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In this supplementary material, we prove the theoretical results in the main paper.

1 Proof of Theorem 1

Recall that y = [yA; yO] and X = [XA;XO] with yA = XAβ∗ + e, and Λ∗ is the true support. The

adversary fixes some set Λ̂ disjoint from the true support Λ∗ with |Λ̂| = |Λ∗|. It then chooses β̂ and yO

such that β̂Λ̂ = β∗Λ∗ β̂Λ̂c = 0, and yO = XOβ̂ with XO to be determined later. By assumption we have

h(β̂) = h(β∗) ≤ R, so β̂ is feasible. Its objective value is f(y − Xβ̂) = f([yA − XA
Λ̂
β∗Λ∗ ; 0]) ≤ C for some

finite constant C. The adversary further chooses XO such that XOΛ∗ = 0 and XOΛ is large. Any β̃ supported
on Λ∗ has objective value

f(y −Xβ̃) = f([yA −XAβ̃;XO(β̂ − β̃)]) = f([yA −XAβ̃;XOΛ β
∗
Λ∗ ]) ≥ f([0;XOΛ β

∗
Λ∗ ]),

which can be made bigger than C under the SCO Condition. Therefore, any solution β̃ with the correct
support Λ∗ has a higher objective value than β̂, and thus is not the optimal solution.

2 Proof of Theorem 2

For simplicity we assume Λ∗ = {1, . . . , k}, A = {1, . . . , n}, and O = {n + 1, . . . , n + n1}. We will show
that the adversary choose yO and XO in such a way that any “correct” solution of the form (θ,S,Λ∗) (i.e.,

with the correct support Λ∗) is not optimal because an alternative solution (θ̂, Ŝ, Λ̂) with θ̂ = [1, . . . , 1]>,
Ŝ = {n1 + 1, . . . , n+ n1}, Λ̂ = {2, . . . , k, k + 1} has smaller objective value.

Now for the details. The adversary chooses
(
yO
)
i

=
√
k for all i, XOΛ∗ = 0, and XOk+1 = yO, hence

yO − XO
Λ̂
θ̂ = 0. To compute the objective values of the “correct” solution and the alternative solution,

we need a simple technical lemma, which follows from standard results for the norms of random Gaussian
matrix. The proof is given in the appendix.

Lemma 1. If n & k3 log p, we have

∥∥e+XAΛ∗δ
∥∥2

2
≥

(
1− 1

k

)
(σ2
e + ‖δ‖22),∀δ ∈ Rk∥∥∥eŜ/O +X

Ŝ/O
1 −X Ŝ/Ok+1

∥∥∥2

2
≤

(
1 +

1

k

)(
1− n1

n

)
(σ2
e + 2)

with high probability.
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Using the above lemma, we can upper-bound the objective value of the alternative solution:∥∥∥yŜ −X Ŝ
Λ̂
θ̂
∥∥∥2

2
=

∥∥∥yO −XO
Λ̂
θ̂
∥∥∥2

2
+
∥∥∥yŜ/O −X Ŝ/O

Λ̂
θ̂
∥∥∥2

2

= 0 +
∥∥∥yŜ/O −X Ŝ/OΛ∗ β∗Λ∗ +X

Ŝ/O
1 −X Ŝ/Ok+1

∥∥∥2

2

2

=
∥∥∥eŜ/O +X

Ŝ/O
1 −X Ŝ/Ok+1

∥∥∥2

2

≤
(

1 +
1

k

)(
1− n1

n

)
(σ2
e + 2). (1)

To lower-bound the objective value of solutions of the form (θ,S,Λ∗), we distinguish two cases. If S∩O 6= φ,
then the objective value is ∥∥yS −XSΛ∗θ∥∥2

2
≥

∥∥yS∩O −XS∩OΛ∗ θ
∥∥2

2

=
∥∥yS∩O∥∥2

2

≥ k (2)

