i2,

k2, if i1 = i2,

which immediately give

E∗LEL =
1

k1k2

[
Z∗L,Y

∗
dZ
∗
L, · · · , (Y

∗
d)
k1−1

Z∗L

]
ZL

ZLY d
...

ZLY
k1−1
d

 =
1

k1k2

k1−1∑
l=0

Y l∗
d Z∗LZLY

l
d

=
1

k1k2

((
k1−1∑
l=0

(
y∗i1yi2

)l)
(Z∗LZL)i1,i2

)
1≤i1,i2≤r

=
1

k1k2

(
1−

(
y∗i1yi2

)k1
1− y∗i1yi2

1−
(
z∗i1zi2

)k2
1− z∗i1zi2

)
1≤i1,i2≤r
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with the convention that
1−(y∗i1yi1)

k1

1−y∗i1yi1
= k1 and

1−(z∗i1zi1)
k2

1−z∗i1zi1
= k2. That said, all diagonal entries satisfy

(E∗LEL)i1,i1 = 1, and the magnitude of off-diagonal entries can be calculated as∣∣∣(E∗LEL)i1,i2

∣∣∣ =

∣∣∣∣ sin [πk1 (f1i1 − f1i2)]

k1 sin [π (f1i1 − f1i2)]

sin [πk2 (f2i1 − f2i2)]

k2 sin [π (f2i1 − f2i2)]

∣∣∣∣ .
Recall that this exactly coincides with the definition of GL. Similarly, GR = (ERE

∗
R)
T . These findings

immediately yield

σmin (E∗LEL) ≥ 1

µ1
, and σmin (ERE

∗
R) ≥ 1

µ1
. (24)

(2) Consider the case in which we only know σmin (GL) ≥ 1
µ1

and σmin (GR) ≥ 1
µ1
. In fact, since

|〈Ab,PTAa〉| = |〈PTAb,Aa〉|, we only need to examine the situation where ωb < ωa.
Observe that

|〈Ab,PTAa〉| ≤ |〈Ab,UU∗Aa〉|+ |〈Ab,AaV V ∗〉|+ |〈Ab,UU∗AaV V ∗〉| .

Owing to the multi-fold Hankel structure of Aa, the matrix UU∗
√
ωaAa consists of ωa columns of UU∗.

Since there are only ωb nonzero entries in Ab each of magnitude 1√
ωb

, we can derive

|〈Ab,UU∗Aa〉| ≤ ‖Ab‖1 ‖UU∗Aa‖∞ = ωb ·
1
√
ωb
·max
α,β

∣∣∣(UU∗Aa)α,β

∣∣∣
≤
√
ωb

ωa
max
α,β

∣∣∣(UU∗)α,β

∣∣∣ .
Denote by M∗k and Mk∗ the kth column and kth row of M , respectively, then it can be observed that

each entry of UU∗ is bounded in magnitude by∣∣∣(UU∗)k,l

∣∣∣ =

∣∣∣∣(EL (E∗LEL)
−1

E∗L

)
k,l

∣∣∣∣ =
∣∣∣(EL)k∗ (E∗LEL)

−1
((EL)l∗)

∗
∣∣∣

≤ ‖(EL)k∗‖F ‖(EL)l∗‖F
∥∥∥(E∗LEL)

−1
∥∥∥

≤ r

k1k2

1

σmin (E∗LEL)
≤ µ1csr

n1n2
, (25)

which immediately implies that

|〈Ab,UU∗Aa〉| ≤
√
ωb

ωa

µ1csr

n1n2
. (26)

Similarly, one can derive

|〈Ab,AaV V ∗〉| ≤
√
ωb

ωa

µ1csr

n1n2
. (27)

We still need to bound the magnitude of 〈UU∗AaV V ∗,Ab〉. One can observe that for any 1 ≤ k ≤ k1k2:

‖(UU∗)k∗‖F ≤
∥∥∥(EL)k∗ (E∗LEL)

−1
E∗L

∥∥∥
F

≤ ‖(EL)k∗‖F
∥∥∥(E∗LEL)

−1
E∗L

∥∥∥ ≤√ r

k1k2
· 1√

σmin (E∗LEL)

≤
√

csr

n1n2σmin (E∗LEL)
.
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Similarly, for any 1 ≤ l ≤ (n1 − k1 + 1) (n2 − k2 + 1), one has ‖(V V ∗)∗l‖F ≤
√

csr

n1n2σmin(E∗LEL)
. The

magnitude of all entries of UU∗AaV V ∗ can now be bounded by

max
k,l

∣∣∣(UU∗AaV V ∗)k,l

∣∣∣ ≤ ‖Aa‖max
k
‖(UU∗)k∗‖F max

l
‖(V V ∗)∗l‖F

≤ 1
√
ωa

csr

n1n2σmin (E∗LEL)

≤ 1
√
ωa

µ1csr

n1n2
.

