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Abstract

This supplemental document presents details concerning analytical derivations that support the theo-
rems made in the main text “Spectral Compressed Sensing via Structured Matrix Completion”, accepted
to the 30th International Conference on Machine Learning (ICML 2013). One can find here the detailed
proof of Theorems [I} [3]

1 A Summary of Notation

Let the singular value decomposition (SVD) of X, be X, = UAV™. Denote by
T.— {UM* £ MV*: M e Clm—F+Dna—ki+1)xr. pr o Ckmw}

the tangent space with respect to X, and T+ the orthogonal complement of 7. Denote by Py (resp. Py,
Pr) the orthogonal projections onto the column (resp. row, tangent) space of X, i.e. for any M

PUM = UU*J\J7 PvM = M‘/‘/ﬂk7 PT = PU + PV — PUP\/.

We let Pr. = Z — Pr be the orthogonal complement of Pr, where Z denotes the identity operator.
We denote by || M]||,, |M||g, |[M] the nuclear norm, the Frobenious norm, and the spectral norm (or
operator norm) of M, respectively. The inner product between two matrices is defined as

(B,C) = trace (B*C).

Besides, we denote by Q.(%,1) the set of locations of the enhanced matrix X, containing copies of z; ;.
Due to the Hankel and block-Hankel structures, one can easily verify the following: for any .(i,1), there
exists at most one index lying in any given row of the enhanced form, and at most one index coming from
any given column. For each (i,1) € [n1] x [ng], we use A(;;) to denote a basis matrix that extracts the
average of all entries in €, (4,1). Specifically,

—L__ if (a,8) € Qe (3,1),
(Auw), 5= 12 (20)] (a, ) e (4,1) "
’ 07 else.
We will use w;; := | (¢,1)| as a short hand notation.

2 A List of Main Theorems

For convenience of presentation, we restate our main theorems in this section, which are the subjects to
prove in this manuscript.



Definition 1. [Incoherence/Let X . denote the enhanced matriz associated with X, and suppose the SVD
of X, is given by X, =UAV™. Then X is said to have incoherence (u1, pa, pi3) if they are respectively the
smallest values obeying

1 1
Omin G > ) Omin G > ) 2
(G1) o (Gr) o (2)
2
1 ¥ Hor
max | — Uv < 2T 3
(3,0)€[n1]x [n2] |Qe(i,l)‘2 (a ﬁg;l (i l)( )a,ﬂ n%n% ( )
* * 2 37
Vi) €l x[na]: Y wap (UU AG)VV*, A )| g:jhwk,l. (4)

(a,B)€[n1] x[n2]

Theorem 1. Let X be a ny X no data matriz, and  the random location set of size m. Define cs :=

nina nina
max (k}lk)g ’ (n17k1+1)(n27k72+1)

that under either of the following conditions:

i) Condition (9), () and hold and

m > ¢ max (fi1¢s, H3Cs, pi2) 7 log? (n1na) ; (5)

). If all measurements are noiseless, then there exists a constant c; > 0 such

it) Condition (9) holds and
m > cipicir? log® (ning); (6)

then X is the unique solution of EMaC with probability exceeding 1 — ﬁ

M2
The performance in the presence of noise is states as follows.

Theorem 2. Consider a 2-fold Hankel matriz X of rank v, and suppose that the total power of the noise
is 0. Let X be the optimizer of EMaC-Noisy. Under the conditions of Theorem one can bound

R 2 2.2
|x. - X, S*f”l”?}a
m

< {2,/111712 + 8ning +
F

with probability exceeding 1 — nz—lnz
1°%2

Their counterpart for the Hankel matrix completion problem is stated in the following theorem.

Theorem 3. Consider a 2-fold Hankel matriz X . of rank r. The bounds in Theorem [1] and [ continue to
hold, if the incoherence 1 is measured as the smallest number that satisfies

H1CsT

Yl € ) x bl UV Ao < T o,

,and |AuyVV*|5 < o (7)

The proof in the noiseless setting (i.e. Theorem [l and the noiseless part of Theorem |3) is provided in
Section The analyses of the noisy counterparts (i.e. Theorem [2| and the noisy part of Theorem |3) are
built upon the noiseless situation, which is deferred to Appendix [G]

3 Main Proof for Exact Recovery

The algorithm EMaC has similar spirit as the well-known matrix completion algorithms [1,2] except that
we impose Hankel and block-Hankel structures on the matrices. While [2] has derived a general sufficient
condition for exact recovery under any basis (see |2, Theorem 3|), the basis in our case does not exhibit a good
coherence property required in |2|, and hence these results cannot yield useful estimates in our framework.
Nevertheless, the beautiful golfing scheme introduced in [2] lays the foundation of our analysis in the sequel.

