
Consistency of Online Random Forests

A. Algorithm pseudo-code

We present pseudo-code for the basic algorithm only, without the bounded fringe technique described in Sec-
tion 3.6. The addition of a bounded fringe is straightforward, but complicates the presentation significantly.

Candidate split dimension A dimension along which a split may be made.

Candidate split point One of the first m structure points to arrive in a leaf.

Candidate split A combination of a candidate split dimension and a position along that dimension to split.
These are formed by projecting each candidate split point into each candidate split dimension.

Candidate children Each candidate split in a leaf induces two candidate children for that leaf. These are also
referred to as the left and right child of that split.

Ne(A) is a count of estimation points in the cell A, and Y e(A) is the histogram of labels of these points in A.
Ns(A) and Y s(A) are the corresponding values derived from structure points.

Algorithm 1 BuildTree

Require: Initially the tree has exactly one leaf (TreeRoot) which covers the whole space
Require: The dimensionality of the input, D. Parameters λ, m and τ .

SelectCandidateSplitDimensions(TreeRoot, min(1 + Poisson(λ), D))
for t = 1 . . . do

Receive (Xt, Yt, It) from the environment
At ← leaf containing Xt

if It = estimation then
UpdateEstimationStatistics(At, (Xt, Yt))
for all S ∈ CandidateSplits(At) do

for all A ∈ CandidateChildren(S) do
if Xt ∈ A then

UpdateEstimationStatistics(A, (Xt, Yt))
end if

end for
end for

else if It = structure then
if At has fewer than m candidate split points then

for all d ∈ CandidateSplitDimensions(At) do
CreateCandidateSplit(At, d, πdXt)

end for
end if
for all S ∈ CandidateSplits(At) do

for all A ∈ CandidateChildren(S) do
if Xt ∈ A then

UpdateStructuralStatistics(A, (Xt, Yt))
end if

end for
end for
if CanSplit(At) then

if ShouldSplit(At) then
Split(At)

else if MustSplit(At) then
Split(At)

end if
end if

end if
end for

Consistency of Online Random Forests

Algorithm 2 Split

Require: A leaf A
Require: At least one valid candidate split for exists

for A
S ← BestSplit(A)
A′ ← LeftChild(A)
SelectCandidateSplitDimensions(A′, min(1 +
Poisson(λ), D))
A′′ ← RightChild(A)
SelectCandidateSplitDimensions(A′′, min(1 +
Poisson(λ), D))
return A′, A′′

Algorithm 3 CanSplit

Require: A leaf A
d← Depth(A)
for all S ∈ CandidateSplits(A) do

if SplitIsValid(A, S) then
return true

end if
end for
return false

Algorithm 4 SplitIsValid

Require: A leaf A
Require: A split S
d← Depth(A)
A′ ← LeftChild(S)
A′′ ← RightChild(S)
return Ne(A′) ≥ α(d) and Ne(A′′) ≥ α(d)

Algorithm 5 MustSplit

Require: A leaf A
d← Depth(A)
return Ne(A) ≥ β(d)

Algorithm 6 ShouldSplit

Require: A leaf A
for all S ∈ CandidateSplits(A) do

if InformationGain(S) > τ then
if SplitIsValid(A, S) then

return true
end if

end if
end for
return false

Algorithm 7 BestSplit

Require: A leaf A
Require: At least one valid candidate split exists for
A
best split ← none
for all S ∈ CandidateSplits(A) do

if InformationGain(A, S) ≥ InformationGain(A,
best split) then

if SplitIsValid(A, S) then
best split ← S

end if
end if

end for
return best split

Algorithm 8 InformationGain

Require: A leaf A
Require: A split S
A′ ← LeftChild(S)
A′′ ← RightChild(S)

return Entropy(Y s(A))−N
s(A′)

Ns(A) Entropy(Y s(A′))−
Ns(A′′)
Ns(A) Entropy(Y s(A′′))

Algorithm 9 UpdateEstimationStatistics

Require: A leaf A
Require: A point (X,Y)
Ne(A)← Ne(A) + 1
Y e(A)← Y e(A) + Y

Algorithm 10 UpdateStructuralStatistics

Require: A leaf A
Require: A point (X,Y)
Ns(A)← Ns(A) + 1
Y s(A)← Y s(A) + Y

Consistency of Online Random Forests

B. Proof of Consistency

B.1. A note on notation

A will be reserved for subsets of RD, and unless otherwise indicated it can be assumed that A denotes a cell
of the tree partition. We will often be interested in the cell of the tree partition containing a particular point,
which we denote A(x). Since the partition changes over time, and therefore the shape of A(x) changes as well,
we use a subscript to disambiguate: At(x) is the cell of the partition containing x at time t. Cells in the tree
partition have a lifetime which begins when they are created as a candidate child to an existing leaf and ends
when they are themselves split into two children. When referring to a point Xτ ∈ At(x) it is understood that τ
is restricted to the lifetime of At(x).

We treat cells of the tree partition and leafs of the tree defining it interchangeably, denoting both with an
appropriately decorated A.

