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A. Proof of theorem 1

Proof. Let �H be the family of hypotheses mapping
X×Y to R defined by �H =

�
z = (x, y) �→ ρh(x, y) : h ∈

H
�
. Consider the family of functions �H =

�
Φρ◦r : r ∈

�H
�

derived from �H, where Φρ is the ρ-margin function
loss defined by Φρ(x) = 1x≤0 + max(0, 1 − x/ρ) 1x>0.
By the Rademacher complexity bound for functions
taking values in [0, 1] (see (Koltchinskii & Panchenko,
2002; Bartlett & Mendelson, 2002)), we can write that
with probability at least 1 − δ, for all h ∈ H,
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Since 1u≤0 ≤ Φρ(u) for all u ∈ R, the generaliza-
tion error R(h) is a lower bound on the left-hand side,
R(h) = E[1y[h(x�)−h(x)]≤0] ≤ E

�
Φρ(ρh(x, y))

�
. Fur-

thermore, since Φρ is 1/ρ-Lipschitz, by Talagrand’s
contraction lemma (Ledoux & Talagrand, 1991), we
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For any fixed y ∈ Y and any i ∈ [1,m], define �i as
2(1y=yi

) − 1. Since �i ∈
�
− 1,+1

�
, the random vari-

ables σi and σi�i follow the same distribution. Using
this fact and the sub-additivity of sup, �RS( �H) can be
upper bounded as follows:
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Let H
(c−1)
X =

�
max

�
h1, . . . , hl

�
: hi ∈ HX , i ∈ [1, c −

1]
�
. It is known that the empirical Rademacher of a

function class defined as that of the maxima of several
hypotheses is upper bounded by the sum of the em-
pirical Rademacher complexities of the sets to which
each of these hypotheses belong to (Ledoux & Ta-

lagrand, 1991), thus �RS(H
(c−1)
X ) ≤ (c − 1)�RS(HX ).

Now, rewriting ρh(xi, y) explicitly, using again the
sub-additivity of sup and observing that −σi and σi
are distributed in the same way leads to
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This concludes the proof.

B. Proof of lemma 1

Proof. For any h ∈ HK and x ∈ X , by the repro-
ducing property, we have h(x) = �h,K(x, ·)�. Let
HS = span(

�
K(xi, ·) : i ∈ [1,m]

�
), then, for i ∈

[1,m], h(xi) = �h�,K(x, ·)�, where h� is the orthog-
onal projection of h over HS . Thus, there exists α =
(α1, . . . , αm)� ∈ Rm such that h� =

�m
i=1 αiK(xi, ·).

If �h�H ≤ Λ, then α�Kα = �h��2K ≤ �h�2K ≤ Λ2

where K is the kernel matrix of K for the sample S.
Conversely, any

�p
i=1 αiK(xi, ·) with α�Kα ≤ Λ2 is

the projection of some h ∈ HK with �h�2K ≤ Λ2.

Thus, for any y ∈ Y, there exists αy =
(αy

1 , . . . , α
y
m)� ∈ Rm such that for any i ∈ [1,m],

hy(xi) =
�m

j=1 α
y
jKµ(xi, xj), and αy�Kµα

y ≤ Λ
where Kµ is the kernel matrix associated to Kµ for
the sample (x1, . . . , xm). In view of that, we can write
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Now, by the Cauchy-Schwarz inequality, the supre-

mum supαy σ�Kµα
y is reached for K

1/2
µ αy collinear
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with K
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µ σ, which gives supαy∈A σ�Kµα
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which concludes the proof.

C. Proof of lemma 3

Proof. It first helps to rewrite the optimization in the
following equivalent form:

min
λ≥0,t

t subject to: ∀k ∈ [1, p], t ≥ uσ,k + λ(�γk − γ0).

The Lagrangian L associated to this problem can be
defined for any t ∈ R, λ ≥ 0, and β ∈ Rp, β ≥ 0, by

L(t, λ,β) = t+

p�

k=1

βk
�
uσ,k + λ(�γk − γ0) − t

�
.

By the KKT conditions, the following holds:

∂L

∂t
= 1 −

p�

k=1

β∗k = 0 ⇐⇒
p�

k=1

β∗k = 1, (10)

∂L

∂λ
=

p�

k=1

β∗k(�γk − γ0) = 0, (11)

∀k : β∗k > 0, uσ,k + λ∗(�γk − γ0) = t∗. (12)

Here λ∗, t∗, and β∗ denote the optimal values for
the dual problem maxβ≥0 minλ,t L(t, λ,β). Note that
Slater’s condition holds for the convex primal prob-
lem, which implies that strong duality holds and that
λ∗ and t∗ are also optimal solutions to the primal prob-
lem. The conditions (10) and (11) follow from the fact
that ∇L = 0 at the optimum and (12) follows from the
complementary slackness condition that guarantees for
all k, β∗k(uσ,k + λ∗(�γk − γ0) − t∗) = 0. Note that the
condition in (10) as well as the constraint βk ≥ 0,
which is imposed on dual variables that correspond to
inequality constraints, implies β∗ ∈ Δ1.