For concreteness, the analysis in this paper focuses on recovering harmonically sparse signals as stated in
Theorem [I} since proving Theorem [I] is slightly more involved than proving Theorem [3] We note, however,
that our analysis already entails all reasoning required for Theorem [3]



Before proceeding to the proof, we would first like to stress that the incoherence measure (p1, 2, i13) are
not independent. In addition to them, we define another measure p4 as the smallest number that satisfies

r
e m]x [l 3 wal(PrAs Aa)f < 2w, (8)

a€[ni]x[nz]

Some of their mutual connections are listed as follows.

Lemma 1. Suppose that X . has incoherence (p1, pio, i3, 1a). We have the following.
1. GL = ELEy, and Gy = (EREL)" ;

2. For any a,b € [n;1] X [ng], one has

(Ap, PrAg)| < [ L2 2HET, 9)
Wq M1N2o

8. The incoherence measure satisfies
pa < picdr,  py < picir, (10)
and
pa < Opicir (11)
4. The measure pg can be bounded by p1 and us as follows

pa < 6Bpics + 3pscs.

Proof. See Appendix [A] O

Note that the above lemma indicates that our new incoherence measure p4 can be bounded by the sum
of 1 and p3 up to some multiplicative constant. In fact, we will prove instead the following theorem based
on (g1, p2, pta), which is slightly more general than Theorem

Theorem 4. Suppose that X has incoherence measure (1, po, 3, fa)- If

m > comax (f41Cs, i, fia) rlog? (n1n2), (12)

then X is the unique solution of EMaC with probability exceeding 1 — #
172
Note that Theorem [I] can be delivered as an immediate consequence of Theorem [4 by exploiting the

relations among (1, i, pi3, ft4) given in Lemma

3.1 Dual Certification

Denote by A1y (M) the projection of M onto the subspace spanned by A ;), and define the projection
operator onto the space spanned by all A ;) and its orthogonal complement as

A= > Ayy and A =T-A (13)

(k,1)€[n1] % [n2]

Here, { A" (M)} spans a [kiks (ny — k1 + 1) (n2 — k2 + 1) — nyns] dimensional subspace.

There are two common ways to describe the randomness of 2: one corresponds to sampling without re-
placement, and another concerns sampling with replacement (i.e. 2 contains m indices {a; € [n1] X [na] : 1 < i <m}
that are i.i.d. generated). As discussed in |2, Section II.A], while both situations result in the same order-
wide bounds, the latter situation admits simpler analysis due to independence. Therefore, we will assume



that € is a multiset (possibly with repeated elements) and a;’s are independently and uniformly distributed
throughout the proofs of this paper, and define the associated operators as

Aq = ZAai~ (14)
i=1

We also define another projection operator Ag, similar to , but with the sum extending only over distinct
samples. Its complement operator is defined as AP, := A — AG. Note that Aq (M) = 0 is equivalent to
AL (M) =0.
With these definitions, EMaC can be rewritten as the following general matrix completion problem:
minimize || M|, (15)
M
subject to Ag (M) = Ag, (Xe),
AL (M) = At (X.) =0.

To prove exact recovery of convex optimization, it suffices to produce an appropriate dual certificate, as
stated in the following lemma.

Lemma 2. For a location set Q that contains m random indices. Suppose that the sampling operator Ag
obeys

1
”PTAPT L PTAQPT” < (16)
m 2
If there exists a matriz W that obeys
o1 (UV"+ W) =0, (17)
1
— 1
IPr (Wl < 5z (18)
and 1
IPrs (W) < 5. (19)
Then X . is the unique optimizer of (@ or, equivalently, X is the unique minimizer of EMaC.
Proof. See Appendix [B] O

Condition will be analyzed in Section while a valid certificate W will be constructed in Section
These are the objectives of the remaining part of the section.

3.2 Deviation of ||PrAPr — 2P AqPr||

Lemma [2] requires that Ag is sufficiently incoherent with respect to T. The following lemma quantifies the
projection of each A ;) onto the tangent space T

Lemma 3. Suppose that holds, then

% 2 HU1CsT w112 U1CsT 2 2u1csr
U Aoy < 2 MAwo Ve < 7550 1Pr (Aga) [ < 52 (20)
for all (k,1) € [n1] x [na].
Proof. See Appendix [C] N

As long as holds, the deviation of PprAqPr can be bounded reasonably well in the following lemma.
This establishes Condition required by Lemma



Lemma 4. Suppose that

2 2ucsr
1Pz (Ageo)llr < 577

for (k,1) € [n1] X [na). Then for any small constant 6 < 2, one has

H ”;:2 PrAqPr — PTAPTH <45 (21)

with probability exceeding 1 — 2n1no exp (—165:%).

Proof. See Appendix [D] O

The above two lemmas taken collectively lead to the following fact: for any given constant € < e™! <
1 ||%PTAQPT — PTAPTH < € holds with probability exceeding 1 — (ning)~ ", provided that m >
c1p1¢s7 log (ning) for some constant ¢; > 0.

