
Learning Optimally Sparse Support Vector Machines

Andrew Cotter cotter@ttic.edu

Toyota Technological Institute at Chicago, 6045 S. Kenwood Ave., Chicago, IL 60637 USA

Shai Shalev-Shwartz shais@cs.huji.ac.il

John S. Cohen SL in CS, The Hebrew University of Jerusalem, Israel

Nathan Srebro nati@ttic.edu

Toyota Technological Institute at Chicago, 6045 S. Kenwood Ave., Chicago, IL 60637 USA

Abstract

We show how to train SVMs with an opti-
mal guarantee on the number of support vec-
tors (up to constants), and with sample com-
plexity and training runtime bounds match-
ing the best known for kernel SVM optimiza-
tion (i.e. without any additional asymptotic
cost beyond standard SVM training). Our
method is simple to implement and works
well in practice.

1. Introduction

An important aspect of kernel SVMs is that, despite
being non-parametric, the learned predictor can be
expressed in terms of only a subset of the training
points, known as “support vectors”. The number of
support vectors determines the memory footprint of
the learned predictor, as well as the computational
cost of using it. In order for SVMs to be practical
in large scale applications, it is therefore important to
have only a small number of support vectors. This is
particularly true when, as is the case in many appli-
cations, the training is done only once, on a powerful
compute cluster that can handle large data, but the
predictor then needs to be used many times, possibly
in real time, perhaps on a small low-powered device.

However, when training a SVM in the non-separable
setting, all incorrectly classified points will be sup-
port vectors—e.g. with 10% error, the solution of the
SVM empirical optimization problem will necessarily
have at least 10% of the training points as support
vectors. For data sets with many thousands or even

Proceedings of the 30 th International Conference on Ma-
chine Learning, Atlanta, Georgia, USA, 2013. JMLR:
W&CP volume 28. Copyright 2013 by the author(s).

millions of points, this results in very large predictors
that are expensive to store and use. Even for some
separable problems, the number of support vectors
in the SVM solution (the margin-maximizing classi-
fier) may increase linearly with the training set size
(e.g. when all the points are on the margin). And so,
even though minimizing the empirical SVM objective
might be good in terms of generalization ability (and
this is very well studied), as we argue here, it might
be bad in terms of obtaining sparse solutions.

In this paper, we ask how sparse a predictor we can ex-
pect, and show how to learn a SVM predictor with an
optimal guarantee on its sparsity, without increasing
the required sample complexity nor (asymptotically)
the training runtime, and for which the worst-case gen-
eralization error has the same bound as the best known
for (non-sparse) kernel SVM optimization.

2. Background: SVM Learning

SVM predictors take the form x 7→ sign(gw (x)), where
gw (x) = 〈w,Φ (x)〉 is the (real-valued) prediction on
example x, Φ(x) is a (possibly implicit) mapping into
some Hilbert space H, and the predictor is specified by
the vector w ∈ H. SVM training amounts to finding
an “empirically optimal” predictor that minimizes a
balance between its norm ‖w‖ and the training error,
measured through the average hinge loss on the train-
ing examples L̂hinge (gw) = 1

n

∑n
i=1 `hinge(yigw (xi)),

where `hinge(z) = max{0, 1 − z} = [1 − z]+ and
(x1, y1), . . . , (xn, yn) is the training set. The Repre-
senter Theorem ensures that this predictor can be ex-
pressed as w =

∑n
i=1 αiΦ(xi). The training vectors xi

corresponding to non-zero αi are the support vectors.
Here, we seek predictors w with “sparse” representa-
tions, i.e. with a small number of support vectors.

We are mostly interested in Kernel SVMs, for which Φ

Optimally Sparse SVMs

is specified implicitly via a kernel function K(x, x′) =
〈Φ(x),Φ(x′)〉. It will be convenient for us to derive
and analyze our method in terms of Φ(·), and then
observe that it can be “kernelized”, i.e. implemented
in terms of K(·, ·). To simplify the presentation, we
assume without loss of generality that K(x, x) ≤ 1.

Using SVMs is theoretically justified as follows:
suppose that there exists some (unknown) predic-
tor u with low norm and low expected hinge loss
Lhinge (gu) = Ex,y [`hinge(ygu (x))], where the expec-
tation is with respect to some unknown distribution
(x, y) ∼ D. Then the SVM predictor w, minimiz-
ing the appropriate balance between norm and train-
ing error, and based on enough training examples
drawn i.i.d. from D, will have (with high probability) a
small expected misclassification error rate L0/1 (gw) =

E
[
`0/1(ygw (x))

]
, where `0/1(z) = 1(z ≤ 0). More

specifically, the following number of examples:

n ≥ Õ

((
Lhinge (gu) + ε

ε

)
‖u‖2

ε
log

1

δ

)
are enough to ensure that, with probability of at least
1 − δ, the SVM predictor will satisfy L0/1 (gw) ≤
Lhinge (gu)+ε (this follows from Srebro et al. (2010)—
see Appendix E for details1). We will show that one
can learn a sparse predictor with essentially the same
sample complexity.