If S ∩ O = φ, we have S = A and thus∥∥yS −XSΛ∗θ∥∥2

2
=

∥∥yA −XAΛ∗θ∥∥2

2

=
∥∥XAΛ∗β∗Λ∗ + e−XAΛ∗θ

∥∥2

2

=
∥∥e+XAΛ∗(β

∗ − θ)
∥∥2

2

≥
(

1− 1

k

)
σ2
e , (3)

where we use the lemma in the inequality. When n1 >
3n
k+1 and σ2

e = k, we have min
{
k,
(
1− 1

k

)
σ2
e

}
>(

1 + 1
k

) (
1− n1

n

)
(σ2
e + 2). Combining (1), (2) and (3) concludes the proof.

2.1 Proof of the Lemma 1

Let θ′ =
[
σe|δ>

]>
. We can write

∥∥e+XAΛ∗δ
∥∥2

2
= ‖Z1θ

′‖22 with Z1 ,
[

1
σe
e|XAΛ∗

]
. Note that Z1 is an n×(k+1)

matrix with i.i.d. N (0, 1
n ) entries, whose smallest singular value can be bounded using standard results. For

example, using Lemma 5.1 in [1] with Φ(ω) = Z1, N = k+1, T = {1, . . . , N}, δ = 1
3k and c0(δ/2) = 1/288k2,

we have

‖Z1θ
′‖22 ≥

(
1− 1

3k

)
2 ‖θ′‖22 ≥

(
1− 1

k

)
(σ2
e + ‖δ‖22),∀δ

with probability at least

1− 2e
1

288k2 n−(k+1) ln(36k) ≥ 1− 2p−3

provided n ≥ 576(k+1)3 ln(36p). This proves the first inequality. The second lemma can be proved similarly
using Lemma 5.1 in [1].

3 Proof of Theorem 3

We prove Theorem 3 in this section. We need two technical lemmas. The first lemma bounds the maximum
of independent sub-Gaussian random variables. The proof follows from the definition of sub-Gaussianity and
Chernoff bound, and is given in the next subsection.
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Lemma 2. Suppose Z1, . . . , Zm are m independent sub-Gaussian random variables with parameter σ. Then
we have maxi=1,...,m |Zi| ≤ 4σ

√
logm+ log p. with high probability.

The second lemma is a standard concentration result for the sum of squares of independent sub-Gaussian
random variables. It follows directly from Eq. (74) in [2].

Lemma 3. Let Y1, . . . , Yn be n i.i.d. zero-mean sub-Gaussian random variables with parameter 1√
n

and

variance at most 1
n . Then we have

|
n∑
i=1

Y 2
i − 1| ≤ c1

√
log p

n

with high probability for some absolute constant c1. Moreover, if Z1, . . . , Zn are also i.i.d. zero-mean sub-
Gaussian random variables with parameter 1√

n
and variance at most 1

n , and independent of Y1, . . . , Yn, then

|
n∑
i=1

YiZi| ≤ c2

√
log p

n

with high probability for some absolute constant c2.

Remark. When the above inequality holds, we write
∑n
i=1 Y

2
i ≈ 1±

√
log p
n and

∑n
i=1 YiZi ≈ ±

√
log p
n w.h.p.

We now turn to the proof of Theorem 3. We first consider the distributed corruption model. For
simplicity we assume that for each columns of X and y there are at most n1

2 entries corrupted (instead of
n1 entries). This will affect the statement of the theorem by a constant of 2.

Consider the trimmed inner product h(j) between the jth column of X and y. Let Aj is the set of
index i such that Xij and yi are both not corrupted. By assumption |Aj | ≥ n. By putting |Aj | − n clean
indices in Acj , we may assume |Aj | = n without loss of generality. By prescription of Algorithm 2, we can
write h(j) as

h(j) =
∑
i∈Aj

Xijyi −
∑

i∈trimmed
inliers

Xijyi +
∑

i∈remaining
outliers

Xijyi.

We estimate each term in the above sum.

