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8. Supplement to the paper: Learning Heteroscedastic Models by Convex
Programming under Group Sparsity

8.1. Proof of Theorem 3.2

The fact that the feasible set is not empty follows from the fact that it contains the minimizers of (6). This
immediately follows from the first-order conditions and their relaxations. Indeed, for a minimizer (φ◦,α◦) of
(6), the first-order conditions take the following form: there exists ν◦ ∈ RT+ such that for all k ∈ [K] and ` ∈ [q],

∂

∂φGk

PL(φ◦,α◦) = −X>:,Gk

(
diag(Y )Rα◦ −Xφ◦

)
+ λkX

>
:,Gk

X:,Gk
φ◦Gk∣∣X:,Gk
φ◦Gk

∣∣
2

= 0, (18)

∂

∂α◦`
PL(φ◦,α◦) = −

∑
t∈T

rt`
Rt,:α◦

+
∑

t∈T

(
ytRt,:α

◦ −Xt,:φ
◦)ytrt` − (ν◦)>R:,` = 0, (19)

and ν◦tRt,:α
◦ = 0 for every t. It should be emphasized that relation (18) holds true only in the case where the

solution satisfies mink |X :,Gk
φ◦:,Gk

|2 6= 0, otherwise one has to replace it by the condition stating that the null
vector belongs to the subdifferential. Since this does not alter the proof, we prefer to proceed as if everything
was differentiable.

On the one hand, (φ◦,α◦) satisfies (18) if and only if ΠGk
(diag(Y )Rα◦ − Xφ◦) = λkX:,Gk

φ◦Gk
/|X:,Gk

φ◦Gk
|2

with ΠGk
= X:,Gk

(X>:,Gk
X:,Gk

)+X>:,Gk
being the orthogonal projector onto the range of X:,Gk

in RT . Taking the

norm of both sides in the last equation, we get
∣∣ΠGk

(diag(Y )Rα◦ −Xφ◦)
∣∣
2
≤ λk. This tells us that (φ◦,α◦)

satisfy (7). On the other hand, since the minimum of (6) is finite, one easily checks that Rt,:α
◦ 6= 0 and,

therefore, ν◦ = 0. Replacing in (19) ν◦ by zero and setting v◦t = 1/Rt,:α
◦ we get that (φ◦,α◦,v◦) satisfies

(8), (9). This proves that the set of feasible solutions of the optimization problem defined in the ScHeDs is not
empty.

Let us show that one can compute the ScHeDs (φ̂, α̂) by solving an SOCP. More precisely, we show that if

(φ̂, α̂, û, v̂) ∈ Rp × Rq × RK × RT is a solution to the following problem of second-order cone programming:

min
∑K

k=1
λkuk (20)

subject to (7) and∣∣X:,Gk
φGk

∣∣
2
≤ uk, ∀k ∈ [K], (21)

R>v ≤ R>diag(Y )(diag(Y )Rα−Xφ); (22)∣∣[vt;Rt,:α;
√

2
]∣∣

2
≤ vt +Rt,:α; ∀t ∈ T , (23)

then (φ̂, α̂, v̂) is a solution to the optimization problem stated in Definition 3.1. This claim readily follows from
the fact that the constraint

∣∣[vt;Rt,:α;
√

2
]∣∣

2
≤ vt + Rt,:α can be equivalently written as vt(Rt,:α) ≥ 1 and

vt + Rt,:α ≥ 0 for every t. This yields vt ≥ 0 and Rt,:α ≥ 1/vt for every t. Furthermore, it is clear that if

(φ̂, α̂, û, v̂) is a solution to the aforementioned optimization problem, then all the inequalities in (21) are indeed
equalities. This completes the proof.

8.2. Proof of Theorem 5.1

To prove Theorem 5.1, we first introduce a feasible pair (φ̃, α̃), in the sense formulated in Lemma 8.1.

Lemma 8.1. Consider the model (10). Let z = 1 + 2C4

√
2 log(2q/ε)

T with some ε > 0 and assume that z ≤ 2.