3.3 Construction of Dual Certificate

Now we are in a position to construct the dual certificate, for which we will employ the golfing scheme
introduced in [2]. Suppose that we generate jy independent random location multisets Q; (1 <14 < jg), each
containing ]mo ii.d. samples. This way the distribution of (2 is the same as €; UQy U --- U2, . Note that

m
ning

Q;’s correspond to sampling with replacement. Let p :=
of Q2 and €, respectively.

Consider a small constant ¢ <
proceeds as follows:

and q := j% denote the undersampling factors

%, and choose jg := 3logi ning. The construction of the dual then

Construction of a dual certificate W via the golfing scheme.
1. Set By =0, and jo := 310g% (ning).
2. Forall i (1< < jo), let Bi = By + (1o, + AY) Pr (UV" — By ).
3. Set W :=—(UV" — Bj,).

We will establish that W is a valid dual certificate if we can show that W satisfies the conditions stated
in Lemma [2] which we will verify step by step.
First, by construction, we have the identities

(AG + A*) (B;) = By,

for all 1 <i < jo. Since UV™ + W = Bj, this validates that A, (UV™ + W) = 0, as required in .
Secondly, if one defines the deviation of Py B; from UV™ as

Fi = UV* 7Bi,

and hence W = F';

jo» then one can verify that

1
Pr (FZ) =Pr (UV*) — Pr (Bi—l -+ <qAQ7 + .AL) Pr (UV* - Bi_1)>
= (PT —Pr <(1]-’491 + AL) PT) (Fi—l) .

Lemma 4] asserts the following: if gnine > cipicsrlog (n1ne) or, equivalently, m > &1 pqcsr log2 (n1n2), then
with overwhelming probability one has

1 1
HPT - Pr (q-AQ,i + Al) Pr <e< 3

1
- HPTAPT - Préa.Pr




This allows us to bound ||Pr (F;)||p as follows
[Pr (Fi)llp < € [Pr (Fo)lly < € [UV||p = €'V/r,

which immediately validates Condition :

1Pr (W)llp = 1P (Fjy)llg < Vi <

2,2°
2nins

Finally, it remains to show that ||[Pr. (W)| < 3. For any F € T, define the following homogeneity
measure

v(F)=  max 7}< s B2, (22)

(k1) €n1]x[n2] Wk 1

which largely relies on the average per-entry energy in each skew diagonal. We would like to show that
v ((I — Py (éAQi + AL)) F) < 1y (F) with high probability. This is supplied in the following lemma.

Lemma 5. Consider any given F € T, and suppose that and hold. If the following bound holds,

m > ¢y max {fq, 11Cs } rlog? (n1ng),

v ((PT Py (;Agi ; Ai) pT) F) < v (23)

for all 1 <1 < jo with probability exceeding 1 — (n1n2)73

then one has

Proof. See Appendix [E] O

This lemma basically indicates that a homogeneous F' with respect to the observation basis typically
results in a homogeneous (’PT — Pr (%Agi + AJ‘> PT> (F), and hence we can hope that the homogeneity

condition of Fy can carry over to every Pr (F;) (1 <i < jp).
Observe that Condition is equivalent to saying

v(Fo) = — |< >‘2 = max 1 Z (UV),s < M

(k)b x ] Wt (kDEflxina] Wiy | ’ (nina)?’

One can then verify that for every ¢ (0 <14 < jo),

v(Pr(F;)) < i (Pr(Fi-1)) < (i)iy(po) < (i)l par

(n1n2)”

holds with high probability if m > ¢; max {4, 1¢s} 7 log? (n1ng) for some constant ¢; > 0.
The following lemma then relates the homogeneity measure with HPTL (éAQi + AL) (F)||-

Lemma 6. For any given F € T such that v(F). Then there exist positive constants cs and cg such that
for any t < \/v(F)nina,

holds with probability at most cg exp (,#{an?)‘

1
Pro (qAQi + Ai> (F)H >t

Proof. See Appendix [F] O



Since v(F;) < (%)i B2T for all 1 <14 < jo with high probability, then one can bound

2.2
ning

I/(Fi)nlng < 1 2
VI6uor T ’

2
Lemma |§| immediately yields that for all ¢ (0 <i < jg)

< (;)H?} > ]P’{Vi: HPTL (;AQ +Al> (F;)

Coqnim2
16por

1
P {Vi : HPTL (qAQ + AL> (F,)

< V(FZ‘)TL1712
- V/16par

> 1 — cgning exp (—
—4
Z ]. — C8 (nlng) s
holds if gnins > ¢12 max (u1cs, fa, p2) r1log (n1nsy) for some constant ¢1o > 0. This is also equivalent to

m > c13max (p1Cs, fla, fi2) T log2 (ning)

for some constant c¢y3 > 0. Under this condition, we can conclude
Jo

[Pre (W) <D

i=0

Jjo 1 i+2 1
< z (2) <1

So far, we have successfully established that with high probability, W is a valid dual certificate, and
hence EMaC admits perfect reconstruction of X.