Since Ab has only ωb nonzero entries each has magnitude 1√
ωb

, one can verify that

|〈UU∗AaV V ∗,Ab〉| ≤
(

max
k,l

∣∣∣(UU∗AaV V ∗)k,l

∣∣∣) · 1
√
ωb
ωb =

√
ωb

ωa

µ1csr

n1n2
. (28)

The above bounds (26), (27) and (28) taken together lead to

|〈Ab,PTAa〉| ≤ |〈UU∗Aa,Ab〉|+ |〈AaV V ∗,Ab〉|+ |〈UU∗AaV V ∗,Ab〉|

≤
√
ωb

ωa

3µ1csr

n1n2
. (29)

(3) On the other hand, the bound on |〈Ab,PTAa〉| immediately leads the following upper bounds on∑
a |〈UU∗AaV V ∗,Ab〉|2 ωa and

∑
a |〈PTAb,Aa〉|2 ωa:∑

a∈[n1]×[n2]

|〈UU∗AaV V ∗,Ab〉|2 ωa

≤
∑

a∈[n1]×[n2]

(√
ωb

ωa

µ1csr

n1n2

)2

ωa = ωb

∑
a∈[n1]×[n2]

(
µ1csr

n1n2

)2

=ωb
µ2

1c
2
sr

2

n1n2

which simply come from the inequality (28), and∑
a∈[n1]×[n2]

|〈PTAb,Aa〉|2 ωa

≤
∑

a∈[n1]×[n2]

(√
ωb

ωa

3µ1csr

n1n2

)2

ωa = ωb

∑
a∈[n1]×[n2]

(
3µ1csr

n1n2

)2

= ωb
9µ2

1c
2
sr

2

n1n2
,

which is an immediate consequence of (29). These bounds indicate that µ3 ≤ µ2
1c

2
sr and µ4 ≤ 9µ2

1c
2
sr.

We can also obtain an upper bound on µ2 through µ1 as follows. Observe that there exists a unitary
matrix B such that

UV ∗ = EL (E∗LEL)
− 1

2 B (ERE
∗
R)
− 1

2 ER.

For any (k, l) ∈ [n1]× [n2], we can then bound∣∣∣(UV ∗)k,l

∣∣∣ =

∣∣∣∣(EL (E∗LEL)
− 1

2 B (ERE
∗
R)
− 1

2 ER

)
k,l

∣∣∣∣
≤ ‖(EL)k∗‖F

∥∥∥(E∗LEL)
− 1

2

∥∥∥ ‖B‖∥∥∥(E∗RER)
− 1

2

∥∥∥ ‖(ER)∗l‖F

≤
√

r

k1k2
µ1

√
r

(n1 − k1 + 1) (n2 − k2 + 1)

≤ µ1csr

n1n2
.
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Since A(k,l) has only ωk,l nonzero entries each of magnitude 1√
ωk,l

, this leads to

1

ω2
k,l

∣∣∣∣∣∣
∑

(α,β)∈Ωe(k,l)

(UV ∗)α,β

∣∣∣∣∣∣
2

=
1

ωk,l

∣∣〈UV ∗,A(k,l)

〉∣∣2
≤ 1

ωk,l

{(
max
k,l

∣∣∣(UV ∗)k,l

∣∣∣) 1
√
ωk,l
· ωk,l

}2

≤
(

max
k,l

∣∣∣(UV ∗)k,l

∣∣∣)2

≤ µ2
1c

2
sr

r

n2
1n

2
2

,

which indicates that µ2 ≤ µ2
1c

2
sr.