Then with probability at least 1− 2ε, the triplet (φ̃, α̃, ṽ) =
(
zφ∗, zα∗, ( 1

zRt,:α∗
)t=1,...,T

)
satisfies constraints (7),

(8) and (9). Moreover, the group-sparsity pattern
{
k :
∣∣φ̃Gk

∣∣
1
6= 0

}
of φ̃ coincides with that of φ∗, that is with

K∗.

The proof of this lemma can be found in Section 8.3.
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Set ∆ = φ̂ − φ̃. On an event of probability at least 1 − 2ε, (φ̃, α̃) is a feasible solution of the optimization

problem of the ScHeDs whereas (φ̂, α̂) is an optimal solution, therefore

K∑
k=1

λk
∣∣X:,Gk

∆Gk

∣∣
2
≤

K∑
k=1

λk
∣∣X:,Gk

∆Gk

∣∣
2

+

K∑
k=1

λk
∣∣X:,Gk

φ̃Gk

∣∣
2
−

K∑
k=1

λk
∣∣X:,Gk

φ̂Gk

∣∣
2

=
∑
k∈K∗

λk
∣∣X:,Gk

∆Gk

∣∣
2

+
∑
k∈K∗

λk(
∣∣X:,Gk

φ̃Gk

∣∣
2
−
∣∣X:,Gk

φ̂Gk

∣∣
2
)

≤ 2
∑
k∈K∗

λk
∣∣X:,Gk

∆Gk

∣∣
2
. (24)

This readily implies that ∑
k∈K∗c

λk
∣∣X:,Gk

∆Gk

∣∣
2
≤
∑
k∈K∗

λk
∣∣X:,Gk

∆Gk

∣∣
2
.

Applying GRE(κ, s) assumption and the Cauchy-Schwarz inequality, we get

K∑
k=1

λk
∣∣X:,Gk

∆Gk

∣∣
2
≤ 2
( ∑
k∈K∗

λ2k

)1/2( ∑
k∈K∗

∣∣X:,Gk
∆Gk

∣∣2
2

)1/2
≤ 2

κ

(∑
k∈K∗

λ2k
)1/2 ∣∣X∆

∣∣
2
. (25)

It is clear that∣∣X∆
∣∣2
2

= ∆>X>(Xφ̂−Xφ̃)

= ∆>X>(Xφ̂− diag(Rα̂)Y ) + ∆>X>(diag(Rα̃)Y −Xφ̃) + ∆>X>diag(Y )R(α̂− α̃).

In addition, using the relation X∆ =
∑K
k=1 X:,Gk

∆Gk
=
∑K
k=1 ΠGk

X:,Gk
∆Gk

and the fact that both (φ̂, α̂)

and (φ̃, α̃) satisfy constraint (7), we have

∣∣X∆
∣∣2
2
≤

K∑
k=1

∆>Gk
X>:,Gk

ΠGk
(Xφ̂− diag(Rα̂)Y ) +

K∑
k=1

∆>Gk
X>:,Gk

ΠGk
(diag(Rα̃)Y −Xφ̃)

+ ∆>X>diag(Y )R(α̂− α̃)

≤ 2

K∑
k=1

λk
∣∣X:,Gk

∆Gk

∣∣
2

+
∣∣X∆

∣∣
2
.
∣∣DY R(α̂− α̃)

∣∣
2
. (26)

Therefore, from (25), |X∆|2 ≤ 4
κ

(∑
k∈K∗ λ

2
k

)1/2
+ |DY R(α̂− α̃)|2 and we easily get

|X(φ̂− φ∗)|2 ≤ |X(φ̃− φ∗)|2 + |X∆|2 ≤ (z − 1)|Xφ∗|2 +
4

κ

(∑
k∈K∗

λ2k

)1/2
+ |DY R(α̂− α̃)|2.

where we have used the following notation: for any vector v, we denote by Dv the diagonal matrix diag(v).