1
P (qAQ + AL> (F;)

A Proof of Lemma [

(1) We first show that Ej Er, and EgEj coincide with the matrices Gy, and G&. Since Y is a diagonal
matrix, one can verify the identities

* gk * l *
(Yizizuylh) = (@iv) (ZiZu),.,.
1,02
and ( )
ko—1 1— (25 z; 2 e .
* * k +2,a if 11 7é 12,
(ZL21);, 4, = Z (25, 2i,) = 1=2i) 7
k=0 ka, if 41 = g,

which immediately give

Zy,
k?lfl
* 1 * * rpk s\k1—1 % ZLYd 1 I rp* l
EjE, = S [ZLaYdZLa e (Y ZL] : =k ; YiZ12.Y
Z yht
1 klfl .
ik Z (y;yiz) (ZiZL)il,iz
e =0 1<iq ig<r
11,1257

k k
1 (1= (yin) 1= (2 2)
k1ko 1-— y;ﬂlyh 1- ZZZZ‘? 1<iy i <r



. . 1-(9: yil)kl 1—(21; 11)k2 . . . .
with the convention that —=—t—*— = k; and ——L—*— = ko. That said, all diagonal entries satisfy
1

1—y5, Yix
(E1EL);, ;, =1, and the magnitude of off-diagonal entries can be calculated as

sin [7k1 (fri, — fiiz)] sin[mks (f2i, — foi,)]

(ELEv) kysin [ (fii, = fuip)] ke sin [ (fai, — f2i)] |

91,12

Recall that this exactly coincides with the definition of Gr,. Similarly, Ggr = (EREI’S\)T. These findings
immediately yield

1 1
Omin (EEEL) Z —, and Omin (EREE) 2 —. (24)
i1 1
(2) Consider the case in which we only know oy (GL) > i and omin (Gr) > i In fact, since
[{Ap, PrAg)| = |(PrAb, As)|, we only need to examine the situation where wp < wq.

Observe that
[(Ap, PrAg)| < |(Ap, UU*AL)| + |{Ap, AaVV )| + [(Ap, UU A, VV™).

Owing to the multi-fold Hankel structure of A4, the matrix UU™,/wq A, consists of wg columns of UU™.
Since there are only wp nonzero entries in Ay each of magnitude ——, we can derive

Vwp !

* * 1 *
(A, UU*Aq)| < | Asll, IlUU* Aqll, = w3 - —— - max|(UU* Aq),,

< /%% max ‘(UU*)%B‘ .

- Wa o,B

Denote by M, and M, the kth column and kth row of M, respectively, then it can be observed that
each entry of UU™ is bounded in magnitude by

o) | =| (B BB BL), | =B, (BB (B,

IN

* —1
1BL) e 1 (BL), s | (B EL) |
S L ! * S ’ulcsr>

kiko omin (ELEL) — ning

which immediately implies that

Wa N1N2

(Ap, UU*A,)| < -2 H1ST (26)

Similarly, one can derive

(Ap, AVV)| < | [ 2EST (27)

Wa T2

We still need to bound the magnitude of (UU* A,V V™, Ap). One can observe that for any 1 < k < kiks:

T 1
<./ )
k1ks Omin (E]EL)

IOl < || (B, (BLEL ™ B |

< (Bl | (BLEL ™ BL

CsT
o
n1N20min (BT, EL)



Similarly, for any 1 < [ < (n1 —ky 4+ 1) (ng — k2 +1), one has [[(VV™), |l < /m The

magnitude of all entries of UU* A, VV™ can now be bounded by

max | (UU" AV V), | < Al mas [(OT) . max [(VV7),

k.l
1 CsT
< ™
VWa NiN20min (ET,EY)
1 pcsr

<

= /W M1
1

Since Ap has only wp nonzero entries each has magnitude g One can verify that

* * * * 1 Wp H1CsT
< . _ .
(UU* A VV*, Ap)| < (rrllﬁx‘(UU AVV )'”D = =[P L (28)

The above bounds , and taken together lead to
[(Ap, PrAg)| < |(UU*Aq, Ap)| + |{AVV, Ap)| + (UU* A V'V, Ap)|
< lﬂ’?’p’lcsr. (29)
Wq MN1N2

(3) On the other hand, the bound on |[{Ap, PrAg)| immediately leads the following upper bounds on
S NUU ALV, A we and Y, [(PrAs, Aa)|” wa:

Y [(UU"AVV* A wa
ae[nl]x[ng]
Wp [1CsT 2 H1CsT 2
1Cs 1Cs
< had- ot bl — H1GT
< 2 (\/wa n1n2> wa= W D <n1n2)
a€lny]x[n2] a€lny]x[n2]
2.2,..2

HICsT
wp———
ning
which simply come from the inequality , and
> (PrAs, Ad)l* wa

ae[nl] X [’I’LQ]

2 2
[wp 3u1csT 3picsr

< E — o = E et

o ( Wa M1N2 > “ “e < n1N2 )

acni]x[ns] a€lni]x[nz]

— o 9,u%c§r27
nin2
which is an immediate consequence of . These bounds indicate that uz < p2c2r and py < 9uic?r.
We can also obtain an upper bound on ps through p; as follows. Observe that there exists a unitary
matrix B such that . .
UV*=E| (E{EL) 2 B(EREy) 2 ER.