(4) Finally, we split
∑

a∈[n1]×[n2]

∣∣〈PTAb,
√
ωaAa

〉∣∣2 as follows∑
a∈[n1]×[n2]

|〈PTAb,
√
ωaAa〉|2 =

∑
a∈[n1]×[n2]

|〈(PU + PV − PUPV )Ab,
√
ωaAa〉|2

≤ 3
∑

a∈[n1]×[n2]

{
|〈PUAb,

√
ωaAa〉|2 + |〈PVAb,

√
ωaAa〉|2 + |〈PUPVAb,

√
ωaAa〉|2

}
Now look at

∑
a

∣∣〈PUAb,
√
ωaAa

〉∣∣2 =
∑

a

∣∣〈UU∗Ab,
√
ωaAa

〉∣∣2. We know that

‖UU∗Ab‖2F ≤
µ1csr

n1n2
, (30)

and that UU∗Ab has ωb non-zero columns, or,

UU∗Ab
column permutation

=
1
√
ωb

 Ub︸︷︷︸
ωb columns

,0

 , (31)

and hence
〈
UU∗Ab,

√
ωaAa

〉
is simply the sum of all entries of UU∗Ab lying in the set Ωe(a). Since there

are at most ωb nonzero entries (due to the above structure of UU∗Ab) in each sum, we can bound

|〈UU∗Ab,
√
ωaAa〉|2 =

∣∣∣∣∣∣
∑

(α,β)∈Ωe(a)

(UU∗Ab)α,β

∣∣∣∣∣∣
2

≤ ωb

∑
(α,β)∈Ωe(a)

∣∣∣(UU∗Ab)α,β

∣∣∣2
using the inequality (

∑ωb

i=1 xi)
2 ≤ ωb

∑ωb

i=1 x
2
i . This then gives∑

a∈[n1]×[n2]

|〈UU∗Ab,
√
ωaAa〉|2 ≤ ωb

∑
a∈[n1]×[n2]

∑
(α,β)∈Ωe(a)

∣∣∣(UU∗Ab)α,β

∣∣∣2
≤ ωb ‖UU∗Ab‖2F ≤ ωb

µ1csr

n1n2
,

where the last inequality follows from Lemma 3. Similarly, one has∑
a∈[n1]×[n2]

|〈AbV V ∗,
√
ωaAa〉|2 ≤ ωb

µ1csr

n1n2
.

To summarize,∑
a∈[n1]×[n2]

|〈PTAb,
√
ωaAa〉|2

≤ 3
∑

a∈[n1]×[n2]

{
|〈PUAb,

√
ωaAa〉|2 + |〈PVAb,

√
ωaAa〉|2 + |〈PUPVAb,

√
ωaAa〉|2

}
≤ 6µ1csωbr

n1n2
+

3µ3csωbr

n1n2
.
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B Proof of Lemma 2
Consider any valid perturbation H obeying PΩ (X + H) = PΩ (X), and denote by He the enhanced form of
H. We note that the constraint requires A′Ω (He) = 0 (or AΩ (He) = 0) and A⊥ (He) = 0. In addition, set
W 0 = PT⊥ (B) for any B that satisfies 〈B,PT⊥ (He)〉 = ‖PT⊥ (He)‖∗ and ‖B‖ ≤ 1. Therefore, W 0 ∈ T⊥
and ‖W 0‖ ≤ 1, and hence UV ∗ + W 0 is a subgradient of the nuclear norm at Xe. We will establish this
lemma by considering two scenarios separately.

(1) Consider first the case in which He satisfies

‖PT (He)‖F ≤
n2

1n
2
2

2
‖PT⊥ (He)‖F . (32)

Since UV ∗ + W 0 is a subgradient of the nuclear norm at Xe, it follows that

‖Xe + He‖∗ ≥ ‖Xe‖∗ + 〈UV ∗ + W 0,He〉
= ‖Xe‖∗ + 〈UV ∗ + W ,He〉+ 〈W 0,He〉 − 〈W ,He〉
= ‖Xe‖∗ +

〈(
A′Ω +A⊥

)
(UV ∗ + W ) ,He

〉
+ 〈W 0,He〉 − 〈W ,He〉 (33)

≥ ‖Xe‖∗ + ‖PT⊥ (He)‖∗ − 〈W ,He〉 (34)

where (33) holds from (17), and (34) follows from the property ofW 0 and the fact that
(
A′Ω +A⊥

)
(He) = 0.