3. Sparse SVMs

The question we consider here is whether, given that
there exists a reference classifier u as in Section 2, it
is possible to efficiently find a w based on a training
sample which not only generalizes well, but also has a
small support set.

If the reference classifier u separates the data with a
margin, namely Lhinge (gu) = 0, then one can run the
kernelized Perceptron algorithm (see for example Fre-
und & Schapire (1999)). The Perceptron processes the
training examples one by one and adds a support vec-
tor only when it makes a prediction mistake. There-
fore, a bound on the number of prediction mistakes
(i.e. a mistake bound) translates to a bound on the
sparsity of the learned predictor. A classic result shows
that if the data is separable with a margin 1 by some
vector u, then the Perceptron will make at most ‖u‖2
prediction mistakes. Combining this with a generaliza-
tion bound based on compression of representation (or
with an online-to-batch conversion) we can conclude

that with n ≥ Õ(‖u‖2 /ε), the generalization error of
w will be at most ε.

1Appendices are in the supplementary material

The non-separable case is more tricky. If we some-
how obtained a vector v which makes a small number
of margin violations on the training set, i.e. εv =
1
n

∑n
i=1 1(yi 〈v,Φ(xi)〉 < 1) is small, then we can

find a w with ‖v‖2 support vectors which satisfies
L̂0/1 (gw) ≤ εv by simply ignoring the examples on
which yi 〈v,Φ(xi)〉 < 1 and running the Perceptron on
the remainder. Again using a compression bound, we
can show that L0/1 (gw) is little larger than L̂0/1 (gw).

However, we cannot, in general, efficiently find a pre-
dictor v with a low margin error rate, even if we
know that such a predictor exists. Instead, in learn-
ing SVMs, we minimize the empirical hinge loss. It
is not clear how to relate the margin error rate εv
to the hinge loss of u. One option is to note that
1(z < 1) ≤ 2[1 − z/2]+, hence εv ≤ 2L̂hinge

(
gv/2

)
.

Since 2L̂hinge
(
gv/2

)
is a convex function of v, we can

minimize it as a convex surrogate to εv. Unfortu-
nately, this approach would lead to a dependence on
the quantity 2Lhinge

(
gu/2

)
, which might be signifi-

cantly larger than Lhinge (gu). This is the main issue
we address in Section 4, in which we show how to con-
struct an efficient sparsification procedure which de-
pends on Lhinge (gu) and has the same error guarantees
and sample complexity as the vanilla SVM predictor.

Before moving on, let us ask whether we could hope for
sparsity less then Θ(‖u‖2). As the following Lemma
establishes, we cannot:

Lemma 3.1. Let R,L∗, ε ≥ 0 be given, with L∗ +
ε ≤ 1/4 and with R2 being an integer. There exists a
data distribution D and a reference vector u such that
‖u‖ = R, Lhinge (gu) = L∗, and any w which satisfies:

L0/1 (gw) ≤ L∗ + ε

must necessarily be supported on at least R2/2 vec-
tors.2

Proof. The idea of the proof is to construct D so
that the distribution over the instances is uniform
over some orthonormal basis of RR2

. Then, any w
which is supported on less than R2/2 vectors must
have gw(x) = 0 with probability of at least 1/2. For
full details see Appendix A.

4. Learning Sparse SVMs

In the previous section we showed that having a good
low-norm predictor u often implies there exists also a
good sparse predictor, but the existence proof required

2This also holds for randomized classification rules that
predict 1 with probability ψ(gu(x)) for some ψ : R→ [0, 1]

Optimally Sparse SVMs

low margin error. We will now consider the problem
of efficiently finding a good sparse predictor, given the
existence of low-norm reference predictor u which suf-
fers low hinge loss on a finite training sample.

Our basic approach will be broadly similar to that of
Section 3, but instead of relying on an unknown u, we
will start by using any SVM optimization approach to
learn a (possibly dense) w. We will then learn a sparse
classifier w̃ which mimics w.

In Section 3 we removed margin violations and dealt
with an essentially separable problem. But when one
considers not margin error, but hinge loss, the differ-
ence between “correct” and “wrong” is more nuanced,
and we must take into account the numeric value of
the loss:

1. If y 〈w,Φ(x)〉 ≤ 0 (i.e. w is wrong), then we can
ignore the example, as in Section 3.

2. If 0 < y 〈w,Φ(x)〉 < 1 (i.e. w is correct, but there
is a margin violation), then we allow w̃ to make
a margin violation at most 1/2 worse then the
margin violation made by w, i.e. y 〈w̃,Φ(x)〉 ≥
y 〈w,Φ(x)〉 − 1/2.

3. If y 〈w,Φ(x)〉 ≥ 1 (i.e. w is correct and classifies
this example outside the margin), we would like
w̃ to also be correct, though we require a smaller
margin: y 〈w̃,Φ(x)〉 ≥ 1/2.