For any (k,l) € [n1] x [n2], we can then bound

(V)| = |(B (BB ! B (Bami) B,

< (Bl || (BLEL)

_1
|BIl|(BxER)

I(ER).lle

IN

r r
\/klkg Ml\/(nl — kl —+ ].) (TLQ — kQ + ].)
H1CsT
T ning '



Since A(y,;y has only wy; nonzero entries each of magnitude \/O%, this leads to

2
1 N 1 N 2
| Y, UV = oo KUV, Ap)|

2
Yl |(a,8) €92 (k1)
1 1 2
il {(max ‘(Uv*)k,l‘> T 'wk’l}
Wil k.l %

2
* T
(maX’(UV )k,l’) < M?CSTW,
2

’ 1

IN

IN

which indicates that psy < p2c?r.
(4) Finally, we split Zae[nl]x[nz] |<PTAb, ,/waAa>|2 as follows

Yo PrAVEedd) = > [(Pu+Pv—PuPv) Ap, VaAa)l’

aclny]x[n2] a€clny]x[n2]

<3 Y {I(PuAs vEaAL) + [Py Ab, Vg Al + [(PuPy Av, visaAa) }

a€ni]x[n2]

Now look at >, |<73UA1,7 \/oTaAa>|2 =5 . |<UU*A1,, \/uTaAa>|2. We know that

* H1CsT
UU* A% < 7 30
[UU* Ay|fp < 22 (30)
and that UU™* Ay has wp non-zero columns, or,
UU*A[, column pgmutation 1 Ub ,O , (31)

N —

wp columns
and hence <UU*Ab, \ /waAa> is simply the sum of all entries of UU* Ay, lying in the set Qq(a). Since there
are at most wp nonzero entries (due to the above structure of UU* Ap) in each sum, we can bound
2

2
(UU A VAol = | S (OU A, < Y [UU ),
(a,8)EQc(a) (a,B)EQ(a)

using the inequality (3%, 2;)° < wp 322, 22. This then gives

2
* 2 *
S (UU A ViaAd) P <wy > > jwuray,
a€ni]x[nsa] a€ni]x[n2] (a,8)€EQe(a)
< wp |[UU* Ayl < w50,
nin2

where the last inequality follows from Lemma [3] Similarly, one has

Y {AVV, VoAl < wp il
a€[ny]x[ns] mne

To summarize,

Y [(Pras, VoAl

a€lny]x[n2]
2 2 2
<3 3 {I(Pr Ay, VB AL + [(Py Ab, VEaAa) + |(PuPy Ay, e Aa) }
aE[’ﬂ,l]X[TLQ]
< 6111 cswpr n 3/,&365(41177“.
ning ning

10



B Proof of Lemma [2]

Consider any valid perturbation H obeying Pq (X + H) = Pq (X)), and denote by H, the enhanced form of
H. We note that the constraint requires Af, (H,) = 0 (or Ag (H.) = 0) and A+ (H,) = 0. In addition, set
W = Pr. (B) for any B that satisfies (B, Pp. (He)) = ||Pre (H.)||, and || B]| < 1. Therefore, W € T+
and ||[Wyl|| < 1, and hence UV™ + W, is a subgradient of the nuclear norm at X.. We will establish this
lemma by considering two scenarios separately.

(1) Consider first the case in which H satisfies

ninj

[Pr (He)l[p < [Pre (He)llg - (32)

Since UV™ + W, is a subgradient of the nuclear norm at X, it follows that

HXe + HeH* > HXe”* + <UV* + W07H8>
= | X.|, +(UV* + W, H.) + (W, H.) — (W, H.)
= | Xell, + ((AG + A") (UV*+ W), H.) + (W, He) — (W, H,) (33)
> | Xell, + [Pre (He)|l, — (W, He) (34)

where holds from , and follows from the property of W and the fact that ( o+ AJ-) (H,) =0.
The last term of can be bounded as

<W7He> = <7)T (W) 7He> + <,PTL (W)aHe>
< 1Pr W)lg IPr (He)llg + [[Pre (W) 1Pr- (He)ll,
1

1
2 1Pr (Ho)llp + 5 [Pro (HOIL.
172

IA

where the last inequality follows from the assumptions and . Plugging this into yields

1 1
X.+H|, > || Xell, — === H, 5 H.
[ Xe + Hell, > [ Xell, 207l Pr (He)llp + 5 Prs (He)

.
1 1

2 [ Xell. = 3 IPre (He)llp + 5 [Prs (He)llp (35)
1

2 [ Xell. + 3 IPrs (He)llp

where follows from the inequality |[M]|, > || M|, and (32). Therefore, X is the minimizer of EMaC.

