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In this supplementary material, we prove the theoretical results in the main paper.

1 Proof of Theorem 1

Recall that y = [y*;y°] and X = [XA; X©] with y* = XAB* + ¢, and A* is the true support. The
adversary fixes some set A disjoint from the true support A* with |[A| = [A*|. It then chooses 3 and y©
such that ﬁA = Bi- BAC =0, and y© XOB with X© to be determined later. By assumption we have
h(B) = h(B*) < R, so 3 is feasible. Its objective value is f(y — X3) = f([y* — X/f\“ﬁl*\*;()]) < C for some
finite constant C. The adversary further chooses X© such that X§{. = 0 and X§ is large. Any 3 supported
on A* has objective value

fly—XB) = f(ly* — XAB; X (B - B))) = f(ly* — XAB; XL Br-]) > f([0: XT B3]),

which can be made bigger than €' under the SCO Condition. Therefore, any solution B with the correct
support A* has a higher objective value than 3, and thus is not the optimal solution.

2 Proof of Theorem 2

For simplicity we assume A* = {1,...,k}, A ={1,...,n}, and O = {n+1,...,n + n;}. We will show
that the adversary choose y© and X© in such a way that any “correct” solution of the form (6,S, A*) (i.e.,
with the correct support A*) is not optimal because an alternative solution (é,g, A) with 6 = m,...,1]7,
S={ni+1,....n+n}, A={2,... k k+ 1} has smaller objective value.

Now for the details. The adversary chooses (y©), = vk for all i, X{. =0, and X, = y°, hence

y© — X %6 = 0. To compute the objective values of the “correct” solution and the alternative solution,
we need a simple technical lemma, which follows from standard results for the norms of random Gaussian
matrix. The proof is given in the appendix.

Lemma 1. If n 2> k3logp, we have
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Using the above lemma, we can upper-bound the objective value of the alternative solution:
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To lower-bound the objective value of solutions of the form (0, S, A*), we distinguish two cases. If SNO # ¢,
then the objective value is
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where we use the lemma in the inequality. When ny; > k?’—& and 02 = k, we have min {k, (1 — %) crg} >

(14 4) (1= ™) (02 +2). Combining (1), (2) and (3) concludes the proof.
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2.1 Proof of the Lemma 1
Let ¢ = [0’6|(5T]T E = ||Z19’||§ with Z; £ [ée\X}{‘*] Note that 7 is an nx (k+1)
matrix with i.i.d. N(0, %) entries, whose smallest singular value can be bounded using standard results. For
example, using Lemma 5.1 in [1] with ®(w) = Z;, N =k+1,T={1,...,N},d = ﬁ and ¢o(6/2) = 1/288k?,
we have
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provided n > 576(k+1)3In(36p). This proves the first inequality. The second lemma can be proved similarly
using Lemma 5.1 in [1].

3 Proof of Theorem 3

We prove Theorem 3 in this section. We need two technical lemmas. The first lemma bounds the maximum
of independent sub-Gaussian random variables. The proof follows from the definition of sub-Gaussianity and
Chernoff bound, and is given in the next subsection.



Lemma 2. Suppose Z1,...,Z,, are m independent sub-Gaussian random variables with parameter o. Then
we have max;=1,.._m |Z;| < 40v/logm + log p. with high probability.

The second lemma is a standard concentration result for the sum of squares of independent sub-Gaussian
random variables. It follows directly from Eq. (74) in [2].

Lemma 3. Let Y7,...,Y, be n i.i.d. zero-mean sub-Gaussian random variables with parameter ﬁ and
variance at most % Then we have
n
logp
2
|ZYz — 1] < ey "
=1
with high probability for some absolute constant c1. Moreover, if Z1,...,Z, are also i.i.d. zero-mean sub-
Gaussian random variables with parameter ﬁ and variance at most %, and independent of Y1,...,Y,, then
- log p
D _YiZi| < ca\/ =2
i=1

with high probability for some absolute constant cs.