To complete the proof, it suffices to replace z and λk by their expressions and to use the inequality

|DY R(α̂− α̃)|2 ≤ |DY R(α̂−α∗)|2 + (z − 1)|DY Rα∗|2
≤ |DY R(α̂−α∗)|2 + (z − 1)|Xφ∗ + ξ|2
≤ |DY R(α̂−α∗)|2 + (z − 1)

(
|Xφ∗|2 + |ξ|2

)
.

8.3. Proof of Lemma 8.1

For all ε ∈ (0, 1), consider the random event Bε =
⋂q
`=1

(
B2ε,` ∩ B1ε,`

)
, where

B2ε,` =

{∑
t∈T

rt`
Rt,:α∗

Xt,:φ
∗ξt ≥ −

√
2C2T log(2q/ε)

}
,
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B1ε,` =

{∑
t∈T

rt`
Rt,:α∗

(ξ2t − 1) ≥ −2
√
C1T log(2q/ε)

}
.

Using standard tail estimates for the Gaussian and the χ2 distributions, in conjunction with the union bound,
one easily checks that P (Bε) ≥ 1−ε. In what follows, we show that on the event Bε, (φ̃, α̃, ṽ) satisfies constraints
(7)-(9).

Constraints (9) are satisfied (with equality) by definition of ṽ. To check that (8) is satisfied as well, we should
verify that for all ` = 1, . . . , q,

1

z2

∑
t∈T

rt`
Rt,:α∗

≤
∑

t∈T

rt`
Rt,:α∗

Xt,:φ
∗ξt +

∑
t∈T

rt`
Rt,:α∗

ξ2t .

On the event Bε, the right-hand side of the last inequality can be lower bounded as follows:∑
t∈T

rt`
Rt,:α∗

Xt,:φ
∗ξt +

∑
t∈T

rt`
Rt,:α∗

ξ2t ≥ −(
√
C2 +

√
2C1)

√
2T log(2q/ε) +

∑
t∈T

rt`
Rt,:α∗

.

Thus, on Bε if for all ` = 1, . . . , q

z2 − 1

z2

∑
t∈T

rt`
Rt,:α∗

≥ (
√
C2 +

√
2C1)

√
2T log(2q/ε) (27)

then constraint (9) is fulfilled by (φ̃, α̃, ṽ). Inequality (27) is valid since for any z ≥ 1

z2 − 1

z2

∑
t∈T

rt`
Rt,:α∗

=
z − 1

z

(
1 +

1

z

)∑
t∈T

rt`
Rt,:α∗

≥ z − 1

z
TC3

and z−1
z TC3 ≥ (

√
C2 +

√
2C1)

√
2T log(2q/ε) when z = 1 + 2C4

√
2 log(2q/ε)

T ≤ 2.

On the other hand, since z ≤ 2, a sufficient condition implying that the pair (φ̃, α̃) satisfies (7) is

2
∣∣ΠGk

ξ
∣∣
2
≤ λk, ∀k ∈ {1, . . . ,K}. (28)

Recall that rk denotes the rank of ΠGk
. Let Rε be the random event of probability at least 1 − ε defined as

follows

Rε =

K⋂
k=1

Rε,k =

K⋂
k=1

{∣∣ΠGk
ξ|22 ≤ rk + 2

√
rk log(K/ε) + 2 log(K/ε)

}
.

To prove that P (Rε) ≥ 1−ε, we use the fact that
∣∣∣ΠGk

ξ|22 is drawn from the χ2
rk

distribution. Using well-known

tail bounds for the χ2 distribution, we get P (Rcε,k) ≤ ε
K . Then, we conclude by the union bound.

Since we chose

2(rk + 2
√
rk log(K/ε) + 2 log(K/ε))1/2 = λk,

on the event Rε inequality (28) is satisfied by (φ̃, α̃).

Finally, the triplet (φ̃, α̃, ṽ) fulfills constraints (7)-(9) on the event Bε ∩ Rε, which is of a probability at least
1− 2ε.