These are equivalent to finding a solution with value
at most 1/2 to the following optimization problem:

minimize :f(w̃) = max
i:hi>0

(hi − yi 〈w̃,Φ(xi)〉) (4.1)

where :hi = min (1, yi 〈w,Φ(xi)〉)

We will show that a randomized classifier based on a
solution to Problem 4.1 with f (w̃) ≤ 1/2 has empirical
0/1 error bounded by the empirical hinge loss of w;
that we can efficiently find such solution based on at
most 4 ‖w‖2 support vectors; and that such a sparse
solution generalizes as well as w itself.

4.1. The slant-loss

The key to our approach is our use of the random-
ized classification rule g̃w̃ (x) = 〈w̃,Φ (x)〉 + Z for
Z ∼ Unif [−1/2, 1/2], rather than the standard linear
classification rule gw defined in Section 2. The effect
of the randomization is to “spread out” the expected
loss of the classifier. We define the loss function:

`slant (z) = min (1,max (0, 1/2− z)) (4.2)

which we call the “slant-loss” (Figure 4.1), using
Lslant (g) and L̂slant (g) to denote its expectation
and empirical average, analogously to the 0/1 and

0.
00

0.
50

1.
00

1.
25

1.
50

−0.75 −0.50 0.00 0.50 1.00 1.50

Figure 1. Illustration of how the slant-loss (red) relates to
the 0/1 (gray) and hinge (blue) losses. Notice that, if the
slant-loss is shifted by 1/2, then it is still upper bounded by
the hinge loss.

hinge losses. It is easy to see that EZ
[
`0/1(g̃w̃)

]
=

`slant(gw̃)—hence, the 0/1 loss of g̃w̃ is the same as the
slant-loss of gw̃. Equally importantly, `slant(z− 1/2) ≤
`hinge(z), from which the following Lemma follows:

Lemma 4.1. For any w, and any w̃ for which Problem
4.1 has value f (w̃) ≤ 1/2, we have that

EZ
[
L̂0/1 (g̃w̃)

]
= L̂slant (gw̃) ≤ L̂hinge (gw)

Proof. It remains only to establish that L̂slant (gw̃) ≤
L̂hinge (gw). For every xi, yi, consider the following
three cases:

1. If yi 〈w,Φ(xi)〉 ≤ 0, then `slant(yigw̃(xi)) ≤ 1 ≤
`hinge(yigw(xi)).

2. If 0 < yi 〈w,Φ(xi)〉 < 1, then `slant(yigw̃(xi)) ≤
`slant(yigw(xi)− 1/2) ≤ `hinge(yigw(xi)).

3. If yi 〈w,Φ(xi)〉 ≥ 1, then `slant(yigw̃(xi)) ≤
`slant(1/2) = 0 = `hinge(yigw(xi)).

Hence, `slant(yigw̃(xi)) ≤ `hinge(yigw(xi)), which
completes the proof.

4.2. Finding sparse solutions

To find a sparse w̃ with value f(w̃) ≤ 1/2, we apply
subgradient descent to Problem 4.1. The algorithm
is extremely straightforward to understand and imple-
ment. We initialize w̃(0) = 0, and then proceed itera-
tively, performing the following at the tth iteration:

1. Find the training index it : yit 〈w,Φ(xit)〉 > 0
which maximizes hit − yit

〈
w̃(t−1),Φ(xit)

〉
.

2. Take the subgradient step w̃(t) ← w̃(t−1) +
ηyitΦ(xit).

The convergence rate of this algorithm is characterized
in the following lemma:

Lemma 4.2. After T ≤ 4 ‖w‖2 iterations of sub-
gradient descent, we obtain a solution of the form

Optimally Sparse SVMs

w̃ = 1
2

∑T
t=1 yitΦ(xit) which has value f (w̃) ≤ 1/2.

Proof. First note that f(w) ≤ 0. Relying on this pos-
sible solution w, the Lemma follows from standard
convergence bounds of subgradient descent (see e.g.
Section 1.2 of Nesterov (2009)): with the step size

η = ε, after performing ‖w‖2 /ε2 iterations, at least
one iterate w̃(t) will have an objective function value
no greater than ε. Choosing ε = 1/2 gives the desired
result.

Because each iteration adds at most one new element
to the support set, the support size of the solution will
likewise be bounded by 4 ‖w‖2.

4.3. Generalization guarantee

The fact that the optimization procedure outlined in
the previous section results in a sparse predictor of a
particularly simple structure enables us to bound its
generalization error using a compression bound:

Lemma 4.3. With probability at least 1 − δ over
the training set, for all w̃ of the form w̃ =
1
2

∑T
t=1 yitΦ(xit), where (xit , yit) is any sequence of

training examples, we have:

Lslant (gw̃) ≤ L̂slant (gw̃) +O

(
T log n+ log 1

δ

n
+√

L̂slant (gw̃)
T log n+ log 1

δ

n


provided that n ≥ 8T .