The last term of (34) can be bounded as

〈W ,He〉 = 〈PT (W ) ,He〉+ 〈PT⊥ (W ) ,He〉
≤ ‖PT (W )‖F ‖PT (He)‖F + ‖PT⊥ (W )‖ ‖PT⊥ (He)‖∗

≤ 1

2n2
1n

2
2

‖PT (He)‖F +
1

2
‖PT⊥ (He)‖∗ ,

where the last inequality follows from the assumptions (18) and (19). Plugging this into (34) yields

‖Xe + He‖∗ ≥ ‖Xe‖∗ −
1

2n2
1n

2
2

‖PT (He)‖F +
1

2
‖PT⊥ (He)‖∗

≥ ‖Xe‖∗ −
1

4
‖PT⊥ (He)‖F +

1

2
‖PT⊥ (He)‖F (35)

≥ ‖Xe‖∗ +
1

4
‖PT⊥ (He)‖F

where (35) follows from the inequality ‖M‖∗ ≥ ‖M‖F and (32). Therefore, Xe is the minimizer of EMaC.
We still need to prove the uniqueness of the minimizer. The inequality (35) implies that ‖Xe + He‖∗ =

‖Xe‖∗ only when ‖PT⊥ (He)‖F = 0. If ‖PT⊥ (He)‖F = 0, then ‖PT (He)‖F ≤
n2
1n

2
2

2 ‖PT⊥ (He)‖F = 0, and
hence PT⊥ (He) = PT (He) = 0, which only occurs when He = 0. Hence, Xe is the unique minimizer in
this situation.

(2) On the other hand, consider the complement scenario where the following holds

‖PT (He)‖F ≥
n2

1n
2
2

2
‖PT⊥ (He)‖F . (36)

We would first like to bound
∥∥(n1n2

m AΩ +A⊥
)
PT (He)

∥∥
F and

∥∥(n1n2

m AΩ +A⊥
)
PT⊥ (He)

∥∥
F. The former

11



term can be lower bounded by∥∥∥(n1n2

m
AΩ +A⊥

)
PT (He)

∥∥∥2

F

=
〈(n1n2

m
AΩ +A⊥

)
PT (He) ,

(n1n2

m
AΩ +A⊥

)
PT (He)

〉
=
〈n1n2

m
AΩPT (He) ,

n1n2

m
AΩPT (He)

〉
+
〈
A⊥PT (He) ,A⊥PT (He)

〉
≥
〈
PT (He) ,

n1n2

m
AΩPT (He)

〉
+
〈
PT (He) ,A⊥PT (He)

〉
(37)

=
〈
PT (He) ,PT

(n1n2

m
AΩ +A⊥

)
PT (He)

〉
= 〈PT (He) ,PT (He)〉+

〈
PT (He) ,

(n1n2

m
PTAΩPT − PTAPT

)
PT (He)

〉
≥‖PT (He)‖2F −

∥∥∥PTAPT − n1n2

m
PTAΩPT

∥∥∥ ‖PT (He)‖2F (38)

≥
(

1−
∥∥∥PTAPT − n1n2

m
PTAΩPT

∥∥∥) ‖PT (He)‖2F

≥ 1

2
‖PT (He)‖2F . (39)

On the other hand, since the operator norm of any projection operator is bounded above by 1, one can
verify that ∥∥∥n1n2

m
AΩ +A⊥

∥∥∥ ≤ n1n2

m

(∥∥Aa1 +A⊥
∥∥+

m∑
i=2

‖Aai‖

)
≤ n1n2,

where ai (1 ≤ i ≤ m) are m uniform random indices that form Ω. This implies the following bound:∥∥∥(n1n2

m
AΩ +A⊥

)
PT⊥ (He)

∥∥∥
F
≤ n1n2 ‖PT⊥ (He)‖F ≤

2

n1n2
‖PT (He)‖F , (40)

where the last inequality arises from our assumption. Combining this with the above two bounds yields

0 =
∥∥∥(n1n2

m
AΩ +A⊥

)
(He)

∥∥∥
F
≥
∥∥∥(n1n2

m
AΩ +A⊥

)
PT (He)

∥∥∥
F
−
∥∥∥(n1n2

m
AΩ +A⊥

)
PT⊥ (He)

∥∥∥
F

≥
√

1

2
‖PT (He)‖F −

2

n1n2
‖PT (He)‖F

≥ 1

2
‖PT (He)‖F ≥

n2
1n

2
2

4
‖PT⊥ (He)‖F ≥ 0,

which immediately indicates PT⊥ (He) = 0 and PT (He) = 0. Hence, (36) can only hold when He = 0.