8.4. Proof of Theorem 5.2

We start by noting that, the ScHeDs (φ̂, α̂) satisfies ∀` ∈ {1, . . . , q}, the relation∑
t∈T

rt`
Rt,:α̂

=
∑

t∈T

(
ytRt,:α̂−Xt,:φ̂

)
ytrt`. (29)
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First, for the ScHeDs, all the inequalities in (9) are equalities. Indeed, vt’s are only involved in (8) and (9) and if
we decrease one vt to achieve an equality in (9), the left-hand side of (8) will decrease as well and the constraint
will stay inviolated. Thus, setting v̂t = 1/Rt,:α̂, we get from (8)∑

t∈T

rt`
Rt,:α̂

≤
∑

t∈T

(
ytRt,:α̂−Xt,:φ̂

)
ytrt`, ∀` ∈ {1, . . . , q}. (30)

To be convinced that Eq. (29) is true, let us consider for simplicity the one dimensional case q = 1. If inequality

(30) was strict, for some w ∈ (0, 1), the pair (wφ̂, wα̂) would also satisfy all the constraints of the ScHeDs and

the corresponding penalty term would be smaller than that of (φ̂, α̂). This is impossible since φ̂ is an optimal
solution. Thus we get∑

t∈T
R>t,:(Rt,:α̂)−1 =

∑
t∈T

R>t,:yt
(
ytRt,:α̂−Xt,:φ̂

)
= R>DY

(
DY Rα̂−Xφ̂

)
. (31)

Using the identity (Rt,:α̂)−1 = (Rt,:α
∗)−1 + (Rt,:α̂Rt,:α

∗)−1Rt,:(α
∗ − α̂), we get[∑

t∈T

1

(Rt,:α̂)(Rt,:α∗)
R>t,:Rt,:

]
(α∗ − α̂) = −

∑
t∈T

1

Rt,:α∗
R>t,: + R>DY

(
DY Rα̂−Xφ̂

)
= −R>D−1Rα∗1T + R>D2

Y R(α̂−α∗)−R>DY X(φ̂− φ∗)
+ R>DY

(
DY Rα∗ −Xφ∗

)
. (32)

In view of the identities DY Rα∗ −Xφ∗ = ξ and DY = D−1Rα∗(DXφ∗ + Dξ), Eq. (32) yields4

R>
[
D2
Y + D−1Rα∗D

−1
Rα̂

]
R(α∗ − α̂) = R>D−1Rα∗(ξ

2 − 1T )−R>DY X(φ̂− φ∗) + R>D−1Rα∗DXφ∗ξ. (33)

As a consequence, denoting by M the Moore-Penrose pseudo-inverse of the matrix R>
[
D2
Y + D−1Rα∗D

−1
Rα̂

]
R,

R(α∗ − α̂) = RMR>
(

D−1Rα∗(ξ
2 − 1T )−DY X(φ̂− φ∗) + D−1Rα∗DXφ∗ξ

)
. (34)

Multiplying both sides by DY and taking the Euclidean norm, we get∣∣DY R(α∗ − α̂)
∣∣
2
≤
∣∣∣DY RMR>

(
D−1Rα∗(ξ

2 − 1T ) + D−1Rα∗DXφ∗ξ
)∣∣∣

2
+
∣∣∣DY RMR>DY X(φ∗ − φ̂)

∣∣∣
2
. (35)

At this stage of the proof, the conceptual part is finished and we enter into the technical part. At a heuristic
level, the first norm in the right-hand side of (35) is bounded in probability while the second norm is bounded

from above by (1 − c)
∣∣X(φ∗ − φ̂)

∣∣
2

for some constant c ∈ (0, 1). Let us first state these results formally, by
postponing their proof to the next subsection, and to finalize the proof of the theorem.

