
Better Rates for Any Adversarial Deterministic MDP

Ofer Dekel oferd@microsoft.com

Microsoft Research, 1 Microsoft Way, Redmond, WA 98052, USA

Elad Hazan ehazan@ie.technion.ac.il

Technion - Israel Inst. of Tech., Haifa 32000, Israel

Abstract

We consider regret minimization in adversar-
ial deterministic Markov Decision Processes
(ADMDPs) with bandit feedback. We devise
a new algorithm that pushes the state-of-the-
art forward in two ways: First, it attains a re-
gret of O(T 2/3) with respect to the best fixed
policy in hindsight, whereas the previous best
regret bound was O(T 3/4). Second, the algo-
rithm and its analysis are compatible with
any feasible ADMDP graph topology, while
all previous approaches required additional
restrictions on the graph topology.

1. Introduction

A sequential decision making problem deals with a de-
cision maker’s extended interaction with his environ-
ment. The decision maker can take different actions
that influence his state in the environment, and each
action can have both short and long term effects on
the decision maker’s utility. For example, imagine a
robotic vacuum cleaner that travels around the house
and dynamically makes turn-by-turn decisions about
its route. The robot is the decision maker, the house
is the environment, the utility is the amount of dirt
collected, and the robot’s state in this example is his
location. The robot knows its state and can take ac-
tion to move to an adjacent state. Not all actions are
available in all states and the consequence of each ac-
tion depends on the current state.

Sequential decision making problems can be formu-
lated in various ways, with different assumptions on
the dynamics of the environment and on the informa-
tion available to the decision maker. In this paper, we

Proceedings of the 30 th International Conference on Ma-
chine Learning, Atlanta, Georgia, USA, 2013. JMLR:
W&CP volume 28. Copyright 2013 by the author(s).

focus on one such setting: the adversarial determinis-
tic Markov decision process with bandit feedback, ab-
breviated by ADMDP. Namely, we assume that the en-
vironment is adversarial, the state transition dynamics
of the environment are deterministic, and the feedback
observed by the decision maker is bandit feedback (all
of these terms are explained below).

We model the sequential decision making problem as
a game between a randomized game player (the de-
cision maker) and a deterministic adversary (the en-
vironment). First, the player and the adversary are
told the total number of steps in the game, T . Then,
they are given a directed graph G = (V, E) called the
state transition graph, where V is a finite set of ver-
tices or states, and E is a set of directed edges, with
at least one outgoing edge per state. Moreover, one of
the states in V is designated as the initial state, and
denoted by v0.

Next, the adversary defines a sequence of T loss func-
tions, f1, . . . , fT , where each ft takes the form ft :
E 7→ [0, 1]. In other words, the adversary assigns a
loss value to each edge at each step in the game. The
loss functions are not revealed to the player.

Finally, the player takes T steps along the edges of the
graph, starting from the initial state v0. Specifically,
at each step t ∈ 1, . . . , T , the player begins in state
Vt−1 ∈ V, chooses one of Vt−1’s outgoing edges, and
traverses that edge to a new state Vt ∈ V. The cho-
sen edge is called the player’s action. Since the player
has the power of randomization, he chooses his action
by defining a distribution over Vt−1’s outgoing edges
and sampling a concrete edge from that distribution.
Therefore, the player’s state after step t is a random
variable. Some of the edges in E may be self-loops,
in which case Vt can equal Vt−1. While traversing the
edge (Vt−1, Vt), the player suffers a loss of ft(Vt−1, Vt).
The player observes this loss value, but he does not
observe the loss that he would have suffered had he
chosen a different action or had he been in a differ-

Better Rates for Any Adversarial Deterministic MDP

ent state; this feedback model is commonly called the
bandit feedback model.

We assume that the adversary has unlimited compu-
tational power and may even know the player’s algo-
rithm. The adversary may use random bits if he so
desires, but since he already has unlimited computa-
tional power, random bits do not give him an addi-
tional advantage. Despite the adversary’s power, he
must choose the entire sequence of loss functions be-
fore the player makes a move and without knowing the
player’s random choices (in other words, the adversary
knows the player’s algorithm but he doesn’t know the
player’s random bits). This type of adversary is called
an oblivious adversary or a non-adaptive adversary.
Although the adversary is oblivious, the player’s loss
at time t still depends on his past actions, since the
loss depends on the player’s state, which is determined
by his past actions. Therefore, from the player’s point
of view, the environment does seem to react to his past
actions.

The player’s goal is to accumulate the smallest pos-
sible loss as he performs his T -step path over the
graph. Although the loss functions are deterministic,
the player’s loss depends on his randomized actions.
Therefore, our analysis focuses on the player’s expected
cumulative loss. Since the loss functions are adversar-
ial, the player’s loss is only meaningful when compared
to a baseline (since the adversary could always assign
the maximal loss to all actions at all states and at all
steps); in this paper we compare the player’s loss to
the loss of the best fixed policy in hindsight.