Proof. This follows directly from compression bounds,
e.g. Theorem B.1 (included in Appendix B for com-
pleteness), since w̃ is a fixed function (namely a sum)
of at most T sample points.

Instead of using a compression bound, it is also pos-
sible to use uniform concentration arguments to ob-
tain an almost identical guarantee (up to log factors)
which holds for any w̃ (not necessarily sparse) with
norm ‖w̃‖ ≤ ‖w‖ and value f(w̃) ≤ 1/3 (see Appendix
C). This could be used to justify other optimization
approaches to Problem 4.1. However, for the method
presented, the compression bound suffices.

4.4. Putting it together

Now that all of the pieces are in place, we can state
our final procedure, start-to-finish:

1. Train a SVM to obtain w with norm ‖w‖ ≤
O (‖u‖) and L̂hinge (gw) ≤ L̂hinge (gu) +O (ε).

2. Run subgradient descent on Problem 4.1 until we
find a predictor w̃ with value f(w̃) ≤ 1/2.

3. Predict using g̃w̃.

Theorem 4.4. For an (unknown) u, with probability
at least 1− 2δ over a training set of size:

n = Õ

((
Lhinge (gu) + ε

ε

)
‖u‖2

ε
log

1

δ

)

the procedure above finds a predictor w̃ supported on at
most O(‖u‖2) training vectors and error L0/1 (g̃w̃) ≤
Lhinge (gu) +O(ε)

Proof. First, note that with the specified sample size,
applying Bernstein’s inequality to the fixed predictor
u, we have that with probability at least 1− δ,

L̂hinge (u) ≤ Lhinge (u) + ε. (4.3)

Combining Equation 4.3 with the SVM training goal
(Step 1) and Lemma 4.1, we have that L̂slant (gw̃) ≤
Lhinge (u) + O(ε). Following Lemma 4.2 we can ap-
ply Lemma 4.3 with T = O(‖u‖2), and plugging in
the specified sample complexity, we have Lslant (gw̃) ≤
L̂slant (gw̃). Combining the two inequalities, and re-
calling that the slant-loss of gw̃ is the same as the
expected 0/1 error of g̃w̃, we obtain L0/1 (g̃w̃) ≤
Lhinge (gu) + O(ε). Lemma 4.2 also establishes the
desired bound on the number of support vectors.

The procedure is efficient, and aside from initial SVM
optimization, requires at most O(‖u‖2) iterations.

4.5. Kernelization

To this point, we have worked in the explicit kernel
Hilbert spaceH, even though we are interested primar-
ily in the kernelized case, where H and Φ(·) are spec-
ified only implicitly through K(x, x′) = 〈Φ(x),Φ(x′)〉.
We now show how our procedure can be “kernelized”
and implemented using only K(·, ·).

As is typical, we shall rely on the representations
w =

∑n
i=1 αiyiΦ(xi) and w̃ =

∑n
i=1 α̃iyiΦ(xi), keep-

ing track of the coefficients α and α̃. We will also
maintain an up-to-date vector of “responses” c̃:

c̃j = yj 〈w̃,Φ(xj)〉 =

n∑
i=1

α̃iyiyjK(xi, xj)

Notice that the values of these responses provide suf-
ficient knowledge to find the update index i at every
iteration. We can then perform the subgradient de-
scent update w̃ ← w̃+ηyiΦ(xi) by adding η to α̃i, and
updating the responses as c̃j ← c̃j +ηyiyjK(xi, xj), at

Optimally Sparse SVMs

a total cost of n kernel evaluations. These kernel eval-
uations dominate the computational cost of our gra-
dient descent procedure (all other operations can be
performed in O(n) per iteration). As is standard for
kernel SVM training, we will therefore analyze runtime
in terms of the number of kernel evaluations required.

With O(‖u‖2) iterations, and O(n) kernel evaluations
per iteration, the overall number of required kernel
evaluations for the gradient descent procedure is (ig-
noring the δ dependence):

O
(
n ‖u‖2

)
= Õ

((
L̂hinge (gu) + ε

ε

)
‖u‖4

ε

)
This is less then the best known runtime bound for ker-
nel SVM optimization, so we do not expect the sparsi-
fication step to be computationally dominant (i.e. it is
in a sense “free”). In order to complete the picture and
understand the entire runtime of our method, we must
also consider the runtime of the SVM training (Step
1). The best kernelized SVM optimization guarantee
of which we are aware is achieved by the Stochastic
Batch Perceptron (SBP, Cotter et al. (2012a)). Us-
ing the SBP, we can find w with ‖w‖ ≤ 2 ‖u‖ and
L̂hinge (gw) ≤ L̂hinge (gu) + ε using:

O

(L̂hinge (gu) + ε

ε

)2

‖u‖2 n


kernel evaluations, yielding (with the δ-dependence):

Corollary 1. If using the SBP for Step 1 and the
sample size required by Theorem 4.4, the procedure in
Section 4.4 can be performed with:

Õ

(L̂hinge (gu) + ε

ε

)3
‖u‖4

ε
log

1

δ


kernel evaluations.