Lemma 8.2. Let q and T be two integers such that 1 ≤ q ≤ T and let ε ∈ (0, 1/3) be some constant. Assume

that for some constant D̂1 ≥ 1 the inequality maxt∈T
Rt,:α̂
Rt,:α∗

≤ D̂1 holds true. Then, on an event of probability

at least 1− 3ε, the following inequalities are true5:

|||M1/2R>DY ||| ≤ 1, (36)∣∣∣M1/2R>
(
D−1Rα∗(ξ

2 − 1T ) + D−1Rα∗DXφ∗ξ
)∣∣∣

2
≤ 10

√
qD̂1 log(2T/ε) log(2q/ε), (37)

|||DY RMR>DY ||| ≤ 1− 1

2D̂1

(
|Xφ∗|2∞ + |ξ|2∞

)
+ 1
≤ 1− 1

D̂1

(
2|Xφ∗|2∞ + 5 log(2T/ε)

) . (38)

In view of these bounds, we get that on an event of probability at least 1− 3ε,∣∣DY R(α∗ − α̂)
∣∣
2
≤ 10

√
qD̂1 log(2T/ε) log(2q/ε) +

(
1− 1

D̂1

(
2|Xφ∗|2∞ + 5 log(2T/ε)

))∣∣X(φ∗ − φ̂)
∣∣
2
. (39)

4We denote by ξ2 the vector (ξ2t )t∈T .
5Here and in the sequel, the spectral norm of a matrix A is denoted by |||A|||.



Learning Heteroscedastic Models by Convex Programming under Group Sparsity

Combining this inequality with Theorem 5.1 and using the inequality 2|Xφ∗|2 + |ξ|2 ≤
√
T
(
2|Xφ∗|∞ + |ξ|∞

)
,

we get that the following inequalities are satisfied with probability ≥ 1− 5ε:∣∣X(φ̂− φ∗)
∣∣
2
≤ 2C4D̂1

(
2|Xφ∗|2∞ + 5 log(2T/ε)

)√
2 log(2q/ε)(2|Xφ∗|∞ + |ξ|∞)

+
8

κ

(
2S
∗ + 3K∗ log(K/ε)

)1/2
D̂1

(
2|Xφ∗|2∞ + 5 log(2T/ε)

)
+ 10D̂1

(
2|Xφ∗|2∞ + 5 log(2T/ε)

)√
qD̂1 log(2T/ε) log(2q/ε)

≤ 4C4D̂1

(
2|Xφ∗|2∞ + 5log(2T/ε)

)3/2√
2 log(2q/ε)

+
8D̂1

κ

(
2|Xφ∗|2∞ + 5 log(2T/ε)

)(
2S
∗ + 3K∗ log(K/ε)

)1/2
+ 10D̂1

(
2|Xφ∗|2∞ + 5 log(2T/ε)

)√
qD̂1 log(2T/ε) log(2q/ε). (40)

Using the notation DT,ε = D̂1

(
2|Xφ∗|2∞ + 5 log(2T/ε)

)
, we obtain∣∣X(φ̂− φ∗)

∣∣
2
≤ 4C4D

3/2
T,ε

√
2 log(2q/ε) +

8DT,ε

κ

(
2S
∗ + 3K∗ log(K/ε)

)1/2
+ 10DT,ε

√
qD̂1 log(2T/ε) log(2q/ε). (41)

To further simplify the last term, we use the inequalities:

10DT,ε

√
qD̂1 log(2T/ε) log(2q/ε) = DT,ε

√
10

√
5D̂1 log(2T/ε)

√
2q log(2q/ε)

≤ 4D
3/2
T,ε

√
2q log(2q/ε).

Combining this with (41) yields (16).

To prove (17), we use once again (34) to infer that∣∣R(α∗ − α̂)
∣∣
2
≤
∣∣∣RMR>

(
D−1Rα∗(ξ

2 − 1T ) + D−1Rα∗DXφ∗ξ
)∣∣∣

2
+
∣∣∣RMR>DY X(φ∗ − φ̂)

∣∣∣
2

≤ |||RM1/2|||
(∣∣∣M1/2R>

(
D−1Rα∗(ξ

2 − 1T ) + D−1Rα∗DXφ∗ξ
)∣∣∣

2
+ |||M1/2R>DY |||

∣∣∣X(φ∗ − φ̂)
∣∣∣
2

)
.