Formally, let Π be the set of all fixed (deterministic)
policies, where each π ∈ Π is a mapping from V to itself
that maps each state v to one of its outgoing neighbors.
A deterministic policy π starts in the initial state v0,
transitions to π(v0), then to π(π(v0)), and so on. This
motivates us to define the shorthand

πt(v) = π(· · ·π︸ ︷︷ ︸
t

(v)) .

Using this notation, the loss accumulated by the fixed
policy π equals

∑T
t=1 ft(π

t−1(v0), πt(v0)). We now
define the player’s (undiscounted) regret, denoted by
RADMDP(T), as the difference between his expected
cumulative loss and the loss of the best fixed policy in
hindsight. Formally, RADMDP(T) is defined as

E

[
T∑
t=1

ft(Vt−1, Vt)

]
− min

π∈Π

T∑
t=1

ft(π
t−1(v0), πt(v0)) .

We say that the player is learning if RADMDP(T) is
upper-bounded by a sub-linear function of T , uni-
formly for all sequences of loss functions. A sub-linear

regret implies that the average expected loss suffered
by the player on each individual step tends to zero, so
the player gets better with time. On the other hand,
the player isn’t learning if RADMDP(T) keeps growing
linearly, even as T tends to infinity. Our technical goal
is to prove bounds of the form RADMDP(T) = O(T q)
where q ∈ [0, 1); a smaller value of q implies faster
learning.

Any fixed policy in Π takes at most |V| steps before re-
turning to a state that it has previously visited. From
that point on, the fixed policy repeats the same cy-
cle of states over and over again. However, note that
two policies in Π that lead to the same cycle can still
accumulate different losses if they enter the cycle at
different times or at different states. To demonstrate
this concept, consider the complete graph over three
states, V = {v0, v1, v2}. Notice that there are two poli-
cies that lead to the 2-cycle v1, v2: one that traverses
the edge (v1, v2) on odd steps and one that does so on
even steps. Now, define for all t

ft(v, u) =

{
t (mod 2) if v = v1

t+ 1 (mod 2) otherwise
.

While the policy that traverses the edge (v1, v2) on
odd steps suffers a total loss of θ(T), the policy that
traverses the edge (v1, v2) on even steps suffers a total
loss of θ(1). Therefore, it is insufficient to merely dis-
cover low-loss cycles in G, and we must also think of
a policy’s phase within a cycle.

We make some assumptions on the structure of G, but
we prove that they are necessary. Specifically, we as-
sume that G contains exactly one strongly connected
component (see definition below), and we prove that
without this assumption, there does not exist any al-
gorithm that guarantees a sub-linear regret for all loss
sequences. With this assumption alone, we present
a new algorithm that guarantees a regret of O(T 2/3)
against any sequence of loss functions. This proves
that the assumption above is also a sufficient condi-
tion for learning in the ADMDP setting. To the best
of our knowledge, our algorithm is the first to make
do with the necessary condition on G, and all previous
work on this topic requires more restrictive assump-
tions (see the related work section below for details).
To simplify our presentation, we first solve the prob-
lem with the additional assumption that G is aperiodic
(see definition below), but then we relax this assump-
tion and default back to the necessary condition.

A more common way of formulating sequential deci-
sion making problems uses (stochastic) Markov deci-
sion processes (MDP). The classic MDP formulation
assumes that the losses (or rewards) are stochastic

Better Rates for Any Adversarial Deterministic MDP

(rather than adversarial) and the state transitions are
noisy (rather than deterministically controlled by the
player). Adversarial losses are strictly more general
than stochastic ones, as the adversary is free to use
random bits if he so chooses. Adversarial environments
also generalize time-varying stochastic environments,
strategic environments (like the ones encountered in
multiplayer video games and online bidding systems),
and malicious environments (like the ones encountered
in spam and fraud detection systems). In this sense,
our setting is strictly more powerful than the MDP set-
ting. On the other hand, the deterministic state transi-
tions in the ADMDP model are weaker than the noisy
transitions in the MDP model. In some cases, this may
be a limitation of the ADMDP setting. However, in
general, a stochastic system is often well approximated
by a deterministic system (Bertsekas, 2005, Chap. 2).
Overall, the relatve strength of the ADMDP model
versus the more traditional MDP model is not well
understood.

Our assumption that the entire graph is known to
the player beforehand is simply a matter of conve-
nience. This assumption can be easily relaxed using
ideas from Ortner (2010). Also, we chose to formulate
the problem in terms of loss functions (rather then
reward functions) for notational convenience; moving
from rewards to losses and vice versa can be done by
replacing each ft with 1− ft.