We still need to prove the uniqueness of the minimizer. The inequality implies that || X+ H||, =
7L2712

[ Xell, only when [[Pr. (He)llp = 0. If |Pro (He)llp = 0, then ||Pr (He)|[p < =572 [|[Pro (He)llp = 0, and

hence Pr. (H,) = Pr (H,) = 0, which only occurs when H, = 0. Hence, X, is the unique minimizer in

this situation.
(2) On the other hand, consider the complement scenario where the following holds

2,2
ning

[Pr (He)llp > [Prs (He)llp - (36)

We would first like to bound H (M2 A + AL) Pr (He)HF and H (M2 A + AL) Pra (He)HF The former

11



term can be lower bounded by

)
_ (nanAQ—i—AL)PT(He),(anA —l—AL)PT( )>

<
= ("2 APy (Ho), 2 AqPr (HL) ) + (A“Pr (H.) , A*Pr (H.))
> (Pr(H.), "2 AqPr (He)> +(Pr (H.) , A*Pr (H,)) (37)
= (Pr (Ho), Pr ("2 4q + A*) Pr (HL))
= (Pr (H.), Pr (H.) + (Pr (Ho), ("2 PrAoPr — PrAPr ) Pr (H.) )
> |[Pr (HO)I; — |[PraPr — 2 PrAaPr | IPr (HOIE (38)

ning

> (1~ |[Prapy - 22 PTAQPTH)H% Ho)|l2
> S 1Pr ()R (39)

On the other hand, since the operator norm of any projection operator is bounded above by 1, one can

verify that
> < ning,

where a; (1 <i < m) are m uniform random indices that form 2. This implies the following bound:

Hn;:zA +A¢H < mn2 ningz (HAal_’_ALH_’_ilAai
i=2

(0 a0) 1 1

2
o S mn2||Pro (He)llp < P [Pr (He)llg (40)

where the last inequality arises from our assumption. Combining this with the above two bounds yields

O—H(nﬂu»AQ‘FAL)( e

= H (”1”2 Aa + Al) Pr(H.)

o N5 Ae+ 45) Pr i)

2
> f 1Pr (Ho)lp = o [Pr (L)
ninj
> 5 HPT (He)HF > 4 ”,PTL (He)HF >0

which immediately indicates Pp. (H,) = 0 and Pr (H,) = 0. Hence, can only hold when H, = 0.

C Proof of Lemma 3

By definition, we have the identities

1Pz (A Iy = (Pr (Aws) A
= (Pu (Ag) +Pv (Agp) — PuPv (Awp) » An)
= 1Pv (Agn) |3 + [PV (Awn) Iy = 1PoPy (Awn) |-

Since U (resp. V') and Eq, (resp. ERr) determine the same column (resp. row) space, we can write

UU* = E.(E;E)) "E. and VV*=E} (EREL) " Eg,

12



and thus

1P (Awn) Iz < IPo (A |z + Py (A

2 2

< HEL (EiEL) 1 EiA(k’l)HF + HA(kwl)E;{ (EREE) 1 ERHF
1 2 1 9

< — |EfAu . —Y EX|?
= omm (ELEr) || L (k,z)HF + oo (EREL) || (k1) RHF

Note that , /wkylE]*JA(k’l) consists of wy,; columns of E7 (and hence it contains rwy,; nonzero entries in total).

Owing to the fact that each entry of E] has magnitude \/ﬁ, one can derive

. 2o Lo T TG
||ELA(k,l)HF - W1 Tk, k1ko - k1ko = ning

A similar argument yields
CsT

A Exl; <

nin2

We know from Lemma (1| that E] Er, = Gy, and ErER = GE, and hence o, (ELEL) > i and
Omin (ErER) > i One can, therefore, conclude that for every (k,1) € [n1] X [n2],

2 H1CsT 2 H1CsT 2 21 cs7
1o (Aga)llr = 7= 1Py (Aga)llp < 7= and - [[Pr (Ag) [l < S50 (1)
D Proof of Lemma [4
Define a family of operators
1
V(k,1) € [m] x [n2] 1 By = hinte PrAgyPr — —PrAPr.
m m
We can also compute
Pr AP (M) =Pr {(Awn, PrM) Aw} = Pr (Agy) (Pr (Agn) M), (42)
and hence
(PrAwnPr)” (M) = [PrAwyPr {Pr (Awn)}] (Pr (Ags) . M)
=Pr{{Awn,Pr (Awp)) Awn} (Pr (Ag) M)
= (Awn:Pr (Awy)) Pr (Awn) (Pr (Awp)  M). (43)
Comparing and gives
2 2u1csr
(PrAwnPr)” = (A, Pr (Aw)) PrAwyPr < irts Pr A Pr, (44)
where the inequality follows from our assumption that
. 2 2uicsr
(A Pr (Awn)) = [1Pr (Ago) |l < 777