In view of Lemma 8.2, this leads to∣∣R(α∗ − α̂)
∣∣
2
≤ |||RM1/2|||

(
10

√
qD̂1 log(2T/ε) log(2q/ε) +

∣∣∣X(φ∗ − φ̂)
∣∣∣
2

)
, (42)

with probability at least 1− 5ε. Using the bound in (16), we get∣∣R(α∗ − α̂)
∣∣
2
≤ |||RM1/2|||

(
4(C4 + 2)D

3/2
T,ε

√
2q log(2q/ε) +

8DT,ε

κ

√
2S
∗ + 3K∗ log(K/ε)

)
. (43)

In view of the inequality6

(RM1/2)(RM1/2)> = R
[
R>(D2

Y + D−1Rα∗D
−1
Rα̂)R

]+
R>

� R
[
R>(D−1Rα∗D

−1
Rα̂)R

]+
R>

� (max
t∈T

[Rt,:α
∗ ·Rt,:α̂])R

[
R>R

]+
R>

we get

|||RM1/2|||2 = |||(RM1/2)(RM1/2)>|||

≤ D̂1

∣∣Rα∗∣∣2∞ · |||R[R>R
]+

R>|||

≤ D̂1

∣∣Rα∗∣∣2∞,
where the last inequality follows from the fact that R

[
R>R

]+
R> is an orthogonal projector.

6We use the notation A � B and B � A for indicating that the matrix A−B is positive semi-definite. For any matrix
A, we denote by A+ its Moore-Penrose pseudoinverse.
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8.5. Proof of Lemma 8.2

We start by presenting a proof of (37). We have∣∣∣DY RMR>
(
D−1Rα∗(ξ

2 − 1T ) + D−1Rα∗DXφ∗ξ
)∣∣∣

2

≤ |||DY RM1/2||| ·
∣∣M1/2R>

(
D−1Rα∗(ξ

2 − 1T ) + D−1Rα∗DXφ∗ξ
)∣∣

2

≤ |||DY RM1/2||| ·
(∣∣M1/2R>D−1Rα∗(ξ

2 − 1T )
∣∣
2

+
∣∣M1/2R>D−1Rα∗DXφ∗ξ

∣∣
2

)
. (44)

We remark that

M+ = R>
[
D2
Y + D−1Rα∗D

−1
Rα̂

]
R � R>D2

Y R =⇒ |||DY RM1/2||| ≤ 1.

and that

M+ �
(

min
t

y2t + (Rt,:α
∗ ·Rt,:α̂)−1

(Xt,:φ
∗/Rt,:α∗)2

)
R>D−2Rα∗D

2
Xφ∗R,

which implies that ∣∣M1/2R>D−1Rα∗DXφ∗ξ
∣∣2
2

= ξ>D−1Rα∗DXφ∗RMR>DXφ∗D
−1
Rα∗ξ

≤
(

max
t∈T

(Xt,:φ
∗)2

(Rt,:α∗)2y2t + (Rt,:α∗/Rt,:α̂)

)
ξ>Π1ξ, (45)

where Π1 = D−1Rα∗DXφ∗R
(
R>D2

Xφ∗D
−2
Rα∗R

)+
R>DXφ∗D

−1
Rα∗ is the orthogonal projection on the linear sub-

space of RT spanned by the columns of the matrix D−1Rα∗DXφ∗R. By the Cochran theorem, the random variable

η1 = ξ>Π1ξ is distributed according to the χ2
q distribution.

Using similar arguments based on matrix inequalities, one checks that∣∣M1/2R>D−1Rα∗(ξ
2 − 1T )

∣∣2
2
≤
(

max
t∈T

(Rt,:α
∗)−2

y2t + (Rt,:α∗ ·Rt,:α̂)−1

)
(ξ2 − 1)>Π2(ξ2 − 1)

≤
(

max
t∈T

Rt,:α̂

Rt,:α∗

)
(ξ2 − 1)>Π2(ξ2 − 1)︸ ︷︷ ︸

=:η2

, (46)

where Π2 = D−1Rα∗R
(
R>D−2Rα∗R

)+
R>D−1Rα∗ is the orthogonal projection on the linear subspace of RT spanned

by the columns of the matrix D−1Rα∗R.