1.1. Related Work and Our Contribution

Our work is most closely related to the recent work in
Arora et al. (2012), which addresses the same problem
(with the minor technical difference that it formulates
the game using rewards rather than losses). Arora
et al. (2012) presents an algorithm called MarcoPolo,
with a regret bound of O(T 3/4), which holds for any
strongly connected aperiodic graph. In contrast, our
new algorithm guarantees a better regret of O(T 2/3),
without the restriction to aperiodic graphs. We note
that the slow learning rate attained by MarcoPolo is
not due to a loose analysis, but is an inherent limita-
tion of the algorithm: MarcoPolo is built of a top-layer
multi-armed bandit algorithm and a bottom layer on-
line linear bandit algorithm; the latter is reset

√
T

times during the T steps, and must learn everything
from scratch each time; this algorithmic construction
implies that the O(T 3/4) regret guarantee is the best
possible for MarcoPolo.

More generally, there is an abundance of previous re-
search on MDPs with stochastic transitions and adver-
sarial rewards (Even-Dar et al., 2009; Yu et al., 2009;
Yu & Mannor, 2009; Neu et al., 2010). Moreover,

the typical regret rates in this setting are O(T 1/2).
Since stochastic transitions are strictly more general
than deterministic transitions, it would seem that
these papers solve a more general problem with a
better regret guarantee. However, all of these pa-
pers make an additional assumption that turns out
to be extremely restrictive when the transitions are
deterministic. Specifically, the results for stochastic
MDPs require that the state transition dynamics have
a unichain structure, which means that every policy
must lead to a Markov chain with a single recurrent
class. In other words, they assume that the underly-
ing Markov chain is uniformly ergodic under any pol-
icy. In the special case of deterministic transitions,
the unichain assumption implies that any two cycles
in the graph share a common vertex (Feinberg & Yang,
2008). Clearly, this assumption excludes most of the
deterministic state transition graphs that one could
imagine; for example, it excludes any graph with two
self-loops. Therefore, these results are typically inap-
plicable in our deterministic setting. For more details
on the limitations imposed by the unichain assumption
in the ADMDP setting, see (Arora et al., 2012). As
noted above, our new algorithm applies to any state
transition graph that satisfies the necessary condition.

More generally, there is relevant previous work on
the connections between reinforcement learning and
individual sequence prediction in information theory
(Farias et al., 2010), as well as work on regret mini-
mization in stochastic and deterministic MDPs when
the rewards are stochastic, rather than adversarial (see
Szepesvari (2010) and the references therein, as well as
(Ortner, 2010)).

2. Preliminaries

We begin with some mathematical background on di-
rected graphs. Let G = (V, E) be a directed graph. A
set of vertices V ′ ⊆ V is strongly connected if G con-
tains a directed path between any two vertices in V ′.
We say that G is a strongly connected graph if its ver-
tices V form a strongly connected set. A cycle in G
from v to itself is a path in G that starts and ends at v.
If G is strongly connected, it contains at least one cy-
cle from any vertex v. A strongly connected component
of G is a maximal strongly connected set of vertices.
That is, if we add any vertex to a strongly connected
component, it will no longer be strongly connected.

Assume that G is strongly-connected and consider the
set of cycles of length at most |V| from v to itself.
Let γ(v) be the greatest common divisor (gcd) of the
lengths of these cycles; this quantity is called the period
of the vertex v. It can be shown that all of the vertices

Better Rates for Any Adversarial Deterministic MDP

of a strongly connected graph have the same period
(Bremaud, 1999, Chap. 2, Thm. 4.2), so period is
actually a property of G rather than of v. For brevity,
we denote the period of G by γ. If γ = 1, we say that
G is an aperiodic graph.

A strongly connected graph G with period γ can al-
ways be arranged in a cyclic structure (Bremaud, 1999,
Chap. 2, Thm. 4.1) of length γ. That is, the graph
vertices can be uniquely partitioned into γ non-empty
sets, called cyclic classes and denoted by C0, . . . , Cγ−1,
such that the outgoing edges from the vertices in Ci
all lead to vertices in Ci+1 (for all i, where i + 1 is
computed modulo γ). If G is aperiodic, then all of its
vertices belong to a single cyclic class and the above
holds trivially. In other words, if the vertices of G
cannot be partitioned into multiple cyclic classes, as
described above, then its period is necessarily γ = 1.
From the above, we can conclude that the length of
every cycle in a strongly connected graph with period
γ is an integer multiple of γ.

If G is strongly connected and aperiodic (namely,
γ = 1), there exists a critical length d such that for
any s ≥ d there are paths in G of length s between
any pair of vertices (Denardo, 1977). This result is a
consequence of the Frobenius coin exchange problem in
combinatorics, and specifically of Schur’s theorem (Al-
fonsin, 2005). Moreover, the critical length d is never
too big: letting n = |V|, it is known that d ≤ n(n− 1)
(Denardo, 1977).