We first consider the subset of solutions to the dual
optimization that are equal to T1 = maxk:�γk≥γ0

uσ,k.
Note that any feasible point in this simpler optimiza-
tion is also a feasible point in the original problem.
Now, consider the dual optimization, which can be
simplified by removing t when we impose β ∈ Δ1:
maxβ∈Δ1 minλ

�p
k=1 βk(uσ,k + λ(�γk − γ0)). When-

ever it is the case that λ∗ = 0 or that �γk = γ0
for all k where βk > 0, we can further simplify

the objective to maxβ∈Δ1

�p
k=1 βkuσ,k = maxk uσ,k.

Note this implies that λ∗ = 0 iff �γkmax ≥ γ0 (where
kmax = argmaxk uσ,k), since all constraints of the orig-
inal problem in lemma 2 must be satisfied at the op-
timum. Thus, T1 is found as the solution to the dual
problem whenever λ∗ = 0 or �γk = γ0 for all k where
βk > 0.

Now we seek an expression T2 that is equal to the
optimum of the dual optimization in the cases not ac-
counted for by T1. That is, we consider the case λ∗ > 0
and the existence of at least one k such that β∗k > 0
and �γk �= γ0. In order for condition (11) to be satis-
fied in this case, there must be at least two coordinates
β∗k and β∗k� that are non-zero for k and k� that satisfy
�γk < γ0 < �γk� . This is because both a negative coef-
ficient, i.e. (�γk − γ0), as well as a positive coefficient,
i.e. (�γk − γ0), must be present in order for 0 to be
found as convex combination. Now, fix any two co-
ordinates k and k� that are non-zero in β∗ and that
satisfy �γk ≤ γ0 ≤ �γk� with �γk �= �γk� (there exists at
least two such coordinates by the argument just dis-
cussed). From condition (12) we know that

uσ,k + λ∗(�γk − γ0) = uσ,k� + λ∗(�γk� − γ0)

⇐⇒ λ∗ =
uσ,k − uσ,k�

�γk − �γk�
> 0. (13)

Plugging this back into (12) we find an expression for
the optimal objective value t∗:

t∗ = αk,k�uσ,k + (1 − αk,k�)uσ,k� ,

where 0 ≤ αk,k� = �γk�−γ0

�γk�−�γk
≤ 1. However, we still do

not know which k and k� are active at the optimum.
We do know that for all k, t∗ ≥ uσ,k + λ∗(�γk − γ0)
since all constraints must hold at the optimum, which
also implies, for all k and k�,

t∗ ≥ αk,k�(uσ,k + λ∗(�γk − γ0))
+ (1 − αk,k�)(uσ,k� + λ∗(�γk� − γ0))

= αk,k�uσ,k + (1 − αk,k�)uσ,k�

+ λ∗
�
αk,k�(�γk − γ0)) + (1 − αk,k�)(�γk� − γ0)

�
� �� �

= 0

.

Thus, we can maximize over all feasible choice of k
and k� in order to find the value at which the above
inequality is tight:

t∗ = max
(k,k�)∈Jp

αk,k�uσ,k + (1 − αk,k�)uσ,k� ,

which gives us the expression T2 for the optimum in
the intersection case. Finally, taking the maximum
over T1 and T2 completes the lemma.
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D. Theorem 3

Theorem 3. Fix ρ > 0 and let p� = Card(Ip) ≤ p and
p�� = Card(Jp) < p

2. Then, for any δ > 0, with prob-
ability at least 1 − δ over a sample of size m, the fol-
lowing multi-class classification generalization bound
holds for all h ∈ H1:

R(h) ≤ �Rρ(h) +
2c2Λ

mρ

�

Tγ0 +mλmax

�
log(p� + p��)

2

+ 3

�
log 2

δ

2m
, (14)

where Tγ0
=max(maxk∈IpTr[Kk],max(k,k�)∈Jp

Tr[Kk,k� ])

and λmax=max
�
maxk∈Ip�Kk�2,max(k,k�)∈Jp

�Kk,k��2
�
,

with Kk,k� =αk,k�Kk+(1−αk,k�)Kk� and αk,k� = �γk�−γ0

�γk�−�γk
.

