
Optimally Sparse SVMs

A. Proof of Lemma 3.1

We here prove a lower bound on the number of support vectors to achieve generalization bounds of the form
which we consider. Importantly, this result holds not only for linear classifiers, but also for randomized classifiers
of a more general form than those by our sparsification procedure (Section 4).

Lemma 3.1. Let R,L∗, ε ≥ 0 be given, with L∗ + ε ≤ 1/4 and with R2 being an integer. There exists a data
distribution D and a reference vector u such that ‖u‖ = R, Lhinge (gu) = L∗, and any w which satisfies:

L0/1 (gw) ≤ L∗ + ε

must necessarily be supported on at least R2/2 vectors. Furthermore, the claim also holds for randomized classi-
fication rules that predict 1 with probability ψ(gu(x)) for some ψ : R→ [0, 1].

Proof. We define D such that i is sampled uniformly at random from the set {1, . . . , d}, with d = R2, and the
feature vector is taken to be x = ei (the ith standard unit basis vector) with corresponding label distributed
according to Pr {y = z} = 1 − L∗/2. The value of z ∈ {±1} will be specified later. Choose ui = z for all i, so
that ‖u‖ = R and Lhinge (gu) = L∗.

Take w to be a linear combination of k < d/2 = R2/2 vectors. Then gw(x) = 0 on any x which is not in its
support set. Suppose that whenever gw(xi) = 0 the algorithm predicts the label 1 with probability p ∈ [0, 1]
(p = ψ(0) for a randomized classifier). If p ≥ 1/2 we’ll set z = −1, and if p < 1/2 we’ll set z = 1. This implies
that:

L0/1 (gw) ≥ d− k
2d

>
1

4
≥ L∗ + ε

which concludes the proof.

B. Compression Bound

We rely on the following compression bound (Theorem 2 of Shalev-Shwartz (2010)).

Theorem B.1. Let k and n be fixed, with n ≥ 2k, and let A :
(
Rd × {±1}

)k → H be a mapping which receives

a list of k labeled training examples, and returns a classification vector w ∈ H. Use S ∈ [n]
k

to denote a list
of k training indices, and let wS be the result of applying A to the training elements indexed by S. Finally, let
` : R→ [0, 1] be a loss function bounded below by 0 and above by 1, with L (gw) and L̂ (gw) the expected loss, and
empirical loss on the training set, respectively. Then, with probability 1− δ, for all S:

L (gwS ) ≤ L̂ (gwS ) +

√
32L̂ (gwS )

(
k log n+ log 1

δ

)
n

+
8
(
k log n+ log 1

δ

)
n

Proof. Consider, for some fixed δ′, the probability that there exists a S ⊆ {1, . . . , n} of size k such that:

L (gwS ) ≥ L̂test (gwS ) +

√
2L̂test (gwS ) log 1

δ′

(n− k)
+

4 log 1
δ′

n− k

where L̂test (gw) = 1
n−k

∑
i/∈S ` (yigw (xi)) is the empirical loss on the complement of S. It follows from Bern-

stein’s inequality that, for a particular S, the above holds with probability at most δ′. By the union bound:

nkδ′ ≥ Pr

∃S ∈ [n]k : L (gwS ) ≥ L̂test (gwS ) +

√
2L̂test (gwS ) log 1

δ′

(n− k)
+

4 log 1
δ′

n− k


Let δ = nkδ′. Notice that (n− k) L̂test (gwS ) ≤ nL̂ (gwS ), so:

δ ≥ Pr

∃S ∈ [n]k : L (gwS ) ≥ nL̂ (gwS )

n− k
+

√
2nL̂ (gwS ) log nk

δ

(n− k)
2 +

4 log nk

δ

n− k
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Figure 3. Illustration of the how our smooth loss relates to the slant and hinge losses. Our smooth loss (green) upper
bounds the slant-loss, and lower bounds the slant-loss when shifted by 1/6, and the hinge-loss when shifted by 1/3.

Because L̂ (gwS ) ≤ 1 and k ≤ n, it follows that kL̂ (gwS ) ≤ 2n log n, and therefore that k
n−k L̂ (gwS ) ≤√

2nkL̂(gwS ) logn

(n−k)2
≤
√

2nL̂(gwS ) log nk

δ

(n−k)2
. Hence:

δ ≥ Pr

∃S ∈ [n]k : L (gwS ) ≥ L̂ (gwS ) +

√
8nL̂ (gwS ) log nk

δ

(n− k)
2 +

4 log nk

δ

n− k


Using the assumption that n ≥ 2k completes the proof.

C. Concentration-based Analysis

In this section, we will prove a bound comparable to that of Theorem 4.4, but using a proof technique based on
a smooth loss, rather than a compression bound. In order to accomplish this, we must first modify the objective
of Problem 4.1 by adding a norm-constraint:

minimize :f(w̃) = max
i:yi〈w,Φ(xi)〉>0

(hi − yi 〈w̃,Φ(xi)〉) (C.1)

subject to : ‖w̃‖ ≤ ‖w‖

Here, as before, hi = min (1, yi 〈w,Φ(xi)〉). Like Problem 4.1, this objective can be optimized using subgradient
descent, although one must add a step in which the current iterate is projected onto the ball of radius ‖w‖ after

every iteration. Despite this change, an ε-suboptimal solution can still be found in ‖w‖2 /ε2 iterations.