If G has a period of γ > 1, the upper bound on d can
be generalized as follows: there exists a critical value
d such that for any integer s ≥ d there is a path in G
of length sγ from any state v to any other state in the
same cyclic class. To prove this generalization, let Ci
denote the cyclic class to which v belongs. Construct
a new graph G′ = (V ′, E ′), where V ′ = Ci and where
E ′ contains the edge (u, v) if and only if there exists a
path of length γ from u to v in G. Now note that G′

is aperiodic: the greatest common divisor of cycles in
G is γ so the greatest common divisor of the cycles in
G′ is 1. The generalized theorem applied to G follows
from applying the original theorem to G′.

3. Necessary Conditions on G

As previously mentioned in the introduction, we make
some assumptions on the topology of G. First, recall
our assumption that every state has at least one out-
going edge - clearly this assumption is required for the
ADMDP game to be well defined. Next, we assume
that all of the states are reachable from v0. This as-
sumption is made without loss of generality, since oth-

erwise we can simply remove the unreachable states
without changing the sequential decision problem.

These two assumptions already imply that G con-
taints at least one strongly connected component that
is reachable from v0. The reasoning is straightforward:
there exists a path of length |V| that starts at v0; this
path must return to a state that it previously visited;
this creates a cycle, which is a strongly connected set.

We add a third assumption on the topology of G: we
assume that G contains exactly one strongly connected
component, and no more. In contrast to the pre-
vious assumptions, which did not restrict generality,
this assumption limits the graph topologies that we
can handle. However, we prove this assumption is a
necessary condition for any learning algorithm in this
setting. Namely, if G contains two or more strongly
connected components, a sub-linear upper bound on
regret is unattainable by any algorithm.

Theorem 3.1. If G has two (or more) strongly con-
nected components, for any algorithm used by the
player, there exists an oblivious sequence of loss func-
tions that inflicts a regret of Ω(T).

Proof of this theorem is deferred to the full version of
this paper due to space restrictions.

Fig. 1 shows an example of a graph that satisfies
the conditions of our algorithm. It contains a single
strongly connected component and has a period of 3.

Theorem 3.1 proves that having a single strongly con-
nected component is a necessary condition. With this
assumption in place, we can further simplify our pre-
sentation by assuming that all of the vertices in G are
strongly connected. Given the previous assumptions,
this assumption can be made without further loss of
generality. To see why, assume that G is not strongly
connected but contains exactly one strongly connected
component. Note that any vertex that does not belong
to the strongly connected component is unreachable
after the first n steps (recall that n = |V|). A precise
proof of this is straightforward: a vertex that does not
belong to a strongly connected component can only
be visited once; therefore, any path of length n must
end inside the strongly connected component; once the
path enters the strongly connected component it can
never leave. Therefore, the player can begin the game
by performing n arbitrary actions (at worst, adding a
constant to the cumulative loss). After that, he never
has to worry about the vertices that are not part of
the connected component. In other words, we assume,
without any additional loss of generality, that G is
strongly connected to begin with.

Better Rates for Any Adversarial Deterministic MDP

v0

v1

v2

v3

v4

v5

v6

Figure 1. Example of a state transition graph that satisfies
the conditions of our algorithm. It has a single strongly
connected component and a period of γ = 3. Without loss
of generality, states v0, v1, v2 can be ignored, since each
of them can only be visited once, resulting in a strongly
connected graph.

4. An Algorithm for Aperiodic Graphs

In this section, we add the simplifying assumption that
the state transition graph G is aperiodic. We will relax
this assumption in a later section. As explained in Sec.
2, this assumption implies that there exists a path in
G of length d = n(n− 1) between any pair of states.

We solve the ADMDP problem by reducing it to the
bandit shortest path (BSP) problem. BSP is also mod-
eled as a repeated game between an adversary and a
player. The problem is defined by a directed graph
G? = (V?, E?) and two special vertices, a source vertex
s ∈ V?, and a target vertex t ∈ V?. We assume that G
contains at least one path from s to t.

The game is played for J rounds (the move from T
to J is deliberate, and hints that our reduction will
change the time scale of the original T -step ADMDP
game). As in the ADMDP game, the adversary defines
the entire sequence of loss functions before the player
takes any action. To facilitate the presentation of our
reduction, we denote the sequence of loss functions for
the BSP problem by g1, . . . , gJ , where each gj : E 7→
R+. On round j of the game, the player chooses a path
Pj from s to t and suffers a loss equal to the sum of the
losses on the edges in Pj . We overload our notation
and for any path p we define

gj(p) =
∑

(u,w)∈p

gj(u,w) .