Proof. Let Mp =
�
(k, k�) ∈ [0, p] × [1, p] : (�γk ≤ γ0 ≤

�γk�) ∧ (�γk �= �γk�)
�

as in the proof of Theorem 2. By
lemmas 1-3 and Jensen’s inequality, we can write:
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�
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Note that for any k, k�, σ�Kk,k�σ ≤ �σ�2�Kk,k��2 =
m�Kk,k��2. Now, for any t ∈ R, by the convexity of
exp and Jensen’s inequality, we have

etE[max(k,k�)∈Mp
σ�Kk,k�σ] ≤ E[etmax(k,k�)∈Mp

σ�Kk,k�σ]
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�
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etσ
�Kk,k�σ].

For any (k, k�) ∈ Mp, we have E[σ�Kk,k�σ] =
Tr[Kk,k� ]. Thus, by Hoeffding’s inequality, the follow-
ing holds

E[etσ
�Kk,k�σ] = etTr[Kk,k� ] E[et(σ

�Kk,k�σ−E[σ�Kk,k�σ])]

≤ etTr[Kk,k� ]et
2λ2

maxm
2/8.

Therefore, we can write
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Taking the log of both sides and rearranging gives
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log(p� + p��)
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+ tλ2maxm

2/8.
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�
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the upper bound gives

E
σ
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(k,k�)∈Mp
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(k,k�)∈Mp

Tr[Kk,k� ] +mλmax

�
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Plugging in this upper bound on the Rademacher com-
plexity of H1

X in the learning guarantee of theorem 1
concludes the proof.

E. Proof of lemma 4

Proof. We introduce M1(γ0) = maxk∈Ip(γ0) Tr[Kk]
and M �

1(γ0) = max(k,k�)∈Jp(γ0) Tr[Kk,k� ], where we
write Ip(γ0) and Jp(γ0) to make the dependency of
these sets on γ0 explicit. With these definitions, we
can write Tγ0

= max(M1(γ0),M
�
1(γ0)).

Notice that if Tr[Kk] ≤ Tr[Kk� ], then Tr[Kkk� ] ≤
Tr[Kk� ] since Tr[Kkk� ] is a convex combination of
Tr[Kk] and Tr[Kk� ]. Thus, if (k, k�) is the maximiz-
ing pair of indices defining M �

1(γ0) and Tr[Kk] ≤
Tr[Kk� ], we have M �

1(γ0) = Tr[Kkk� ] ≤ Tr[Kk� ] ≤
maxγk�≥γ0 Tr[Kk� ] = M1(γ0). By contraposition, if
M1(γ0) < M �

1(γ0), then Tr[Kk� ] < Tr[Kk]. In view
of that, we can rewrite Tγ0

= max(M1(γ0),M2(γ0)),
where M2(γ0) = max(k,k�)∈Np(γ0) Tr[Kk,k� ], where

Np(γ0) =
�
(k, k�) ∈ [1, p]2 : (�γk ≤ γ0 ≤ �γk�) ∧ (�γk �=

�γk�) ∧ (Tr[Kk� ] < Tr[Kk])
�
.

Now, let λ0 ≥ γ0, we will show that Tλ0 ≤ Tγ0 . First
note that if Tλ0

= M1(λ0), then, since by definition of
M1, M1(λ0) ≤ M1(γ0) ≤ Tγ0

, this shows immediately
that Tλ0

≤ Tγ0
.

Otherwise, Tλ0
= M2(λ0). Let (l, l�) be the maximiz-

ing indices in the definition of M2(λ0). Then, since
Tr[Kl� ] − Tr[Kl] < 0 holds, we can write:

Tλ0
=

�γl� − λ0
�γl� − �γl

Tr[Kl] +
λ0 − �γl
�γl� − �γl

Tr[Kl� ]

=
�γl� Tr[Kl] − �γl Tr[Kl� ]

�γl� − �γl
+
λ0(Tr[Kl� ] − Tr[Kl])

�γl� − �γl
≤ �γl� Tr[Kl] − �γl Tr[Kl� ]

�γl� − �γl
+
γ0(Tr[Kl� ] − Tr[Kl])

�γl� − �γl
=

�γl� − γ0
�γl� − �γl

Tr[Kl] +
γ0 − �γl
�γl� − �γl

Tr[Kl� ].

If (l, l�) ∈ Np(γ0), the right-hand side is upper
bounded by M2(γ0) ≤ Tγ0

. Otherwise, if (l, l�) is not
in Np(γ0), since by definition of Np(γ0), �γl� ≥ λ0 ≥ γ0,
this can only be because γ0 ≤ �γl. But in that case both
�γl and �γl� are greater than or equal to γ0. Then, by def-
inition of M1(γ0), Tr[Kll� ] ≤ max(Tr[Kl],Tr[Kl� ]) ≤
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M1(γ0) ≤ Tγ1
. Thus, the inequality Tλ0

≤ Tγ0
holds

in all cases.