To further simplify (45), one can remark that under the condition Rt,:α̂ ≤ D̂1Rt,:α
∗, it holds

(Xt,:φ
∗)2

(Rt,:α∗)2y2t + (Rt,:α∗/Rt,:α̂)
≤ (Xt,:φ

∗)2

(Xt,:φ
∗ + ξt)2 + D̂−11

≤ 1 + D̂1ξ
2
t . (47)

These bounds, combined with (44), yield∣∣∣DY RMR>
(
D−1Rα∗(ξ

2 − 1T ) + D−1Rα∗DXφ∗ξ
)∣∣∣

2
≤
√

(1 + D̂1|ξ|2∞)η1 +

√
D̂1η2. (48)

One can also notice that Π2 is a projector on a subspace of dimension at most equal to q, therefore one can
write Π2 =

∑q
`=1 v`v

>
` for some unit vectors v` ∈ RT . This implies that

η2 =

q∑
`=1

|v>` (ξ2 − 1T )|2 ≤ q max
`=1,...,q

∣∣∣∑
t∈T

v`,t(ξ
2
t − 1)

∣∣∣2.
Hence, large deviations of η1 and η2 can be controlled using standard tail bounds; see, for instance, Laurent and
Massart (2000, Lemma 1). This implies that with probability at least 1− 2ε,∣∣∣DY RMR>

(
D−1Rα∗(ξ

2 − 1T ) + D−1Rα∗DXφ∗ξ
)∣∣∣

2
≤
√

1 + D̂1|ξ|2∞(
√
q +

√
2 log(q/ε)) +

√
qD̂1 4 log(2q/ε).
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To conclude, it suffices to remark that P(|ξ|∞ ≤
√

2 log(2T/ε)) ≥ 1− ε. This implies that∣∣∣DY RMR>
(
D−1Rα∗(D

2
ξ − IT )1T + D−1Rα∗DXφ∗ξ

)∣∣∣
2

≤ 2

√
D̂1 log(2T/ε)(

√
q +

√
2 log(q/ε)) +

√
qD̂1 4 log(2q/ε)

≤ 4

√
2qD̂1 log(2T/ε) log(q/ε) + 4

√
qD̂1 log(2q/ε)

≤ 10

√
qD̂1 log(2T/ε) log(2q/ε).

This completes the proof of the first claim of the lemma.

Let us now switch to a proof of (38). It is clear that

|||DY RMR>DY ||| = |||M1/2R>DY |||2

≤ |||M1/2R>(D2
Y + D−1Rα̂D−1Rα∗)

1/2|||2|||(D2
Y + D−1Rα̂D−1Rα∗)

−1/2DY |||2

≤ |||(D2
Y + D−1Rα̂D−1Rα∗)

−1/2DY |||2

= max
t∈T

y2t
y2t + (Rt,:α∗ ·Rt,:α̂)−1

. (49)

Using the fact that Rt,:α̂ ≤ D̂1Rt,:α
∗ for every t, we obtain

|||DY RMR>DY ||| = max
t∈T

y2t (Rt,:α
∗)2

y2t (Rt,:α∗)2 + D̂−11

= 1−min
t∈T

1

D̂1y2t (Rt,:α∗)2 + 1

= 1−min
t∈T

1

D̂1(Xt,:φ
∗ + ξt)2 + 1

. (50)

To complete the proof of the lemma, it suffices to remark that (Xt,:φ
∗ + ξt)

2 ≤ 2(Xt,:φ
∗)2 + 2ξ2t ≤ 2|Xφ∗|2∞ +

2|ξ|2∞ and to apply the well-known bound on the tails of the Gaussian distribution.