As its name implies, the bandit shortest path game is
played with bandit feedback, so the player observes his
loss but not the loss that he would have suffered had
he chosen a different path. We note that our reduc-
tion actually results in an instance of the semi-bandit
shortest path (SBSP) problem, where the player ob-
serves the loss along each edge of his path, but for
simplicity, we present our results in terms of the BSP
problem.

We define the player’s regret by comparing his loss to
the loss of the best fixed path from s to t. Formally,
let P be the set of all paths from s to t, and define the
player’s regret as

RBSP(J) = E

 J∑
j=1

gj(Pj)

 − min
p∈P

J∑
j=1

gj(p) .

Note that the BSP problem is a stateless online deci-
sion problem, which means that the player’s choices on
round j are not constrained by his choices in the past.
In other words, by reducing ADMDP to BSP, we re-
move one of the most problematic aspects of ADMDP
– the player’s state.

4.1. The Reduction

We are now ready to construct the reduction from AD-
MDP to BSP. We use [i]k to denote the integer in
{1, . . . , k} that satisfies [i]k − 1 = (i− 1) modulo k. In
other words,

[i]k =

{
i if i ≤ k
[i− k]k otherwise

.

We take the state transition graph G = (V, E) from
the definition of the ADMDP problem and use it to
define n2 new graphs (where, again, n = |V|): for
each state v ∈ V and each integer k ∈ {1, . . . , n} we
define the graph Gv,k = (Vv,k, Ev,k). The vertex set
Vv,k includes 2+(k−1)n vertices: two copies of v and
k−1 copies of the entire set V. The two copies of v are
denoted by vv,k,0 and vv,k,k. The i-th copy of u ∈ V
is denoted by uv,k,i. Note that each vertex has three
superscripts: the first two identify the graph, while the
third distinguishes between the different copies of the
original state.

Next, we construct the set of edges Ev,k. For each of
v’s outgoing edges in G, (v, u) ∈ E , we add the edge
(vv,k,0, uv,k,1) to Ev,k. For each of v’s incoming edges
in G, (u, v) ∈ E , we add the edge (uv,k,k−1, vv,k,k) to
Ev,k. Finally, for each edge (u,w) ∈ E (including the
incoming and outgoing edges of v), we add the set of
edges {(uv,k,i−1, wv,k,i)}k−1

i=2 to Ev,k.

Our notation is unavoidably tedious, but the construc-
tion itself is quite straightforward. We illustrate our
construction with a simple example in Fig. 2.

Finally, we unify the n2 induced graphs into one big
graph G? = (V?, E?). Specifically, we add a source
node s and a target node t, and for each v ∈ V and
k ∈ {1, . . . , n} we add an edge from s to vv,k,0 and

Better Rates for Any Adversarial Deterministic MDP

a

b c

⇒

k = 1 k = 2 k = 3

v
=
a

aa,1,0 aa,1,1 aa,2,0

aa,2,1

ba,2,1

ca,2,1

aa,2,2 aa,3,0

aa,3,1

ba,3,1

ca,3,1

aa,3,2

ba,3,2

ca,3,2

aa,3,3

v
=
b

bb,1,0 bb,1,1 bb,2,0

ab,2,1

bb,2,1

cb,2,1

bb,2,2 bb,3,0

ab,3,1

bb,3,1

cb,3,1

ab,3,2

bb,3,2

cb,3,2

bb,3,3

v
=
c

cc,1,0 cc,1,1 cc,2,0

ac,2,1

bc,2,1

cc,2,1

cc,2,2 cc,3,0

ac,3,1

bc,3,1

cc,3,1

ac,3,2

bc,3,2

cc,3,2

cc,3,3

Figure 2. Example of a state transition graph G (left) and the induced graphs Gv,k, for all v ∈ V and k ∈ {1, . . . , n}
(right). Note that the cycle a → b → c in G induces the paths aa,3,0 → ba,3,1 → ca,3,2 → aa,3,3 in Ga,3, bb,3,0 → cb,3,1 →
ab,3,2 → bb,3,3 in Gb,3, and cc,3,0 → ac,3,1 → bc,3,2 → cc,3,3 in Gc,3.

another edge from vv,k,k to t. More formally, we define

V? =
(
∪v,k Vv,k

)
∪ {s, t} and

E? =
(
∪v,k Ev,k

)
∪ {(s, vv,k,0)}v,k ∪ {(vv,k,k, t)}v,k .

The important thing to note is that each cycle of length
k in the original graph G induces k disjoint paths in
G? from s to t, one for each phase (i.e., each starting
point) of the cycle. Specifically, the cycle in G that
includes the states u1, . . . , uk induces a path from s
to t through each of the subgraphs Gu1,k, . . . , Guk,k.
On the other hand, every path in G? from s to t cor-
responds to a cycle and a phase in the original graph
G.