Because the SBP finds a w with ‖w‖ ≤ 2 ‖u‖, and our
subgradient descent algorithm finds a w̃ supported on
4 ‖w‖2 training vectors, it follows that the support size

of w̃ is bounded by 16 ‖u‖2. The runtime of Step 2 (the
sparsification procedure) is asymptotically negligible
compared to Step 1 (initial SVM training), so the over-
all runtime is the same as for stand-alone SBP. Overall,
our procedure finds an optimally sparse SVM predic-
tor, and at the same time matches the best known
sample and runtime complexity guarantees for SVM
learning (up to small constant factors).

4.6. Unregularized bias

Frequently, SVM problems contain an unregularized
bias term—rather than the classification function be-

ing the sign of gw(x) = 〈w,Φ(x)〉, it is the sign of
gw,b(x) = (〈w,Φ(x)〉+ b) for a weight vector w and a
bias b, where the bias is unconstrained, being permit-
ted to take on the value of any real number.

When optimizing SVMs, the inclusion of an unregu-
larized bias introduces some additional complications
which typically require special treatment. Our sub-
gradient descent procedure, however, is essentially un-
changed by the inclusion of a bias (although the SVM
solver which we use to find w and b must account for
it). Indeed, we need only redefine:

hi = min (1, yi (〈w,Φ(xi)〉+ b))− yib

in Problem 4.1, and then find w̃ as usual. The resulting
sparse classifier is parameterized by w̃ and b, with b
being that of the initial SVM solution.

5. Related Algorithms

The tendency of SVM training algorithms to find solu-
tions with large numbers of support vectors has been
recognized as a shortcoming of SVMs since their in-
troduction, and many approaches for finding solutions
with smaller support sizes have been proposed, of vary-
ing levels of complexity and effectiveness.

We group these approaches into two categories: those
which, like ours, start with a non-sparse solution to the
SVM problem, and then find a sparse approximation;
and those which either modify the SVM objective so
as to result in sparse solutions, or optimize it using an
algorithm specifically designed to maximize sparsity.

In this section, we will discuss previous work of both
of these types. None of these algorithms have perfor-
mance guarantees which can be compared to that of
Theorem 4.4, so we will also discuss some algorithms
which do not optimize the SVM objective (even ap-
proximately), but do find sparse solutions, and for
some of which generalization bounds have been proven.
In section 7, we also report on empirical comparisons
to some of the methods discussed here.

5.1. Post-hoc approximation approaches

One of the earliest proposed methods for finding sparse
SVM solutions was that of Osuna & Girosi (1998),
who suggest that one first solve the kernel SVM op-
timization problem to find w, and then, as a post-
processing step, find a sparse approximation w̃ using
support vector regression (SVR), minimizing the aver-

Optimally Sparse SVMs

age ε-insensitive loss, plus a regularization penalty:

minimize : fOG(w̃) =
1

2
‖w̃‖2 + (5.1)

C̃

n∑
i=1

max (0, |〈w,Φ(xi)〉 − 〈w̃,Φ(xi)〉| − ε)

Optimizing this problem results in a w̃ for which the
numerical values of 〈w,Φ(x)〉 and 〈w̃,Φ(x)〉 must be
similar, even for examples which w misclassifies. This
is an unnecessarily stringent condition—because the
underlying problem is one of classification, we need
only find a solution which gives roughly the same
classifications as w, without necessarily matching the
value of the classification function gw. It is in this re-
spect that our objective function, Problem 4.1, differs.

Osuna and Girosi’s work was later used as a key com-
ponent of the work of Zhan & Shen (2005), who first
solve the SVM optimization problem, and then exclude
a large number of support vectors from the training set
based on a “curvature heuristic”. They then retrain
the SVM on this new, smaller, training set, and finally
apply the technique of Osuna and Girosi to the result.

5.2. Alternative optimization strategies

Another early method for finding sparse approximate
SVM solutions is RSVM (Lee & Mangasarian, 2001),
which randomly samples a subset of the training set,
and then searches for a solution supported only on this
sample, minimizing the loss on the entire training set.

So-called “reduced set” methods (Burges & Schölkopf,
1997; Wu et al., 2005) address the problem of large
support sizes by removing the constraint that the SVM
solution be supported on the training set. Instead it
is now supported on a set of “virtual training vectors”
z1, . . . , zk with k � n, while having the same form as

the standard SVM solution: sign
(∑k

i=1 βiyiK(x, zi)
)

.

One must optimize over not just the coefficients βi,
but also the virtual training vectors zi. Because the
support set is not a subset of the training set, our
lower bound (Lemma 3.1) does not apply. However,
the resulting optimization problem is non-convex, and
is therefore difficult to optimize.