Remark. When the above inequality holds, we write > | Y2 ~ 1+ k’% and > YiZ; ~ £ 10% w.h.p.

We now turn to the proof of Theorem 3. We first consider the distributed corruption model. For

simplicity we assume that for each columns of X and y there are at most % entries corrupted (instead of

ny entries). This will affect the statement of the theorem by a constant of 2.

Consider the trimmed inner product h(j) between the jth column of X and y. Let A; is the set of
index ¢ such that X;; and y; are both not corrupted. By assumption |A;| > n. By putting |A;| — n clean
indices in A}, we may assume |A;| = n without loss of generality. By prescription of Algorithm 2, we can
write h(j) as

h(j) = Z Xijyi — Z Xijyi + Z XijYi-

1€A; i€trimmed i€remaining
inliers outliers

We estimate each term in the above sum.

1. Observe that
p
Z Xijyi = Z Xij <Z XikBy, + €> = Z X365 + Z Xij ZXikﬁz +e
iEAj iE.Aj k=1 ieAJ- iE.Aj k#j

(a) Because the points in A; obeys the Sub-Gaussian model, Lemma 3 gives w.h.p. ZieAj X?j S

B: (11,/%1ogp).

(b) On the other hand, because X;; and X;; are independent when k # j, and Z; £ Zk# Xixff +e

are i.i.d. sub-Gaussian with parameter and standard deviation at most \/ <|| 6*||§ + 02) /n, we apply
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Lemma 3 to obtain }_,c 4 X;;Z; ~ :t\/lﬁ\/(HB 5+ ag) log p w.h.p.



2. Again due to independence and sub-Gaussianity of points in A;, Lemma 2 gives max;ec, | Xy <

v/ (logp)/n w.h.p. and max;e 4; [yi| \/(logp/n) (Hﬁ*”g + Ug) w.h.p. It follows that w.h.p.
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3. By prescription of the trimming procedure, either all outliers are trimmed, or the remaining outliers
are no larger than the trimmed inliers. It follows from the last equation that w.h.p.
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Combining pieces, we have for all j =1,...,p,
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If RoTR correctly picks an index j in the true support A*, then the error in estimating Bj is bounded
by the expression above. If RoTR picks some incorrect index j not in A*, then the difference between the
corresponding Bj and the true 87, that should have been picked is still bounded by the expression above (up
to constant factors). Therefore, we have
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The first part of the theorem then follows after straightforward algebra manipulation. On the other hand,
RoTR picks the correct support as long as |h(j)| > |h(j')| for all j € A*,j" € (A*)°. In view of Eq.(4), we
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One verifies that the above inequalities are satisfied under the conditions in the second part of the theorem.

Now consider the row corruption model. A careful examination of the proof above shows that, when
there are n; corrupted rows, the set Aj; still has cardinality at least n, and the proof thus holds under the
row corruption model.



3.1 Proof of Lemma 2

Let Z = max; Z;. By definition of sub-Gaussianity, we have

E[etz/”} = E[maxetzi/”}
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It follows from Markov Inequality that
P(Z>ot) = P(e?/7 > ¢
R [etZ/a]
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By symmetry we have
P(mm Z; < —O't) < 6_%t2+logm,
3
so a union bound gives
P(max|Z;| > ot) < P(maxZ; > ot)+ P(min Z; < —ot)
K3 K3 K3

< 267%t2+10gm

Taking t = 4v/logm + log p yields the result.

4 Proof of Theorem 4

We now prove Theorem 4. We first prove the theorem for Robust Lasso, and then for Robust Dantzig
selector. We will use Lemma 2 and Lemma 3 given in the last section.

4.1 Proof for Robust Lasso

For simplicity, we only prove the theorem for the row corruption model. It is straightforward to adapt the
proof for the distributed corruption model (cf. the proof for RoTR in the last section).

Let A :=f3— 3% F:=T—-XATXA f:=4— XATXAB* and S = support(8*). For any vector b € RP,
bs is the vector with (bg); = b; for i € S and (bg); =0 for i ¢ S.