C Proof of Lemma 3
By definition, we have the identities∥∥PT (A(k,l)

)∥∥2

F =
〈
PT
(
A(k,l)

)
,A(k,l)

〉
=
〈
PU
(
A(k,l)

)
+ PV

(
A(k,l)

)
− PUPV

(
A(k,l)

)
,A(k,l)

〉
=
∥∥PU (A(k,l)

)∥∥2

F +
∥∥PV (A(k,l)

)∥∥2

F −
∥∥PUPV (A(k,l)

)∥∥2

F .

Since U (resp. V ) and EL (resp. ER) determine the same column (resp. row) space, we can write

UU∗ = EL (E∗LEL)
−1

E∗L and V V ∗ = E∗R (ERE
∗
R)
−1

ER,

12



and thus ∥∥PT (A(k,l)

)∥∥2

F ≤
∥∥PU (A(k,l)

)∥∥2

F +
∥∥PV (A(k,l)

)∥∥2

F

≤
∥∥∥EL (E∗LEL)

−1
E∗LA(k,l)

∥∥∥2

F
+
∥∥∥A(k,l)E

∗
R (ERE

∗
R)
−1

ER

∥∥∥2

F

≤ 1

σmin (E∗LEL)

∥∥E∗LA(k,l)

∥∥2

F +
1

σmin (ERE
∗
R)

∥∥A(k,l)E
∗
R
∥∥2

F .

Note that √ωk,lE∗LA(k,l) consists of ωk,l columns of E∗L (and hence it contains rωk,l nonzero entries in total).
Owing to the fact that each entry of E∗L has magnitude 1√

k2k2
, one can derive

∥∥E∗LA(k,l)

∥∥2

F =
1

ωk,l
· rωk,l ·

1

k1k2
=

r

k1k2
≤ rcs
n1n2

.

A similar argument yields ∥∥A(k,l)E
∗
R
∥∥2

F ≤
csr

n1n2
.

We know from Lemma 1 that E∗LEL = GL and ERE
∗
R = GT

L , and hence σmin (E∗LEL) ≥ 1
µ1

and
σmin (ERE

∗
R) ≥ 1

µ1
. One can, therefore, conclude that for every (k, l) ∈ [n1]× [n2],

∥∥PU (A(k,l)

)∥∥2

F ≤
µ1csr

n1n2
,
∥∥PV (A(k,l)

)∥∥2

F ≤
µ1csr

n1n2
, and

∥∥PT (A(k,l)

)∥∥2

F ≤
2µ1csr

n1n2
. (41)

D Proof of Lemma 4
Define a family of operators

∀(k, l) ∈ [n1]× [n2] : Z(k,l) :=
n1n2

m
PTA(k,l)PT −

1

m
PTAPT .

We can also compute

PTA(k,l)PT (M) = PT
{〈

A(k,l),PTM
〉
A(k,l)

}
= PT

(
A(k,l)

) 〈
PT
(
A(k,l)

)
,M

〉
, (42)

and hence (
PTA(k,l)PT

)2
(M) =

[
PTA(k,l)PT

{
PT
(
A(k,l)

)}] 〈
PT
(
A(k,l)

)
,M

〉
= PT

{〈
A(k,l),PT

(
A(k,l)

)〉
A(k,l)

} 〈
PT
(
A(k,l)

)
,M

〉
=
〈
A(k,l),PT

(
A(k,l)

)〉
PT
(
A(k,l)

) 〈
PT
(
A(k,l)

)
,M

〉
. (43)

Comparing (42) and (43) gives(
PTA(k,l)PT

)2
=
〈
A(k,l),PT

(
A(k,l)

)〉
PTA(k,l)PT ≤

2µ1csr

n1n2
PTA(k,l)PT , (44)

where the inequality follows from our assumption that〈
A(k,l),PT

(
A(k,l)

)〉
=
∥∥PT (A(k,l)

)∥∥2

F ≤
2µ1csr

n1n2
.

Let ai (1 ≤ i ≤ m) be m independent random pairs uniformly chosen from [n1] × [n2], then we have
E (Zai) = 0. This further gives

EZ2
ai = E

(n1n2

m
PTAaiPT

)2

−
(
E
(n1n2

m
PTAaiPT

))2

=
n2

1n
2
2

m2
E (PTAaiPT )

2 − 1

m2
(PTAPT )

2
,
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We can then bound the operator norm as∥∥E (Z2
ai

)∥∥ ≤ ∥∥∥∥n2
1n

2
2

m2
E (PTAaiPT )