Next, we describe how a ADMDP player uses an on-
line algorithm for BSP to determine his actions in the
ADMDP game. First, the player splits the T steps of
the ADMDP game into epochs of length τ , where τ
is a positive integer that we will specify later on. As-
sume, without loss of generality, that τ divides T , and
let J = T/τ be the number of epochs. Note that epoch
j starts on step (j − 1)τ + 1 and ends on step jτ .

The player invokes the BSP algorithm once per epoch
on the graph G?; at the beginning of epoch j,
the BSP algorithm chooses a path Pj from s to
t. By construction, there must be a state u1 ∈
V such that Pj starts with the edge (s, uu1,k,0

1)

and ends with the edge (uu1,k,k
1 , t). Therefore, let

(s, uu1,k,0
1 , uu1,k,1

2 , . . . , uu1,k,k−1
k , uu1,k,k

1 , t) denote the
sequence of vertices in Pj . The player erases the su-
perscripts from this sequence, as well as the source
and target nodes, and is left with the state sequence
u1, . . . , uk. By construction, this sequence forms a fea-
sible cycle in the state transition graph G, in one of
the k possible phases.

Recall that any state in G can be reached from any
other state in exactly d steps. The player spends the
first d steps in the epoch moving from his current
state towards the cycle u1, . . . , uk. Specifically, on step
(j−1)τ+d the player needs to arrive in state u[d]k . Al-
though the player suffers a loss on these d initial steps,
and this loss is accounted for in the regret analysis, the
player simply ignores it. Since there are J epochs in
the entire game, the player ignores the loss on at most
Jd steps.

The player spends the rest of the epoch traversing the
cycle u1, . . . , uk over and over again. On these steps,
the player keeps track of the sum of losses. At the
end of the epoch, the BSP algorithm expects a feed-
back from the environment, which represents the loss
assigned to its chosen path Pj . The player provides
the accumulated sum of losses as the feedback. The
BSP algorithm uses this feedback to update itself and
then chooses the next cycle Pj+1.

Our first technical goal is to prove that, from the point

Better Rates for Any Adversarial Deterministic MDP

of view of the BSP algorithm, it is playing a standard
BSP game against a predefined sequence of loss func-
tions g1, . . . , gJ . To this end, for each j ∈ {1, . . . , J},
v ∈ V, and k ∈ {1, . . . , n}, define gj(s, v

v,k,0) = 0
and gj(v

v,k,k, t) = 0. Also, for each j, v, k as above,
(u,w) ∈ E , and i ∈ {2, . . . , k − 1}, define

gj(u
v,k,i−1, wv,k,i) =

jτ∑
t=(j−1)τ+1+d

ft(u,w) 11[t]k=i . (1)

The above is a complete definition of gj , for every edge
in E?. Note that this definition is independent of the
player’s actions, and can therefore be specified at the
beginning of the game (obliviously). The following
lemma proves that the feedback provided to the BSP
algorithm equals gj(Pj).

Lemma 4.1. Let Pj be the path chosen by the BSP al-
gorithm on epoch j and let gj be as defined in (1). As-
sume that the player uses Pj to transition through the
ADMDP graph G and accumulates losses, as described
in the reduction above. Then the loss accumulated by
the player and reported to the BSP algorithm at the
end of epoch j equals gj(Pj) =

∑
(u,w)∈Pj

gj(u,w).

Proof. Recall that the actual loss of the player, aside
from the first d steps in the epoch in which the player
is moving to the start vertex, is given by

jτ∑
t=(j−1)τ+1+d

ft(Vt−1, Vt) ,

where Vt is the state at time t. Let
(s, uu1,k,0

1 , uu1,k,1
2 , . . . , uu1,k,k−1

k , uu1,k,k
1 , t) denote

the sequence of vertices in Pj that correspond to
the phased cycle u1, . . . , uk in the original graph.
Thus, for the time periods in this epoch we have
(Vt, Vt+1) = (u[t]k , u[t+1]k), hence∑jτ

t=(j−1)τ+1+d ft(Vt−1, Vt)

=
∑jτ
t=(j−1)τ+1+d ft(u[t]k , u[t+1]k)

=
∑k−1
i=1

∑jτ
t=(j−1)τ+1+d ft(ui, ui+1)1[t]k=i

=
∑k−1
i=1 gj(ui, ui+1) = gj(Pj) .

4.2. Regret Upper Bound

After specifying the reduction to BSP, we state and
prove our main result. Let RADMDP (T) be the regret
incurred by the ADMDP player that uses the tech-
nique defined in the previous section and let RBSP be
the regret of the underlying BSP algorithm. The next

theorem bounds RADMDP (T) in terms of RBSP. After
stating and proving this theorem, we derive concrete
bounds on RADMDP (T) using known bounds on RBSP.