Because B satisfies the constraint in the optimization problem in Robust Lasso, we have
187, = [18* + Ally

15" + Aslly + [|Ase |,
> 8%y = 1Aslly + [Asel; -

\%



It follows that [[Age|| < ||Agl|;. Because |S| =k, we obtain the following inequality

Al = Aslly + [[Ase],
< 2[Asglly
< 2VE|[As],
< 2Vk|Al,. (5)

Under the assumption for n in the theorem, standard results (e.g. Lemma 1 in [2]) guarantees that the
authentic X satisfies Restricted Strong Convexity (RSC) under the assumption of the theorem:
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The magnitude of Fj; can be bounded similarly to the proof of RoTR. To see this, let 7 be the set of trimmed
indices, and recall that A and O are the sets of inliers and outliers, respectively. We can write

Fi’ = <X21Xj>n1 - <XzAaX;4>
= = ) XpXpit+ Y XuiXy
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Because Xi;, k € A are independent sub-Gaussian variable parameters %ofﬁ Lemma 2 gives maxye 4 | Xpi| S

Oy 10% w.h.p. It follows from a union bound over (i, j) that
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Now note that
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Using (8) and the k-sparsity of 5*, we can bound the first term with Mog l8]|5- For the second term,
we decompose f; as
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We have <XJA, e) ~ 1/ @ w.h.p. by Lemma 3. Under the sub-Gaussian Design model, each y;, i € A is
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It follows from a union bound that
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Combining pieces, we obtain
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By optimality of 3, we have

Rearranging terms, we get

Combining the above inequality with (10), (12) and (5), we obtain
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which concludes the proof of the theorem.



4.2 Proof for Robust Dantzig selector

Define F' and f as before. Using (8) and (11), we have

< FB o + 111l
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Under the assumption of the theorem, this means that 5* is feasible to the optimization problem in Robust
Dantzig selector. Applying Lemma 1 in [3], we obtain

[Ase

1 < [1Asll; - (13)

Now observe that
X.ATXAA _ X.ATX.AB o X'ATX'Aﬁ*
= IB-4+4-FB—XATxAp"
= TB—4+(f+XATXAB) — F3 — XATXAp*
= IB—4+f-F5.
It follows that
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where we use the fact that ,/3’ is feasible in the second inequality and the optimality of B in the last inequality.
Using the definition of k,(s), kre and (13) in [4] (recall that A satisfies (13)), we have

[XATXAA| L = ka(k) AL
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where kpg is defined as
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Using Lemma 1 in [2], we know w.h.p. kgg(2k) > %/\min(Zw) under the assumption of the theorem.
Combining this with (14), we obtain
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It then follows from (13), (8), (9) and our choice of p and 7 that
1 knilogp N klogp mnq logp\/E w2
18l S ( L 62 8% + oy + MBIV 5\ fo2 4 o2 503 ).

This concludes the proof of the theorem.

5 Guarantees for the Projected Gradient Descent Method

Combining (6), (7) with (9), we know that I" satisfies the lower-Restricted Eigenvalue condition in [2] with
o = %)\min(Em) and 7(n,p) < %al under the condition of Theorem 4. A similar argument shows that
I' satisfies the upper-Restricted Eigenvalue condition as well with as = %/\maX(Ew). We can then apply
Theorem 2 in [2] to conclude the following: for the projected gradient descend method, if we choose the step
size 1 = 3Amax(2z), then there exist absolute constant ¢q,c2 > 0,7 < 1 such that w.h.p., for all ¢ > 0,

T S O
‘ﬁt_B 1 = Qﬁ‘ﬁt_ﬁm—l—z\/ﬂﬁ*_B)’2+2’6*_8H2'
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descend method also obeys the error bounds in Theorem 4.

This means for ¢ large enough, 5% — 5*Hq < for ¢ = 1,2, so the output of the projected gradient
q
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