2

∥∥∥∥+
1

m2

∥∥∥(PTAPT )
2
∥∥∥

≤ n2
1n

2
2

m2

∥∥∥E (PTAaiPT )
2
∥∥∥+

1

m2

≤ n2
1n

2
2

m2

2µ1csr

n1n2
‖E (PTAaiPT )‖+

1

m2
(45)

=
2µ1csrn1n2

m2

1

n1n2
‖PTAPT ‖+

1

m2

≤ 4µ1csr

m2
:= V0, (46)

where (45) uses the fact that PTAaiPT � 0. Besides, the first equality of (44) gives
∥∥PTA(k,l)PT

∥∥2 ≤∥∥PTA(k,l)

∥∥2

F

∥∥PTA(k,l)PT
∥∥ and hence

∥∥PTA(k,l)PT
∥∥ ≤ ∥∥PTA(k,l)

∥∥2

F, which immediately yields

‖Zai‖ ≤
n1n2

m
‖PTAaiPT ‖+

1

m
‖PTAPT ‖ ≤

n1n2

m
‖PTAai‖

2
F +

1

m
<

4µ1csr

m
.

This together with (46) gives
2mV0

‖Zai‖
≥ 2.

Applying the Operator Bernstein Inequality [2, Theorem 6] yields that for any t ≤ 2, we have

P

(∥∥∥∥∥
m∑
i=1

Zai

∥∥∥∥∥ > t

)
≤ 2n1n2 exp

(
− t2

16µ1csr
m

)
.

Finally, one can observe that
∑m
i=1Zai is equivalent to n1n2

m PTAΩPT − PTAPT in distribution, which
completes the proof.

E Proof of Lemma 5
Fix any b ∈ [n1]× [n2]. For any a ∈ [n1]× [n2], define

za =
1

qn1n2
〈Ab,PTAF 〉 −

〈
Ab,

1

q
PTAa

〉
〈Aa,F 〉 .

Then for any i.i.d. αi’s chosen uniformly at random from [n1] × [n2], we can easily check that E (zαi) = 0.
Define a multiset Ωl := {αi | 1 ≤ i ≤ qn1n2}, then the decomposition

AΩlF =

qn1n2∑
i=1

Aαi 〈Aαi ,F 〉

allows us to derive

〈Ab,PTAΩlF 〉 =

〈
Ab,

qn1n2∑
i=1

PTAαi 〈Aαi ,F 〉

〉
,

and thus
qn1n2∑
i=1

zαi = 〈Ab,PTAF 〉 −
qn1n2∑
i=1

〈
Ab,

1

q
PTAαi

〉
〈Aαi ,F 〉

= 〈Ab,PTAF 〉 −
1

q
〈Ab,PTAΩlF 〉

=

〈
Ab,

(
PTAPT −

1

q
PTAΩlPT

)
F

〉
.
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Owing to the fact that Ezαi = 0, we can bound the variance of each term as follows

E |zαi |
2

= Var

(〈
Ab,

1

q
PTAαi

〉
〈Aαi ,F 〉

)
≤ E

∣∣∣∣〈Ab,
1

q
PTAαi

〉
〈Aαi ,F 〉

∣∣∣∣2
=

1

n1n2

∑
a∈[n1]×[n2]

∣∣∣∣〈Ab,
1

q
PTAa

〉
〈Aa,F 〉

∣∣∣∣2
≤ 1

q2

ν (F )

n1n2

∑
a∈[n1]×[n2]

|〈PTAb,Aa〉|2 ωa

≤ µ4rν(F )

(qn1n2)
2ωb,

where the last inequality arises from the definition of µ4, i.e. for every b ∈ [n1]× [n2],∑
a∈[n1]×[n2]

|〈PTAb,Aa〉|2 ωa ≤
µ4r

n1n2
ωb. (47)

This immediately gives

1

ωb
E

(
qn1n2∑
i=1

|zαi |
2

)
≤ µ4rν(F )

qn1n2
≤ max {µ4, 3µ1cs} rν(F )

qn1n2
:= V.

On the other hand, Lemma 1 shows the inequality

|〈Ab,PTAa〉| ≤
√
ωb

ωa

3µ1csr

n1n2
, (48)

which further leads to

1
√
ωb

∣∣∣∣〈Ab,
1

q
PTAa

〉
〈Aa,F 〉

∣∣∣∣ ≤√ωaν (F )
1
√
ωbq
|〈Ab,PTAa〉|

≤
√
ν (F )

1

q

3µ1csr

n1n2
.