Theorem 4.1. Let A be a given algorithm for the BSP
(or SBSP) problem with a regret bound of:

RABSP(J) = E

 J∑
j=1

gj(Pj)

−min
p∈P

J∑
j=1

gj(p) .

Then, the regret of our ADMDP algorithm is bounded
by

RADMDP (T) ≤ T

J
·RABSP(J) + Jd+ n2 +

T

J
.

Proof. Recall that there exists a path of length d be-
tween any two states in G, and that d < n2. Assume
w.l.o.g. that n2 ≤ τ ≤ T , otherwise the theorem holds
trivially.

Recall the definition of RADMDP(T) as

E

[
T∑
t=1

ft(Vt−1, Vt)

]
−min
π∈Π

T∑
t=1

ft(π
t−1(v0), πt(v0)) .

As detailed previously, the optimal policy π is, up to
an initialization phase of length at most |V |2 = n2, a
phased cycle in the graph which we denote as P ∗ =
(v1, v2, ..., vk). Thus, we can write the loss of π as∑T

t=1 ft(π
t−1(v0), πt(v0))

≥
∑J
j=1(gj(P

∗) +
∑d
t=(j−1)τ+1 ft(π

t−1(v0), πt(v0)))

≥
∑J
j=1 gj(P

∗) .

In the last inequality we used the fact that the losses
are nonnegative. Here J = T

τ is the partition of time
into epochs of length τ ≥ d. We assume that T is an
integer multiple of τ , else incur an addition τ regret
by ignoring the last at most τ game steps.

By construction, the loss incurred by our algorithm is
exactly equal to the loss incurred by the paths chosen
by the BSP algorithm with the addition of the first d
steps of each epoch, in which the ADMDP algorithm
incurs an additional loss of at most d. Thus,

E

[
T∑
t=1

ft(Vt−1, Vt)

]
≤

J∑
j=1

gj(Pj) + J · d .

Combining the previous two observations, we have

RADMDP(T)

≤
∑J
j=1 gj(Pj) + J · d−

∑J
j=1 gj(P

∗) + n2 + τ

= τ ·RABSP(J) + Jd+ n2 + τ

= T
J ·R

A
BSP(J) + Jd+ n2 + T

J ,

Better Rates for Any Adversarial Deterministic MDP

where the first equality holds since the edge costs of
the BSP problem are now bounded by τ = T

J rather
than one, as the costs per edge are summed up along
the epoch. By the additive definition of regret, this
increases the regret of the BSP algorithm by a multi-
plicative factor of at most T

J .

The final regret bound we obtain depends on the un-
derlying BSP (or SBSP) algorithm used in our con-
struction. Possible choices are the BSP algorithms of
Abernethy et al. (2012); Dani et al. (2007) or the SBSP
algorithm of Audibert et al. (2011).

Theorem 4.2 (Audibert et al. (2011)). For the
SBSP problem on graphs with n vertices and m edges,
the algorithm presented in Audibert et al. (2011)
runs in polynomial time and guarantees a regret of
RSBSP (J) = O(m

√
J).

Thus, we obtain

Corollary 4.1. The ADMDP algorithm attains
RADMDP (T) = O(n2mT 2/3).

Proof. The graph G? constructed in the reduction has
O(n2m) edges, where n,m are the number of vertices
and edges in G. Thus, applying Theorem 4.1, we get

RADMDP (T) ≤ T
J ·O(n2m

√
J) + T

J + J · d+ n2

= O(n
2mT√
J

+ T
J + Jn2) .

The corollary is obtained by taking J = T 2/3.

5. Extension to Periodic Graphs

In the previous section, we focused only on strongly
connected aperiodic graphs. In this section, we deal
with graphs with arbitrary period. Recall our as-
sumption (made without loss of generality) that G
is strongly connected and that our goal is to com-
pete with the best fixed policy in hindsight. When
a strongly connected graph has a period of γ ≥ 1, we
know that the length of every cycle in the graph is a
multiple of γ (see Sec. 2). This already gives us some
useful information about the path induced by the best
fixed policy. Moreover, we know that G has a cyclic
structure. Let C0 be the cyclic class that contains the
initial vertex v0. The cyclic structure of G implies
that the best fixed policy starts in C0 and necessarily
returns to C0 every γ steps.

These two facts allow us to refine our reduction. In-
stead of defining a graph Gv,k for each state v ∈ V and
each cycle length k ∈ {1, . . . , n}, we only need Gv,k for
each cycle length k ∈ {γ, 2γ, . . . , bn/γcγ} and for each
v ∈ C0 (for a total of bn/γc|C0| ≤ n2/γ graphs). As

in the previous section, we connect a common source
s and target t to each graph, and name the resulting
graph G?. As before, each path in G? from s to t cor-
responds to a phased cycle in G that is attainable by
a fixed policy, and vice versa.