More recently, techniques such as those of Joachims &
Yu (2009) and Nguyen et al. (2010) have been devel-
oped which, rather than explicitly including the search
for good virtual training vectors in the objective func-
tion, instead find such vectors heuristically during op-
timization. These approaches have the significant ad-
vantage of not explicitly relying on the optimization
of a non-convex problem, although in a sense this dif-
ficulty is being “swept under the rug” through the use

of heuristics.

Another approach is that of Keerthi et al. (2006), who
optimize the standard SVM objective function while
explicitly keeping track of a support set S. At each it-
eration, they perform a greedy search over all training
vectors xi /∈ S, finding the xi such that the optimal
solution supported on S ∪{xi} is best. They then add
xi to S, and repeat. This is another extremely well-
performing algorithm, but while the authors propose
a clever method for improving the computational cost
of their approach, it appears that it is still too compu-
tationally expensive to be used on very large datasets.

5.3. Non-SVM algorithms

Collobert et al. (2006) modify the SVM objective to
minimize not the convex hinge loss, but rather the non-
convex “ramp loss”, which differs from our slant-loss
only in that the ramp covers the range [−1, 1] instead
of [−1/2, 1/2]. Because the resulting objective function
is non-convex, it is difficult to find a global optimum,
but the experiments of Collobert et al. (2006) show
that local optima achieve essentially the same perfor-
mance with smaller support sizes than solutions found
by “standard” SVM optimization.

Another approach for learning kernel-based classifiers
is to use online learning algorithms such as the Percep-
tron (e.g. Freund & Schapire (1999)). The Perceptron
processes the training example one by one and adds a
support vector only when it makes a prediction mis-
take. Therefore, a bound on the number of prediction
mistakes (i.e. a mistake bound) translates to a bound
on the sparsity of the learned predictor.

As was discussed in Section 3, if the data are separable
with margin 1 by some vector u, then the Perceptron
can find a very sparse predictor with low error. How-
ever, in the non-separable case, the Perceptron might
make a number of mistakes that grows linearly with
the size of the training sample.

To address this, online learning algorithms for which
the support size is bounded by a budget parameter
have been proposed. Notable examples include the
Forgetron (Dekel et al., 2005) and the Randomized
Budget Perceptron (RBP, Cavallanti et al. (2007)).
Such algorithms discard support vectors when their
number exceeds the budget parameter—for example,
the RBP discards an example chosen uniformly at ran-
dom from the set of support vectors, whenever needed.

Both of these algorithms have been analyzed, but the
resulting mistake bounds are inferior to that of the
Perceptron, leading to worse generalization bounds
than the one we achieve for our proposed procedure,

Optimally Sparse SVMs

for the same support size. For example, the general-
ization bound of the Forgetron is at least 4L̂hinge (gu).
The bound of the RBP is more involved, but it is pos-
sible to show that in order to obtain a support size
of 16 ‖u‖2, the generalization bound would depend on
at least (5/3)L̂hinge (gu). In contrast, the bound we

obtain only depends on L̂hinge (gu).

6. Practical Variants

While the algorithm described in Section 4 gives
asymptotically optimal theoretical performance, slight
variations of it give better empirical performance.

The analysis of Theorem 4.4 bounds the performance
of the randomized classifier g̃w̃, but we have found that
randomization hurts performance in practice, and that
one is better off predicting using sign(gw̃). Our tech-
nique relies on finding an approximate solution w̃ to
Problem 4.1 with f(w̃) ≤ 1/2, but this 1/2 threshold is
a relic of our use of randomization. Since randomiza-
tion does not help in practice, there is little reason to
expect there to be anything “special” about 1/2—one
may achieve a superior sparsity/generalization trade-
off at different levels of convergence, and with values
of the step-size η other than the suggested value of 1/2.
For this reason, we suggest experimenting with differ-
ent values of these parameters, and choosing the best
based on cross-validation.

Another issue is the handling of an unregularized bias.
In Section 4.6, we suggest taking the bias associated
with w̃ to be the same as that associated with w.
However, one could alternatively optimize a version
of Problem 4.1 which learns a new bias b̃ along with
w̃. The resulting subgradient descent algorithm (see
Appendix D) is slightly more complicated, but its use
may result in a small boost in performance.

6.1. Aggressive variant

A more substantial deviation from our basic algorithm
is to try to be more aggressive about maintaining spar-
sity by re-using existing support vectors when optimiz-
ing Problem 4.1. This can be done in the the following
way: at each iteration, check if there is a support vec-
tor (i.e. a training point already added to the support
set) for which hi − 〈w̃,Φ(xi)〉 ≤ ε (where ε is the ter-
mination threshold, 1/2 in the analysis of Section 4). If
there is such a support vector, increase its coefficient
αi—only take a step on index i which is not currently
in the support set if all current support vectors sat-
isfy the constraint. This yields a potentially sparser
solution at the cost of more iterations.