Since 1
qn1n2

〈Ab,PTAF 〉 = E
〈
Ab,

1
qPTAαi

〉
〈Aαi ,F 〉, one has as well

1
√
ωb

∣∣∣∣ 1

qn1n2
〈Ab,PTAF 〉

∣∣∣∣ =
1
√
ωb

∣∣∣∣E〈Ab,
1

q
PTAa

〉
〈Aa,F 〉

∣∣∣∣ ≤√ν (F )
1

q

3µ1csr

n1n2
,

which immediately leads to

1
√
ωb
|zαi | ≤

1
√
ωb

∣∣∣∣ 1

qn1n2
〈Ab,PTAF 〉

∣∣∣∣+
1
√
ωb

∣∣∣∣〈Ab,
1

q
PTAαi

〉
〈Aαi ,F 〉

∣∣∣∣
≤
√
ν (F )

1

q

6µ1csr

n1n2

The above bounds indicate that
2V

1√
ωb
|za|
≥
√
ν(F ).

Applying the operator Bernstein inequality [2, Theorem 6] yields for any t < ν (F ),

P

 1

ωb

∣∣∣∣∣
qn1n2∑
i=1

zαi

∣∣∣∣∣
2

> t

 ≤ c6 exp

(
− tqn1n2

4 max {µ4, 3µ1cs} rν(F )

)
.

15



Thus, there are some constants c7, c̃7 > 0 such that whenever qn1n2 > c̃7 max {µ4, 3µ1cs} r log (n1n2) or,
equivalently, m > c7 max {µ4, 3µ1cs} r log2 (n1n2), we have

P

(
|
∑qn1n2

i=1 zαi |
2

ωb
>

1

4
ν(F )

)
≤ c̃6 exp

(
− qn1n2

16 max {µ4, 3µ1cs} rν(F )

)
≤ 1

(n1n2)
4 .

Finally, we observe that in distribution,

v

((
PTAPT −

1

q
PTAΩlPT

)
F

)
= max

b∈[n1]×[n2]

|
∑qn1n2

i=1 zαi |
2

ωb
.

Applying a simple union bound over all b ∈ [n1]× [n2] allows us to derive (23).

F Proof of Lemma 6
For any a ∈ [n1]× [n2], define

Ha =
1

q
PT⊥ (Aa) 〈Aa,F 〉+

1

qn1n2
PT⊥A⊥ (F ) .

Let αi (1 ≤ i ≤ qn1n2) be independently and uniformly drawn from [n1] × [n2] which forms Ωl. Observing
that

AF =
∑

a∈[n1]×[n2]

Aa 〈Aa,F 〉 ,

we can write
PT⊥AF =

∑
a∈[n1]×[n2]

PT⊥ (Aa) 〈Aa,F 〉 .

This immediately gives

EHαi =
1

qn1n2
PT⊥A⊥ (F ) +

1

qn1n2

∑
a∈[n1]×[n2]

PT⊥ (Aa) 〈Aa,F 〉

=
1

qn1n2
PT⊥A⊥ (F ) +

1

qn1n2
PT⊥A (F )

=
1

qn1n2
PT⊥ (F ) = 0.

Moreover, we have, in distribution, the following identity

PT⊥
(

1

q
AΩl +A⊥

)
(F ) =

qn1n2∑
i=1

Hαi .

On the other hand, since EHαi = 0, if we denote Yi = 1
qPT⊥ (Aαi) 〈Aαi ,F 〉, then Hαi = Yi −EYi, and

hence

EHαiH
∗
αi = E

{
(Yi − EYi) (Yi − EYi)∗

}
≤ EYiY∗i =

1

q2n1n2

∑
a∈[n1]×[n2]

|〈Aa,F 〉|2 PT⊥ (Aa) (PT⊥ (Aa))
∗
.
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The definition of the spectral norm ‖M‖ := maxψ:‖ψ‖2=1 〈ψ,Mψ〉 allows us to bound

∥∥E (HαiH
∗
αi

)∥∥ ≤ 1

q2
max

ψ:‖ψ‖2=1

 1

n1n2

∑
a∈[n1]×[n2]

|〈Aa,F 〉|2
〈
ψ,PT⊥ (Aa) (PT⊥ (Aa))

∗
ψ
〉

≤ 1

q2n1n2
ν(F ) max

ψ:‖ψ‖2=1

〈
ψ,

 ∑
a∈[n1]×[n2]

ωaPT⊥ (Aa) (PT⊥ (Aa))
∗

ψ

〉

≤ 1

q2n1n2
ν(F )

 ∑
a∈[n1]×[n2]

ωa ‖Aa‖2
 max
ψ:‖ψ‖2=1

〈ψ,ψ〉

≤ ν(F )

q2
,

where the last inequality uses the fact that ‖Aa‖2 = 1
ωa

. Therefore,∥∥∥∥∥E
(
qn1n2∑
i=1

HαiH
∗
αi

)∥∥∥∥∥ ≤ ν(F )n1n2
1

q
:= V.