As before, we split the T steps into epochs, making
sure that the epoch length τ is a multiple of γ (in-
creasing τ to a multiple of γ does not effect the regret
rate). Additionally, recall that we begin each epoch by
taking d steps toward the chosen cycle; now we must
take dγ steps. These choices guarantee that we start
each epoch at a vertex in C0 and that we finish the
initial dγ steps of the epoch in a vertex of C0. We can
now apply the reduction exactly as before.

6. Conclusions

We have modeled the sequential decision making prob-
lem as an ADMDP - an MDP with deterministic
state transitions, adversarial losses, and bandit feed-
back. We presented a new algorithm that significantly
improves on the state-of-the-art in terms of regret
bounds. Moreover, it applies to the most general class
of state transition graphs, whereas all previous algo-
rithms relied on generality-limiting assumptions.

Several interesting questions remain open. Is a regret
bound of O(T 1/2) possible in the ADMDP setting or is
O(T 2/3) the best bound possible? Can our algorithm
and analysis be extended to the more general case of
stochastic state transitions, without reintroducing the
restrictive unichain assumption? Finally, can we allow
the adversary to influence the state transition dynam-
ics? We leave these questions for future research.

Acknowledgments

We thank Alexander Holroyd for directing us to the
coin exchange problem. Part of this research was
conducted when the second author was a visiting
researcher at Microsoft Research, Redmond. Elad
Hazan is supported by the Technion-Microsoft Elec-
tronic Commerce Research Center.

References

Abernethy, J., Hazan, E., and Rakhlin, A. Interior-
point methods for full-information and bandit on-
line learning. IEEE Transactions on Information
Theory, 58(7):4164–4175, 2012.

Alfonsin, J. Ramirez. The Diophantine Frobenius prob-
lem. Oxford University Press, 2005.

Arora, R., Dekel, O., and Tewari, A. Deterministic

Better Rates for Any Adversarial Deterministic MDP

MDPs with adversarial rewards and bandit feed-
back. In Proceedings of the 28th Conference on Un-
certainty in Artificial Intelligence, pp. 93–101, 2012.

Audibert, Jean-Yves, Bubeck, Sébastien, and Lugosi,
Gábor. Minimax policies for combinatorial predic-
tion games. Journal of Machine Learning Research
- Proceedings Track, 19:107–132, 2011.

Bertsekas, D. P. Dynamic Programming and Optimal
Control. Athena Scientific, Third edition, 2005.

Bremaud, P. Markov chains : Gibbs fields, Monte
Carlo simulation and queues. Springer, 1999.

Dani, Varsha, Hayes, Thomas P., and Kakade, Sham.
The price of bandit information for online optimiza-
tion. In Advances in Neural Information Processing
Systems 20, 2007.

Denardo, E. V. Periods of connected networks and
powers of nonnegative matrices. Mathematics of Op-
erations Research, 2(1):20–24, 1977.

Even-Dar, E., Kakade, S., and Mansour, Y. Online
markov decision processes. Mathematics of Opera-
tions Research, 34(3):726–736, 2009.

Farias, V. F., Moallemi, C. C., Roy, B. Van, and Weiss-
man, T. Universal reinforcement learning. IEEE
Transactions on Information Theory, 56(5):2441–
2454, 2010.

Feinberg, E. A. and Yang, F. On polynomial cases of
the unichain classification problem for Markov deci-
sion processes. Operations Research Letters, 36(5):
527–530, 2008.

Neu, G., György, A., Szepesvári, C., and Antos, A.
Online Markov decision processes under bandit feed-
back. In Advances in Neural Information Processing
Systems 23, pp. 1804–1812, 2010.

Ortner, R. Online regret bounds for Markov decision
processes with deterministic transitions. Theoretical
Computer Science, 411(29-30):2684–2695, 2010.

Szepesvari, C. Algorithms for reinforcement learning.
Synthesis Lectures on Artificial Intelligence and Ma-
chine Learning, 4(1), 2010.

Takimoto, Eiji and Warmuth, Manfred K. Path ker-
nels and multiplicative updates. Journal of Machine
Learning Research, 4:773–818, 2003.

Yu, J. Y., Mannor, S., and Shimkin, N. Markov
decision processes with arbitrary reward processes.
Mathematics of Operations Research, 34(3):737–757,
2009.

Yu, Jia Yuan and Mannor, Shie. Arbitrarily modu-
lated markov decision processes. In Proceedings of
the 48th IEEE Conference on Decision and Control,
pp. 2946–2953, 2009.