1. Observe that

∑
i∈Aj

Xijyi =
∑
i∈Aj

Xij

(
p∑
k=1

Xikβ
∗
k + e

)
=
∑
i∈Aj

X2
ijβ
∗
j +

∑
i∈Aj

Xij

∑
k 6=j

Xikβ
∗
k + e

 .

(a) Because the points in Aj obeys the Sub-Gaussian model, Lemma 3 gives w.h.p.
∑
i∈Aj

X2
ijβ
∗
j ≈

β∗j

(
1±

√
1
n log p

)
.

(b) On the other hand, because Xik and Xij are independent when k 6= j, and Zi ,
∑
k 6=j Xikβ

∗
k + e

are i.i.d. sub-Gaussian with parameter and standard deviation at most

√(
‖β∗‖22 + σ2

e

)
/n, we apply

Lemma 3 to obtain
∑
i∈Aj

XijZi ≈ ± 1√
n

√(
‖β∗‖22 + σ2

e

)
log p w.h.p.
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2. Again due to independence and sub-Gaussianity of points in Aj , Lemma 2 gives maxi∈Aj
|Xij | .√

(log p)/n w.h.p. and maxi∈Aj
|yi| .

√
(log p/n)

(
‖β∗‖22 + σ2

e

)
w.h.p. It follows that w.h.p.

∣∣∣∣∣∣∣
∑

i∈trimmed
inliers

Xijyi

∣∣∣∣∣∣∣ ≤ n1

(
max
i∈A
|Xij |

)(
max
i∈A
|yi|
)

. n1 ·
√

log p

n
·
√

log p

n

(
‖β∗‖22 + σ2

e

)
.

3. By prescription of the trimming procedure, either all outliers are trimmed, or the remaining outliers
are no larger than the trimmed inliers. It follows from the last equation that w.h.p.∣∣∣∣∣∣∣

∑
i∈remaining

outliers

Xijyi

∣∣∣∣∣∣∣ ≤
∑

i∈remaining
outliers

|Xijyi| ≤
∑

i∈trimmed
inliers

|Xijyi| . n1
log p

n
·
√
‖β∗‖22 + σ2

e .

Combining pieces, we have for all j = 1, . . . , p,

∣∣h(j)− β∗j
∣∣ . ∣∣β∗j ∣∣√ 2

n
log p+

1√
n

√(
‖β∗‖22 + σ2

e

)
log p+ n1 ·

log p

n

√(
‖β∗‖22 + σ2

e

)
. (4)

If RoTR correctly picks an index j in the true support Λ∗, then the error in estimating β̂j is bounded
by the expression above. If RoTR picks some incorrect index j not in Λ∗, then the difference between the
corresponding β̂j and the true β∗j′ that should have been picked is still bounded by the expression above (up
to constant factors). Therefore, we have

∥∥∥β̂ − β∗∥∥∥2

2
.
∑
j∈Λ∗

[∣∣β∗j ∣∣√ 2

n
log p+

1√
n

√(
‖β∗‖22 + σ2

e

)
log p +n1

log p

n

√(
‖β∗‖22 + σ2

e

)]2

.

The first part of the theorem then follows after straightforward algebra manipulation. On the other hand,
RoTR picks the correct support as long as |h(j)| > |h(j′)| for all j ∈ Λ∗, j′ ∈ (Λ∗)c. In view of Eq.(4), we
require

n & max
j

(
‖β∗‖22
β2
j

)
· log p ·

(
1 + σ2

e/ ‖β∗‖
2
2

)
n1

n
.

1√
maxj

(
‖β∗‖22
β2
j

)
·
(

1 + σ2
e/ ‖β∗‖

2
2

)
log p

One verifies that the above inequalities are satisfied under the conditions in the second part of the theorem.

Now consider the row corruption model. A careful examination of the proof above shows that, when
there are n1 corrupted rows, the set Aj still has cardinality at least n, and the proof thus holds under the
row corruption model.
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3.1 Proof of Lemma 2

Let Ẑ = maxi Zi. By definition of sub-Gaussianity, we have

E
[
etẐ/σ

]
= E

[
max
i
etZi/σ

]
≤

∑
i

E
[
etZi/σ

]
≤ met

2/2

= et
2/2+logm

It follows from Markov Inequality that

P (Ẑ ≥ σt) = P (etẐ/σ ≥ et
2

)

≤ e−t
2

E
[
etẐ/σ

]
≤ e−t

2+t2/2+logm

= e−
1
2 t

2+logm.