The concentration-based version of our main theorem follows:

Theorem C.1. Let R ∈ R+ be fixed. With probability 1 − δ over the training sample, uniformly over all pairs
w, w̃ ∈ H such that ‖w‖ ≤ R and w̃ has objective function f(w̃) ≤ 1/3 in Problem C.1:

L0/1 (g̃w̃) ≤ L̂hinge (gw) +O

√ L̂hinge (gw)R2 log3 n

n
+

√
L̂hinge (gw) log 1

δ

n
+
R2 log3 n

n
+

log 1
δ

n


Proof. Because our bound is based on a smooth loss, we begin by defining the bounded 4-smooth loss `smooth(z)
to be 1 if z < −1/2, 0 if z > 2/3, and 1/2 (1 + cos (π/2 (1 + 1/7 (12z − 1)))) otherwise. This function is illustrated
in Figure C—notice that it upper-bounds the slant-loss, and lower-bounds the hinge loss even when shifted by
1/3. Applying Theorem 1 of Srebro et al. (2010) to this smooth loss yields that, with probability 1− δ, uniformly
over all w̃ such that ‖w̃‖ ≤ R:

Lsmooth (gw̃) ≤ L̂smooth (gw̃) +O

√ L̂smooth (gw̃)R2 log3 n

n
+

√
L̂smooth (gw̃) log 1

δ

n
+
R2 log3 n

n
+

log 1
δ

n
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Just as the empirical slant-loss of a w̃ with f(w̃) ≤ 1/2 is upper bounded by the empirical hinge loss of w, the
empirical smooth loss of a w̃ with f(w̃) ≤ 1/3 is upper-bounded by the same quantity. As was argued in the
proof of Lemma 4.1, this follows directly from Problem C.1, and the definition of the smooth loss. Combining
this with the facts that the slant-loss lower bounds the smooth loss, and that Lslant (gw̃) = L0/1 (g̃w̃), completes
the proof.

It’s worth pointing out that the addition of a norm-constraint to the objective function (Problem C.1) is only
necessary because we want the theorem to apply to any w̃ with f(w̃) ≤ 1/3. If we restrict ourselves to w̃ which
are found using subgradient descent with the suggested step size and iteration count, then applying the triangle
inequality to the sequence of steps yields that ‖w̃‖ ≤ O (‖w‖), and the above bound still holds (albeit with a
different constant hidden inside the big-Oh notation).

D. Unregularized Bias (Alternative)

In Section 4.6, we discussed a simple extension of our algorithm to a SVM problem with an unregularized bias
term, in which we took our sparse classifier w̃, b̃ to have the same bias as our target classifier w, b (i.e. b̃ = b). In
this section, we discuss an alternative, in which we optimize over b̃ during our subgradient descent procedure.
The relevant optimization problem (analogous to Problem 4.1) is:

minimize :f(w̃, b̃) = max
i:yi〈w,Φ(xi)〉>0

(
hi − yi

(
〈w̃,Φ(xi)〉+ b̃

))
(D.1)

with :hi = min (1, yi(〈w,Φ(xi)〉+ b))

A 1/2-approximation may once more be found using subgradient descent. The difference is that, before finding a
subgradient, we will implicitly optimize over b̃. It can be easily observed that the optimal b̃ will ensure that:

max
i:yi>0∧〈w,Φ(xi)〉>0

(
hi − (〈w̃,Φ(xi)〉+ b̃)

)
= max
i:yi<0∧〈w,Φ(xi)〉<0

(
hi + (〈w̃,Φ(xi)〉+ b̃)

)
(D.2)

In other words, b̃ will be chosen such that the maximal violation among the set of positive examples will equal
that among the negative examples. Hence, during optimization, we may find the most violating pair of one
positive and one negative example, and then take a step on both elements. The resulting subgradient descent
algorithm is:

1. Find the training indices i+ : yi > 0∧〈w,Φ(xi)〉+ b > 0 and i− : yi < 0∧〈w,Φ(xi)〉+ b < 0 which maximize
hi − yi

〈
w̃(t−1),Φ(xi)

〉
2. Take the subgradient step w̃(t) ← w̃(t−1) + η(Φ(xi+)− Φ(xi−)).

Once optimization has completed, b̃ may be computed from Equation D.2. As before, this algorithm will find a
1/2-approximation in 4 ‖w‖2 iterations.

E. Sample Complexity of SVM

In this appendix, we provide a brief proof of a claim based on Lemma D.1 of the appendix of Cotter et al.
(2012b), which is the long version of Cotter et al. (2012a). This result, which follows almost immediately from
Theorem 1 of Srebro et al. (2010), establishes the sample complexity bound claimed in Section 2.