Let a; (1 < i < m) be m independent random pairs uniformly chosen from [n;] x [ns], then we have
E (Z4,) = 0. This further gives

i

2 o (M1N2 2 ning 2
EZ2 —IE( - PTAaiPT) - (]E( - PTAaiPT))
n2n2 2 1 2

= 7;122E('PTA0,1.,PT) _E(PTAPT) 5

13



We can then bound the operator norm as

2 nin3 2 2
[E(Z2)I| < | 2B (PraPr)? | + -5 H(PTAm H
< n1n2 HE (PrAq,Pr) H 4=
n3ing 2 csr H]E (PrAa, Pr)|| + L (45)
- m?2 ning :
241 €5 1
=SS —— | PrAPr| + —
m n1Na m
dpqcsr
s— 5 =W (46)

where uses the fact that PrAg,,Pr = 0. Besides, the first equality of gives HPT.A(;C,Z)PTHQ <
||'PTA(;€,1)||§ HPTA(k-,l)PTH and hence HPTA(k-,l)PTH < ||PTA(k,l)||§w which immediately yields

ning ning 1 4ulcsr

1Za. ]| < 1PrAa, |17 +

|PrAa,Pr|l + — ||7’TA7’T|| <

This together with gives

2ﬂ1V6 ;2 9.
1Za,
Applying the Operator Bernstein Inequality [2, Theorem 6] yields that for any ¢ < 2, we have

m t2
P Z Za,i >t S 2n1n2 exp (_W> .

i=1
Finally, one can observe that Y " Z,, is equivalent to 2P AoPr — PrAPr in distribution, which
completes the proof.

E Proof of Lemma [

Fix any b € [n1] X [na]. For any a € [n1] X [nz], define

1
te = — Ay, PrAF) — <Ab,qPTAa><Aa,F>.

gqning
Then for any i.i.d. «;’s chosen uniformly at random from [n;] X [na], we can easily check that E (z,,) = 0.
Define a multiset Q) := {«; | 1 <i < gning}, then the decomposition

qninz2
AgF =" A, (A, F)
i=1
allows us to derive
qninz
(Ap, PrAq,F) = <Ab, > PrA., <Aai,F>>7
i=1
and thus

qning qninz

1
Z Zal = Ab;PTAF> Z <Ab, qPTAaI> <Aa17F>
=1

1
= <Aba7DTAF> - g <AbaPTAQlF>

= <Ab, (PTAPT - ;PTAQLPT) F> .

14



Owing to the fact that Ez,, = 0, we can bound the variance of each term as follows

2 _ Var (<Ab, 1PTAa7;> (Aa,, F>)
q

2
E ‘<Ab7 17>TAQ1.> (Au,, F)
q

1 1
= > ’<Ab, PTAa> (Aq, F)
ning q
a€ny]x[na]
1 Z/(F) 2
< = Ap, A, a
=~ q2 ning Z |<7)T b, >‘ w,

aE[’I’Ll] X [nz]

E|zq,

2

< Marv(F)

< W
(qnina)®

where the last inequality arises from the definition of py4, i.e. for every b € [n1] X [na]

Z |<7DTAbaAa>|2wa < par Wp-

a€[n1]x[ns] nin2

This immediately gives

1g <qi |20 | ) = parv(F) _ max{us, dpmesyrv(F) o,
Wh

P qning qning

On the other hand, Lemma [1| shows the inequality

Ay, PrAg)| < /&M’
Wq MN1N2

which further leads to

1 1 1
—— Ap, — Aa AavF S a F)— Av Aa
|4 2Prac) (40 P < Vo TP [ Pr )

1 3pqcsm
<A\V(F)-———.

o ( )q ning

Since qn}m (Ap, PrAF) =E <Ab, %PTA%> (A, , F), one has as well

1 1 1 1 1 3pcsr
— Ap, PrAF)| = —— |E( Ap, - PrAy ) (Ag, F)| < Vv (F)———,
VWb qn1n2< b T >‘ Wh < b q T >< >‘ ( )q ning
which immediately leads to
1 1 1 1 1
—_— < — |—— (Ap, PrAF)| + — |( Ab, - PrA,, ) (Au,, F
el = s (e PrAR) 7 (e 7 ) e
1
< U(F)ifiulcsr
q ning
The above bounds indicate that
2V
——— > VV(F).
\/uTb|Za|

Applying the operator Bernstein inequality |2, Theorem 6] yields for any ¢t < v (F)

qninz 2

PR
i=1

wb

< tqning
cgexp | — :
= o exp dmax {pa, 3p1cs} rv(F)
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Thus, there are some constants c7,é > 0 such that whenever gning > & max {4, 3165} rlog (nins) or,
equivalently, m > ¢y max {4, 3p1¢s} rlog? (n1n2), we have

p( ZE 2l 1) <o ( ) )<
~v < cégexp | — hS
8%) 4 ¥ 16 max {/L4,3,U165}TV(F) (n1n2)4

Finally, we observe that in distribution,

2

1 e
v ((PTAPT — PTAQZPT) F) = max ==L "%
q be[ni]x[n2] Wp

Applying a simple union bound over all b € [n1] x [n2] allows us to derive (23)).