.
Besides, the definition (22) of ν(F ) allows us to bound∥∥∥∥1

q
PT⊥ (Aa) 〈Aa,F 〉

∥∥∥∥ ≤√ν (F )ωa
1

q
‖Aa‖ =

√
ν (F )

1

q
.

The fact that EHαi = 0 yields∥∥∥∥ 1

qn1n2
PT⊥A⊥ (F )

∥∥∥∥ =

∥∥∥∥E1

q
PT⊥ (Aαi) 〈Aαi ,F 〉

∥∥∥∥ ≤√ν (F )
1

q
,

and hence

‖Hαi‖ ≤
∥∥∥∥ 1

qn1n2
PT⊥A⊥ (F )

∥∥∥∥+

∥∥∥∥1

q
PT⊥ (Aαi) 〈Aαi ,F 〉

∥∥∥∥ ≤ 2
√
ν(F )

q
.

Applying the Operator Bernstein inequality [2, Theorem 6] yields that for any t ≤
√
ν(F )n1n2, we have∥∥∥PT⊥ (n1n2

m
AΩ +A⊥

)
(F )

∥∥∥ > t

with probability at most c8 exp
(
− c9qt

2

ν(F )n1n2

)
for some positive constants c8 and c9.

G Proof of Theorem 2
We prove this theorem under the conditions of Lemma 2, i.e. (16)–(19). Note that these conditions are
satisfied with high probability, as we have shown in the proof of Theorem 1.

Denote the solution of Noisy-EMaC as X̂e = Xe + He. Since He is a two-fold Hankel matrix, i.e.
He = AΩ (He) +AΩ⊥ (He), we can obtain

‖Xe‖∗ ≥ ‖X̂e‖∗ = ‖Xe + He‖∗ ≥ ‖Xe +AΩ⊥(He)‖∗ − ‖AΩ(He)‖∗. (49)

The second term can be bounded using the triangle inequality as

‖AΩ (He)‖F ≤
∥∥∥AΩ

(
X̂e −Xo

e

)∥∥∥
F

+ ‖AΩ (Xe −Xo
e)‖F . (50)
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Since the constraint of Noisy-EMaC requires
∥∥∥PΩ

(
X̂ −Xo

)∥∥∥
F
≤ δ and ‖PΩ (X −Xo)‖F ≤ δ, the Hankel

structure of the enhanced form allows us to bound
∥∥∥AΩ

(
X̂e −Xo

e

)∥∥∥
F
≤ √n1n2δ and ‖AΩ (Xe −Xo

e)‖F ≤√
n1n2δ, which immediately leads to

‖AΩ (He)‖F ≤ 2
√
n1n2δ.

Using the same analysis as for (35) allows us to bound the perturbation AΩ⊥(He) as follows

‖Xe +AΩ⊥(He)‖∗ ≥ ‖Xe‖∗ +
1

4
‖PT⊥AΩ⊥(He)‖F .

Combining this with (49), we have

‖PT⊥AΩ⊥(He)‖F ≤ 4‖AΩ(He)‖∗ ≤ 4
√
n1n2‖AΩ(He)‖F ≤ 8n1n2δ.

Further from Lemma 2, we know that

‖PTAΩ⊥ (He)‖F ≤
n1n2

m

√
2 ‖PT⊥AΩ⊥ (He)‖F . (51)

Therefore, combining all the above results give

‖He‖F ≤ ‖AΩ(He)‖F + ‖PTAΩ⊥ (He)‖F + ‖PT⊥AΩ⊥ (He)‖F

≤

{
2
√
n1n2 + 8n1n2 +

8
√

2n2
1n

2
2

m

}
δ.

H Proof of Theorem 3
In order to extend the results to structured Hankel matrix completion, from the proof of Theorem 1 it is
sufficient to have the first two conditions in (20) to hold for general Hankel matrices. The proof is done by
recognizing these two conditions are equivalent to (7).
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