F. Alternative M3K optimization

Here we present an alternative formulation of the M3K
algorithm, which results in a quadratically constrained
linear program. Such a problem can be solved with
any standard second order cone programming (SOCP)
solver. We find this formulation can be faster to solve
than the SILP formulation for smaller size problems,
especially in the case of fewer classes.

First, consider the dual formulation with the margin
constraint appearing instead as an additional penalty
term in the objective with regularization parameter Γ.
For every choice of γ0 in the constraint version of the
optimization there exists a choice of Γ that results in
an equivalent optimization problem.

min
µ,γ

max
α

m�

i=1

α�
i eyi

− C

2

m�

i,j=1

α�
i αj

p�

k=1

µkKk(xi, xj)

− Γ

m�

i=1

γi

s.t. ∀i, αi ≤ eyi
, α�

i 1 = 0

∀i, ∀y �= yi, γi ≤ µ�η(xi, yi, y)

µ ≥ 0, µ�1 = Λ .

The objective is linear in µ and γ and concave in α and
both µ and α are drawn from convex compact sets.
The γ is drawn from a closed convex set, however, it is
unbounded from below. One can add a lower bound on
γ that has no effect on the optimal solution in order to
achieve compactness and, thus, the minimax theorem
applies and we permute the min and the max and solve
for µ and γ first. Focusing on the terms that depend
on µ and γ, we have:

min
µ,γ

− C

2
µ�u− Γ

m�

i=1

γi

s.t. ∀i, ∀y �= yi, γi ≤ µ�η(xi, yi, y)

µ ≥ 0, µ�1 = Λ ,

where uk =
�m

i,j=1 α
�
i αjKk(xi, xj). Consider the

partial Lagrangian for the constraints on γ, which in-
troduces dual variables β ≥ 0:

L = −C
2
µ�u− Γ

m�

i=1

γi

+

m�

i=1

�

y �=yi

βi,y(γi − µ�η(xi, yi, y)) .

At the optimum, it is guaranteed that

∀i, ∂L
∂γi

= −Γ +
�

y �=yi

βi,y = 0 ⇐⇒
�

y �=yi

βi,y = Γ .

Enforcing this constraint explicitly gives the follow-
ing simplified objective, where γ is no longer appears
(since Γ

�
i γi −

�
i,y �=yi

βi,yγi = 0):

min
µ
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β≥0

− C
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µ�βi,yη(xi, yi, y))

s.t. ∀i,
�

y �=yi

βi,y = Γ

µ ≥ 0, µ�1 = Λ .

Note the minimax theorem applies once again (the ob-
jective is linear in µ and β which are both drawn from
convex compact sets) and we can first solve the mini-
mization over µ for a fixed β. Since the objective and
the constraints are linear in µ it is sufficient to con-
sider a solution that places all of the possible mass on
a single coordinate of µ. Thus, an equivalent objective
is: minµ µ�(−C

2 u − �m
i=1

�
y �=yi

βi,yη(xi, yi, y)) =

mink Λ(−C
2 uk −

�m
i=1

�
y �=yi

βi,yηk(xi, yi, y)). A final
reformulation, via the introduction of the variable t,
simplifies the objective further:

max
β,t

Λt

s.t. ∀k, t ≤ −C
2
uk −
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�
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βi,yηk(xi, yi, y)

∀i,
�

y �=yi

βi,y = Γ, β ≥ 0 .

Plugging this solution for µ and γ back into the orig-
inal optimization gives the final overall quadratically
constraint linear program:

max
α,β,t

m�

i=1

α�
i eyi

+ Λt

s.t. ∀k, t ≤ −C
2

m�
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α�
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−
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�
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∀i,
�
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βi,y = Γ, β ≥ 0

∀i, αi ≤ eyi , α
�
i 1 = 0 .
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Table 4. Performance of several algorithms on the cal-
tech101 dataset for varying numbers of training points per
class (PPC). The dataset consists of 102 classes and 48
kernels.

ppc unif BinMKL Obsc UFO M3K

5 46.0± 0.9 54.0± 0.7 52.5± 0.6 47.9± 0.7 51.4± 1.2
10 57.9± 0.8 65.9± 0.9 65.1± 1.0 62.9± 0.7 66.0± 1.1
15 64.6± 1.0 71.8± 0.5 71.4± 0.6 70.6± 0.6 72.6± 0.9
20 68.4± 0.9 75.4± 1.1 75.7± 1.2 73.5± 1.1 76.0± 0.8
25 71.9± 1.6 77.1± 1.2 78.2± 0.8 75.5± 1.3 79.3± 1.0

G. Caltech 101 performance

Here we present the numerical values that are dis-
played in figure 2.