By symmetry we have

P (min
i
Zi ≤ −σt) ≤ e−

1
2 t

2+logm,

so a union bound gives

P (max
i
|Zi| ≥ σt) ≤ P (max

i
Zi ≥ σt) + P (min

i
Zi ≤ −σt)

≤ 2e−
1
2 t

2+logm.

Taking t = 4
√

logm+ log p yields the result.

4 Proof of Theorem 4

We now prove Theorem 4. We first prove the theorem for Robust Lasso, and then for Robust Dantzig
selector. We will use Lemma 2 and Lemma 3 given in the last section.

4.1 Proof for Robust Lasso

For simplicity, we only prove the theorem for the row corruption model. It is straightforward to adapt the
proof for the distributed corruption model (cf. the proof for RoTR in the last section).

Let ∆ := β̂−β∗, F := Γ̂−XA>XA, f := γ̂−XA>XAβ∗, and S = support(β∗). For any vector b ∈ Rp,
bS is the vector with (bS)i = bi for i ∈ S and (bS)i = 0 for i /∈ S.

Because β̂ satisfies the constraint in the optimization problem in Robust Lasso, we have

‖β∗‖1 ≥ ‖β∗ + ∆‖1
= ‖β∗ + ∆S‖1 + ‖∆Sc‖1
≥ ‖β∗‖1 − ‖∆S‖1 + ‖∆Sc‖1 .
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It follows that ‖∆Sc‖ ≤ ‖∆S‖1. Because |S| = k, we obtain the following inequality

‖∆‖1 = ‖∆S‖1 + ‖∆Sc‖1
≤ 2 ‖∆S‖1
≤ 2

√
k ‖∆S‖2

≤ 2
√
k ‖∆‖2 . (5)

Under the assumption for n in the theorem, standard results (e.g. Lemma 1 in [2]) guarantees that the
authentic XA satisfies Restricted Strong Convexity (RSC) under the assumption of the theorem:

u>(XA>XA)u ≥ 1

4
λmin(Σx) ‖u‖2 , ∀u : ‖u‖1 ≤ 2

√
k ‖u‖2 . (6)

Combining with (5), we obtain

∆>Γ̂>∆ = ∆>(XA>XA)∆ + ∆>F∆

≥ 1

2
λmin(Σx) ‖∆‖22 − ‖F‖∞

∑
i,j

|∆i| |∆j |

=
1

2
λmin(Σx) ‖∆‖22 − ‖F‖∞ ‖∆‖

2
1 (7)

≥ 1

2
λmin(Σx) ‖∆‖22 − 4k ‖F‖∞ ‖∆‖

2
2 .

The magnitude of Fij can be bounded similarly to the proof of RoTR. To see this, let T be the set of trimmed
indices, and recall that A and O are the sets of inliers and outliers, respectively. We can write

Fij = 〈Xi, Xj〉n1
−
〈
XAi , X

A
j

〉
= −

∑
k∈T ∩A

XkiXkj +
∑

k∈T c∩O

XkiXkj

≤ 2n1

(
max
k∈A
|Xki|

)(∣∣∣∣max
k∈A

Xkj

∣∣∣∣) .
Because Xki, k ∈ A are independent sub-Gaussian variable parameters 1

nσ
2
x, Lemma 2 gives maxk∈A |Xki| .