Table 1. Datasets used in our experiments. Except for
TIMIT, these are a subset of the datasets, with the same
parameters, as were compared in Nguyen et al. (2010). We
use a Gaussian kernel K(x, x′) = exp(−γ ‖x− x′‖) with
parameter γ, and regularization tradeoff parameter C.

Training Testing γ C

Adult 22696 9865 0.1 1
IJCNN 35000 91701 1 10
Web 49749 14951 0.1 10
TIMIT 63881 22257 0.025 1
Forest 522910 58102 0.0001 10000

7. Experiments

Basing our experiments on recent comparisons be-
tween sparse SVM optimizers (Keerthi et al., 2006;
Nguyen et al., 2010), we compare our implementation3

to the following methods4:

1. SpSVM (Keerthi et al., 2006), using Olivier
Chapelle’s implementation5.

2. CPSP (Joachims & Yu, 2009), using SVM-Perf.
3. Osuna & Girosi’s algorithm (Osuna & Girosi,

1998), using LIBSVM (Chang & Lin, 2001) to op-
timize the resulting SVR problems.

4. RSVM (Lee & Mangasarian, 2001), using the LIB-
SVM Tools implementation (Lin & Lin, 2003).

5. CSVM (Nguyen et al., 2010). We did not perform
these experiments ourselves, and instead present
the results reported in the CSVM paper.

Our comparison was performed on the datasets listed
in Table 1. Adult and IJCNN are the “a8a” and
“ijcnn1” datasets from LIBSVM Tools. Web and For-
est are from the LibCVM Toolkit6. We also use a
multiclass dataset7 derived from the TIMIT speech
corpus, on which we perform one-versus-rest classifica-
tion, with class number 3 (the phoneme /k/) providing
the “positive” instances. Both Adult and TIMIT have
relatively high error rates, making them more challeng-
ing for sparse SVM solvers. Both our algorithm and
that of Osuna & Girosi require a reference classifier w,
found using GTSVM (Cotter et al., 2011).

We experimented with two versions of our algorithm,
both incorporating the modifications of Section 6, dif-

3http://ttic.uchicago.edu/~cotter/projects/SBP
4We were unable to find a reduced set implementation

on which we could successfully perform our experiments
5http://olivier.chapelle.cc/primal
6http://c2inet.sce.ntu.edu.sg/ivor/cvm.html
7http://ttic.uchicago.edu/~cotter/projects/

gtsvm

http://ttic.uchicago.edu/~cotter/projects/SBP
http://olivier.chapelle.cc/primal
http://c2inet.sce.ntu.edu.sg/ivor/cvm.html
http://ttic.uchicago.edu/~cotter/projects/gtsvm
http://ttic.uchicago.edu/~cotter/projects/gtsvm

Optimally Sparse SVMs

Adult IJCNN Web
T

e
st

e
rr

o
r

10
1

10
2

10
3

10
4

14.5

15

15.5

16

16.5

17

Dense SVM
Our basic alg.
Our aggressive alg.
SpSVM
CPSP
Osuna & Girosi
RSVM
CSVM

10
1

10
2

10
30

2

4

6

8

10

10
2

10
3

10
40

0.5

1

1.5

2

2.5

3

Support Size Support Size Support Size

TIMIT Forest

T
e
st

e
rr

o
r

10
2

10
3

10
410

12

14

16

18

20

10
4

10
50

5

10

15

20

Support Size Support Size

Figure 2. Plots of test error (linear scale) versus support size (log scale). The horizontal and vertical dotted lines are
the test error rate and support size of the classifier found by GTSVM. TIMIT was not included in the experiments of
Nguyen et al. (2010). On Forest, SpSVM ran out of memory, CPSP failed to terminate in one week for 4096 or more
basis functions, LIBSVM failed to optimize the SVR problem (Problem 5.1) in 4 days for ε < 1, and RSVM’s solutions
were limited to 200 support vectors, far too few to perform well on this dataset.

fering only in whether they include the aggressive
variation. For the “basic” version, we tried η =
{4−4, 4−3, . . . , 42}, keeping track of the progress of the
algorithm throughout the course of optimization. For
each support size, we chose the best η based on a vali-
dation set (half of the original test set) reporting errors
on an independent test set (the other half). This was
then averaged over 100 random test/validation splits.

For the aggressive variant (Section 6.1), we experi-
mented not only with multiple choices of η, but also
termination thresholds ε ∈

{
2−4, 2−3, . . . , 1

}
, running

until this threshold was satisfied. Optimization over
the parameters was then performed using the same
validation approach as for the “basic” algorithm.

In our CPSP experiments, the target numbers of basis
functions were taken to be powers of two. For Osuna &
Girosi’s algorithm, we took the SVR regularization pa-
rameter C̃ to be that of Table 1 (i.e. C̃ = C), and ex-
perimented with ε ∈

{
2−16, 2−15, . . . , 24

}
. For RSVM,

we tried subset ratios ν ∈
{

2−16, 2−15, . . . , 1
}

—
however, the implementation we used was unable to
find a support set of size larger than 200, so many of
the larger values of ν returned duplicate results.