F Proof of Lemma
For any a € [n1] x [n2], define

1

qning

Pri AT (F).

1
Ha == gPTJ_ (Aa) <Aa,F> +

Let a; (1 <i < gning) be independently and uniformly drawn from [n;] x [ns] which forms Q;. Observing
that
AF = Z Ay (Ag, F),

a€ni]x[n2]

we can write
ProAF = Y Pri(As)(Aa,F).

a€cni]x[na]

This immediately gives

1 1
EH,, = Pro AL (F) + > Pri(Ad)(Aa, F)
qninsg qning
a€ni]x[na]
1 1
- ,PTLAL (F) + ,PTLA (F)
qninsg qning
1
qning

Moreover, we have, in distribution, the following identity

gqninz

Pre (2/191 +AL) (F)= Y H.,.
=1

On the other hand, since EH,, = 0, if we denote ); = %PTL (Ay,) (Aq,, F), then H,, = Y; —E)Y;, and
hence

EH, H, =E{(J—EY) (i —E¥)"} <EVY = L Z (Aa, F)[* Prs (Aa) (Pro (Aa))" .

2
g"minz a€ni]Xx[n2]
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The definition of the spectral norm || M || := maxy, ||, =1 (¢, M) allows us to bound

I (Ho HE )| < 5 | max > (A F)F (4, Prs (Aa) (Prs (Aa))" ¥)
q° ¢:llpll,=1 | nin2 a€lni]x[ne]
1 *
< = v(F) max (1, Z waPr+ (Aa) (Pr- (Aa))” | ¥
g°ninsg Pi|lYll,=1 a€ni]x[n2]
1 2
< 5—v(F A
S| Y walldal | e w0)
a€n1]x[n2]
),
q

where the last inequality uses the fact that ||Aq||> = i Therefore,

qninz
E ( > HQHQ>
=1

Besides, the definition of v(F') allows us to bound

1
<v(F)ning— :=V.
q

H;PTL (Aq)(Aq, F)| < v(F)waéllAaH:\/ml-

The fact that EH,, = 0 yields

1 1 1
Pri At (F H = |E=Pr. (A, (Aa., F H < F)-,
|t () = [P (40 (A | < VT
and hence
1 1 2\/v(F
| H o, <H PTLAL(F)HjLHPTL (Aai)(Aai,F>H<V().
qnineg q q

Applying the Operator Bernstein inequality |2, Theorem 6] yields that for any ¢t < \/v(F)nins, we have

HPTL (””‘%49 +Al) (F)H >t

m

09qt2
v(F)nins

with probability at most cg exp (7 ) for some positive constants cg and cgy.

G Proof of Theorem 2|

We prove this theorem under the conditions of Lemma |2} i.e. 7. Note that these conditions are
satisfied with high probability, as we have shown in the proof of Theorem [}

Denote the solution of Noisy-EMaC as X. = X+ H.. Since H,. is a two-fold Hankel matrix, i.e.
H, = Aq (H,) + Aq: (H,), we can obtain

1 Xelle > 1 Xells = 1 Xe + Hells > | Xe + Aqr (He)[lw — [|Aa(He)| . (49)
The second term can be bounded using the triangle inequality as

o (HOlly < [4a (X. - X2)

|+ o (X = Xlle- (50)
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Since the constraint of Noisy-EMaC requires H’PQ (X - X °>

’F <6 and ||Pq (X — X°)||p < 6, the Hankel

structure of the enhanced form allows us to bound HAQ (Xe - Xg) ‘F < /mingd and || Ag (Xe — Xo)|lp <

v/n1m29, which immediately leads to

[Aq (He)||p < 2y/n1ngd.

Using the same analysis as for allows us to bound the perturbation Aq. (H,) as follows
1
1Xe + Aqu (He)ll, 2 [ Xell, + 7 [1Pr+ Agw (He)llp-
Combining this with , we have

[PrsAgr (He)llp < 4l Aa(He)[l« < 4y/ming| Aa(He)llp < 8ningd.

Further from Lemma [2] we know that

T2 2| Prs A (HL)|p - (51)

IPrAqs (Ho)l < ™2

Therefore, combining all the above results give

[Hellp < [[Aa(He)lle + [[PrAqs (He)llp + [1ProAgs (He)llg

8 2 2,2
< {2,/n1n2+8n1n2+\[mnlnz}5.

H Proof of Theorem [3

In order to extend the results to structured Hankel matrix completion, from the proof of Theorem [I] it is
sufficient to have the first two conditions in to hold for general Hankel matrices. The proof is done by
recognizing these two conditions are equivalent to .
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