σx

√
log p
n w.h.p. It follows from a union bound over (i, j) that

‖F‖∞ .
n1 log p

n
σ2
x. (8)

Under our assumption, we have n1

n . λmin(Σx)
σ2
xk log p , so

‖F‖∞ ≤
λmin(Σx)

16k
. (9)

We thus obtain

∆>Γ̂>∆ ≥ λmin(Σx)

4
‖∆‖22 . (10)

By Holder’s inequality and (5), we have〈
γ̂ − Γ̂β∗,∆

〉
≤

∥∥∥γ̂ − Γ̂β∗
∥∥∥
∞
‖∆‖1

≤ 4
√
k
∥∥∥γ̂ − Γ̂β∗

∥∥∥
∞
‖∆‖2
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Now note that ∥∥∥γ̂ − Γ̂β∗
∥∥∥
∞
≤

∥∥∥XA>XAβ∗ − Γ̂β∗
∥∥∥
∞

+
∥∥γ̂ −XA>XAβ∗∥∥∞

= ‖Fβ∗‖∞ + ‖f‖∞ .

Using (8) and the k-sparsity of β∗, we can bound the first term with
√
kn1 log p
n σ2

x ‖β‖2. For the second term,
we decompose fj as

fj = 〈Xj , y〉R −
〈
XAj , X

Aβ∗
〉

=
∑
i∈T c

Xijyi −
〈
XAj , X

Aβ∗
〉

=

(∑
i∈A

Xijyi −
〈
XAj , X

Aβ∗
〉)
−

∑
i∈T ∩A

Xijyi +
∑

i∈T c∩O
Xijyi

=
〈
XAj , e

〉
−

∑
i∈T ∩A

Xijyi +
∑

i∈T c∩O
Xijyi.

We have
〈
XAj , e

〉
≈
√

σ2
e log p
n w.h.p. by Lemma 3. Under the sub-Gaussian Design model, each yi, i ∈ A is

sub-Gaussian with parameter
σ2
e+σ2

x‖β
∗‖22

n . Using Lemma 2 similarly as before, we obtain∣∣∣∣∣− ∑
i∈T ∩A

Xijyi +
∑

i∈T c∩O
Xijyi

∣∣∣∣∣ . n1 log p

n
σ2
x

√
σ2
e + σ2

x ‖β∗‖
2
2.

It follows from a union bound that

‖f‖∞ .

√
σ2
e log p

n
+
n1 log p

n
σ2
x

√
σ2
e + σ2

x ‖β∗‖
2
2. (11)

Combining pieces, we obtain

〈
γ̂ − Γ̂β∗,∆

〉
. ‖∆‖2

(
kn1 log p

n
σ2
x ‖β‖2 +

√
kσ2

e log p

n
+
n1 log p

√
k

n
σx

√
σ2
e + σ2

x ‖β∗‖
2
2

)
. (12)

By optimality of β̂, we have

1

2
β̂>Γ̂β̂ − γ̂>β̂ ≤ 1

2
β∗>Γ̂β∗ − γ̂>β∗.

Rearranging terms, we get
1

2
∆>Γ̂>∆ ≤

〈
γ̂ − Γ̂β∗,∆

〉
.

Combining the above inequality with (10), (12) and (5), we obtain

1

2
√
k
‖∆‖1 ≤ ‖∆‖2 .

1

λmin(Σx)

(
kn1 log p

n
σ2
x ‖β‖2 +

√
kσ2

e log p

n
+
n1 log p

√
k

n
σx

√
σ2
e + σ2

x ‖β∗‖
2
2

)
,

which concludes the proof of the theorem.
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4.2 Proof for Robust Dantzig selector

Define F and f as before. Using (8) and (11), we have∥∥∥Γ̂β∗ − γ̂
∥∥∥
∞

=
∥∥(XA>XA + F )β∗ − (f +XA>XAβ∗)

∥∥
∞

≤ ‖Fβ∗‖∞ + ‖f‖∞
≤ ‖F‖∞ ‖β

∗‖1 + ‖f‖∞

.
n1 log p

n
σ2
x ‖β∗‖1 +

√
σ2
e log p

n
+
n1 log p

n
σ2
x

√
σ2
e + σ2

x ‖β∗‖
2
2.