Lemma E.1. (See Lemma D.1 of Cotter et al. (2012b)) Let u be an arbitrary linear classifier, and suppose that
we sample a training set of size n, with n given by the following equation, for parameters ε > 0 and δ ∈ (0, 1):

n = Õ

((
Lhinge (gu) + ε

ε

) (‖u‖+ log 1
δ

)2
ε

)
(E.1)

Let ŵ∗ = argmin
‖ŵ‖≤‖u‖

L̂hinge (ŵ). Then, with probability 1− 2δ over the i.i.d. training sample xi, yi : i ∈ {1, . . . , n},

we have that L0/1 (gŵ∗) ≤ Lhinge (gu) + 2ε.
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Figure 4. Plot of a smooth and bounded function (red) which upper bounds the 0/1 loss and lower bounds the hinge
loss.

To prove this, we will first prove two helper lemmas: Lemma E.2 is a direct application of Theorem 1 of Srebro
et al. (2010) to a smooth function which is intermediate between the 0/1 and hinge losses (this is similar to
Theorem 5 of Srebro et al. (2010)); Lemma E.3 analyzes the empirical error of a single hypothesis by a direct
application of Bernstein’s inequality. Combining these two lemmas (Section E.2) then gives the claimed result.

E.1. Helper Lemmas

Lemma E.2. Suppose that we sample a training set of size n, with n given by the following equation, for
parameters L,B, ε > 0 and δ ∈ (0, 1):

n = Õ

(L
ε

) (B +
√

log 1
δ

)2

ε

 (E.2)

Then, with probability 1−δ over the i.i.d. training sample xi, yi : i ∈ {1, . . . , n}, uniformly for all linear classifiers
w satisfying:

‖w‖ ≤ B, L̂hinge (gw) ≤ L (E.3)

we have that L0/1 (gw) ≤ L+ ε.

Proof. For a smooth loss function, Theorem 1 of Srebro et al. (2010) bounds the expected loss in terms of the
empirical loss, plus a factor depending on (among other things) the sample size. Neither the 0/1 nor the hinge
losses are smooth, so we will define a bounded and smooth loss function which upper bounds the 0/1 loss and
lower-bounds the hinge loss. The particular function which we use doesn’t matter, since its smoothness parameter
and upper bound will ultimately be absorbed into the big-Oh notation—all that is needed is the existence of
such a function. One such is:

φ (x) =


5/4 · · · x < −1/2
−x2 − x+ 1 · · · −1/2 ≤ x < 0
x3 − x2 − x+ 1 · · · 0 ≤ x < 1
0 · · · x ≥ 1

This function, illustrated in Figure E.1, is 4-smooth and 5/4-bounded. If we define Lφ (gw) and L̂φ (gw) as the
expected and empirical φ-losses, respectively, then the aforementioned theorem gives that, with probability 1− δ
uniformly over all w such that ‖w‖ ≤ B:

Lφ (gw) ≤ L̂φ (gw) +O

B2 log3 n

n
+

log 1
δ

n
+

√
L̂φ (gw)

√B2 log3 n

n
+

√
log 1

δ

n
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Because φ is lower-bounded by the 0/1 loss and upper-bounded by the hinge loss, we may replace Lφ (gw) with

L0/1 (gw) on the LHS of the above bound, and L̂φ (gw) with L on the RHS. Setting the big-Oh expression to ε
and solving for n then gives the desired result.

Lemma E.3. Let u be an arbitrary linear classifier, and suppose that we sample a training set of size n, with n
given by the following equation, for parameters ε > 0 and δ ∈ (0, 1):

n = 2

(
Lhinge (gu) + ε

ε

) ‖u‖ log 1
δ

ε
(E.4)

Then, with probability 1 − δ over the i.i.d. training sample xi, yi : i ∈ {1, . . . , n}, we have that L̂hinge (gu) ≤
Lhinge (gu) + ε.

Proof. The hinge loss is upper-bounded by ‖u‖ (by assumption, ‖x‖ ≤ 1 with probability 1), from which it
follows that Varx,y (` (y 〈u, x〉)) ≤ ‖u‖Lhinge (gu). Hence, by Bernstein’s inequality:

Pr
{
L̂hinge (gu) > Lhinge (gu) + ε

}
≤ exp

(
− n

‖u‖

(
ε2/2

Lhinge (gu) + ε/3

))
≤ exp

(
− n

2 ‖u‖

(
ε2

Lhinge (gu) + ε

))
Setting the LHS to δ and solving for n gives the desired result.

E.2. Proof of Lemma E.1

Proof. Lemma E.3 gives that L̂hinge (gu) ≤ Lhinge (gu) + ε provided that Equation E.4 is satisfied. Take L =

Lhinge (gu) + ε and B = ‖u‖, and observe that ŵ∗ satisfies Equation E.3 because L̂hinge (gŵ∗) ≤ L̂hinge (gu) ≤
Lhinge (gu) + ε = L and ‖ŵ∗‖ ≤ ‖u‖ = B. Therefore, Lemma E.2 gives that L0/1 (gŵ∗) ≤ Lhinge (gu) + 2ε,
provided that Equation E.2 is also satisfied. Equation E.1 is what results from combining these two bounds and
simplifying. Each lemma holds with probability 1− δ, so this result holds with probability 1− 2δ.