The results are summarized in Figure 7. Our aggres-
sive variant achieved a test error / support size tradeoff
comparable to or better than the best competing al-
gorithms, except on the Adult and TIMIT datasets,
on the latter of which performance was fairly close to
that of CPSP. On the Adult data set, the test errors
(reported) are significantly higher then the validation
errors, indicating our methods are suffering from pa-
rameter overfitting due to too small a validation set
(this is also true, to a lesser degree, on TIMIT). Note
that SpSVM and CPSP, both of which perform very
well, failed to find good solutions on the forest dataset
within a reasonable timeframe, illustrating the benefits
of the simplicity of our approach.

To summarize, not only does our proposed method
achieve optimal theoretical guarantees (the best possi-
ble sparseness guarantee with the best known sample
complexity and runtime for kernelized SVM learning),
it is also computationally inexpensive, simple to im-
plement, and performs well in practice.

Acknowledgments: S. Shalev-Shwartz is supported

by the Israeli Science Foundation grant number 598-10.

Optimally Sparse SVMs

References

Burges, C. and Schölkopf, B. Improving the accuracy
and speed of support vector machines. In NIPS’97,
pp. 375–381. MIT Press, 1997.

Cavallanti, G., Cesa-Bianchi, N., and Gentile, C.
Tracking the best hyperplane with a simple budget
perceptron. Machine Learning, 69(2-3), December
2007.

Chang, C-C. and Lin, C-J. LIBSVM: a library for
support vector machines, 2001. Software available
at http://www.csie.ntu.edu.tw/~cjlin/libsvm.

Collobert, Ronan, Sinz, Fabian, Weston, Jason, and
Bottou, Léon. Trading convexity for scalability. In
ICML’06, pp. 201–208, 2006.

Cotter, A., Srebro, N., and Keshet, J. A GPU-tailored
approach for training kernelized SVMs. In KDD’11,
2011.

Cotter, A., Shalev-Schwartz, S., and Srebro, N. The
kernelized stochastic batch perceptron. In ICML’12,
2012a.

Cotter, A., Shalev-Schwartz, S., and Srebro, N. The
kernelized stochastic batch perceptron. http://

arxiv.org/abs/1204.0566, 2012b.

Dekel, O., Shalev-Shwartz, S., and Singer, Y. The for-
getron: A kernel-based perceptron on a fixed bud-
get. In NIPS’05, pp. 259–266, 2005.

Freund, Y. and Schapire, R. E. Large margin clas-
sification using the perceptron algorithm. Machine
Learning, 37(3):277–296, 1999.

Joachims, T. and Yu, Chun-Nam. Sparse kernel svms
via cutting-plane training. Machine Learning, 76(2–
3):179–193, 2009. European Conference on Machine
Learning (ECML) Special Issue.

Keerthi, S. Sathiya, Chapelle, Olivier, and DeCoste,
Dennis. Building support vector machines with re-
duced classifier complexity. Journal of Machine
Learning Research, 7:1493–1515, 2006.

Lee, Y-J. and Mangasarian, O. RSVM: Reduced sup-
port vector machines. In Data Mining Institute,
Computer Sciences Department, University of Wis-
consin, pp. 00–07, 2001.

Lin, K-M. and Lin, C-J. A study on reduced support
vector machines. IEEE Transactions on Neural Net-
works, 2003.

Nesterov, Y. Primal-dual subgradient methods for
convex problems. Math. Program., 120(1):221–259,
Apr 2009.

Nguyen, D D., Matsumoto, K., Takishima, Y., and
Hashimoto, K. Condensed vector machines: learn-
ing fast machine for large data. Trans. Neur. Netw.,
21(12):1903–1914, Dec 2010.

Osuna, E. and Girosi, F. Reducing the run-time com-
plexity of support vector machines, 1998.

Shalev-Shwartz, S. Introduction to machine learning,
lecture notes. Technical report, The Hebrew Univer-
sity, 2010. http://www.cs.huji.ac.il/~shais/

Handouts2010.pdf.

Srebro, N., Sridharan, K., and Tewari, A. Smoothness,
low-noise and fast rates. In NIPS’10, 2010.

Wu, M., Schölkopf, B., and Bakir, G. Building sparse
large margin classifiers. In ICML’05, pp. 996–
1003, New York, NY, USA, 8 2005. Max-Planck-
Gesellschaft, ACM.

Zhan, Y. and Shen, D. Design efficient support vector
machine for fast classification. Pattern Recognition,
38(1):157–161, 2005.

http://www.csie.ntu.edu.tw/~cjlin/libsvm
http://arxiv.org/abs/1204.0566
http://arxiv.org/abs/1204.0566
http://www.cs.huji.ac.il/~shais/Handouts2010.pdf
http://www.cs.huji.ac.il/~shais/Handouts2010.pdf