Under the assumption of the theorem, this means that β∗ is feasible to the optimization problem in Robust
Dantzig selector. Applying Lemma 1 in [3], we obtain

‖∆Sc‖1 ≤ ‖∆S‖1 . (13)

Now observe that

XA>XA∆ = XA>XAβ̂ −XA>XAβ∗

= Γ̂β̂ − F β̂ −XA>XAβ∗

= Γ̂β̂ − γ̂ + γ̂ − F β̂ −XA>XAβ∗

= Γ̂β̂ − γ̂ + (f +XA>XAβ∗)− Fβ̂ −XA>XAβ∗

= Γ̂β̂ − γ̂ + f − Fβ̂.

It follows that ∥∥XA>XA∆
∥∥
∞ ≤

∥∥∥Γ̂β̂ − γ̂
∥∥∥
∞

+ ‖f‖∞ +
∥∥∥Fβ̂∥∥∥

∞

≤ µ
∥∥∥β̂∥∥∥

1
+ τ + ‖f‖∞ +

∥∥∥Fβ̂∥∥∥
∞

≤ µ
∥∥∥β̂∥∥∥

1
+ τ + ‖f‖∞ + ‖F‖∞

∥∥∥β̂∥∥∥
1

≤ (µ+ ‖F‖∞) ‖β∗‖1 + τ + ‖f‖∞ , (14)

where we use the fact that β̂ is feasible in the second inequality and the optimality of β̂ in the last inequality.
Using the definition of κq(s), κRE and (13) in [4] (recall that ∆ satisfies (13)), we have∥∥XA>XA∆

∥∥
∞ ≥ κ2(k) ‖∆‖2

&
1√
k
κRE(2k) ‖∆‖2 ,

where κRE is defined as

κRE(2k) , min
|J|=2k,‖uJc‖1≤‖uJ‖1

∣∣u>XA>XAu∣∣
‖uJ‖22

.

Using Lemma 1 in [2], we know w.h.p. κRE(2k) ≥ 1
2λmin(Σx) under the assumption of the theorem.

Combining this with (14), we obtain

‖∆‖2 .

√
k

λmin(Σx)
((µ+ ‖F‖∞) ‖β∗‖1 + τ + ‖f‖∞) .
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It then follows from (13), (8), (9) and our choice of µ and τ that

‖∆‖2 .
1

λmin(Σx)

(
kn1 log p

n
σ2
x ‖β∗‖2 + σe

√
k log p

n
+
n1 log p

√
k

n
σx

√
σ2
e + σ2

x ‖β∗‖
2
2

)
.

This concludes the proof of the theorem.

5 Guarantees for the Projected Gradient Descent Method

Combining (6), (7) with (9), we know that Γ̂ satisfies the lower-Restricted Eigenvalue condition in [2] with
α1 = 1

2λmin(Σx) and τ(n, p) ≤ 1
4α1 under the condition of Theorem 4. A similar argument shows that

Γ̂ satisfies the upper-Restricted Eigenvalue condition as well with α2 = 3
2λmax(Σx). We can then apply

Theorem 2 in [2] to conclude the following: for the projected gradient descend method, if we choose the step
size η = 3λmax(Σx), then there exist absolute constant c1, c2 > 0, γ < 1 such that w.h.p., for all t > 0,∥∥∥βt − β̂∥∥∥2

2
≤ γt

∥∥∥β0 − β̂
∥∥∥2

2
+ c1

log p

n

∥∥∥β̂ − β∗∥∥∥2

1
+
∥∥∥β̂ − β∗∥∥∥2

2
,∥∥∥βt − β̂∥∥∥

1
≤ 2

√
k
∥∥∥βt − β̂∥∥∥

2
+ 2
√
k
∥∥∥β∗ − β̂∥∥∥

2
+ 2

∥∥∥β∗ − β̂∥∥∥
2
.

This means for t large enough, ‖βt − β∗‖q .
∥∥∥β̂ − β∗∥∥∥

q
for q = 1, 2, so the output of the projected gradient

descend method also obeys the error bounds in Theorem 4.
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