N generally refers to the number of points of some type in some interval of time. A superscript always denotes
type, so Nk refers to a count of points of type k. Two special types, e and s, are used to denote estimation and
structure points, respectively. Pairs of subscripts are used to denote time intervals, so Nk

a,b denotes the number
of points of type k which appear during the time interval [a, b]. We also use N as a function whose argument
is a subset of RD in order to restrict the counting spatially: Ne

a,b(A) refers to the number of estimation points
which fall in the set A during the time interval [a, b]. We make use of one additional variant of N as a function
when its argument is a cell in the partition: when we write Nk(At(x)), without subscripts on N , the interval of
time we count over is understood to be the lifetime of the cell At(x).

B.2. Preliminaries

Lemma 6. Suppose we partition a stream of data into c parts by assigning each point (Xt, Yt) to part It ∈
{1, . . . , c} with fixed probability pk, meaning that

Nk
a,b =

b∑
t=a

I {It = k} . (1)

Then with probability 1, Nk
a,b →∞ for all k ∈ {1, . . . , c} as b− a→∞.

Proof. Note that P (It = 1) = p1 and these events are independent for each t. By the second Borel-Cantelli
lemma, the probability that the events in this sequence occur infinitely often is 1. The cases for It ∈ {2, . . . , c}
are similar.

Lemma 7. Let Xt be a sequence of iid random variables with distribution µ, let A be a fixed set such that
µ(A) > 0 and let {It} be a fixed partitioning sequence. Then the random variable

Nk
a,b(A) =

∑
a≤t≤b:It=k

I {Xt ∈ A}

is Binomial with parameters Nk
a,b and µ(A). In particular,

P
(
Nk
a,b(A) ≤ µ(A)

2
Nk
a,b

)
≤ exp

(
−µ(A)2

2
Nk
a,b

)
which goes to 0 as b− a→∞, where Nk

a,b is the deterministic quantity defined as in Equation 1.

Proof. Nk
a,b(A) is a sum of iid indicator random variables so it is Binomial. It has the specified parameters

because it is a sum over Nk
a,b elements and P (Xt ∈ A) = µ(A). Moreover, E

[
Nk
a,b(A)

]
= µ(A)Nk

a,b so by

Hoeffding’s inequality we have that

P
(
Nk
a,b(A) ≤ E

[
Nk
a,b(A)

]
− εNk

a,b

)
= P

(
Nk
a,b(A) ≤ Nk

a,b(µ(A)− ε)
)
≤ exp

(
−2ε2Nk

a,b

)
.

Setting ε = 1
2µ(A) gives theresult.

Consistency of Online Random Forests

B.3. Proof of Proposition 2

Proof. Let g(x) denote the Bayes classifier. Consistency of {gt} is equivalent to saying that E [L(gt)] =
P (gt(X,Z) 6= Y) → L∗. In fact, since P (gt(X,Z) 6= Y |X = x) ≥ P (g(X) 6= Y |X = x) for all x ∈ RD, consis-
tency of {gt} means that for µ-almost all x,

P (gt(X,Z) 6= Y |X = x)→ P (g(X) 6= Y |X = x) = 1−max
k
{ηk(x)}

Define the following two sets of indices

G = {k | ηk(x) = max
k
{ηk(x)}} ,

B = {k | ηk(x) < max
k
{ηk(x)}} .

Then

P (gt(X,Z) 6= Y |X = x) =
∑
k

P (gt(X,Z) = k |X = x)P (Y 6= k|X = x)

≤ (1−max
k
{ηk(x)})

∑
k∈G

P (gt(X,Z) = k |X = x) +
∑
k∈B

P (gt(X,Z) = k |X = x) ,

which means it suffices to show that P
(
g
(M)
t (X,ZM) = k |X = x

)
→ 0 for all k ∈ B. However, using ZM to

denote M (possibly dependent) copies of Z, for all k ∈ B we have

P
(
g
(M)
t (x, ZM) = k

)
= P

 M∑
j=1

I {gt(x, Zj) = k} > max
c6=k

M∑
j=1

I {gt(x, Zj) = c}

≤ P

 M∑
j=1

I {gt(x, Zj) = k} ≥ 1

By Markov’s inequality,

≤ E

 M∑
j=1

I {gt(x, Zj) = k}

= MP (gt(x, Z) = k)→ 0

B.4. Proof of Proposition 3

Proof. The sequence in question is uniformly integrable, so it is sufficient to show that E [P (gt(X,Z, I) 6= Y | I)]→
L∗ implies the result, where the expectation is taken over the random selection of training set.

We can write

P (gt(X,Z, I) 6= Y) = E [P (gt(X,Z, I) 6= Y | I)]

=

∫
I
P (gt(X,Z, I) 6= Y | I) ν(I) +

∫
Ic

P (gt(X,Z, I) 6= Y | I) ν(I)

By assumption ν(Ic) = 0, so we have

lim
t→∞

P (gt(X,Z, I) 6= Y) = lim
t→∞

∫
I
P (gt(X,Z, I) 6= Y | I) ν(I)

Consistency of Online Random Forests

Since probabilities are bounded in the interval [0, 1], the dominated convergence theorem allows us to exchange
the integral and the limit,

=

∫
I

lim
t→∞

P (gt(X,Z, I) 6= Y | I) ν(I)

and by assumption the conditional risk converges to the Bayes risk for all I ∈ I, so

= L∗
∫
I
ν(I)

= L∗

which proves the claim.

B.5. Proof of Proposition 4

Proof. By definition, the rule

g(x) = arg max
k
{ηk(x)}

(where ties are broken in favour of smaller k) achieves the Bayes risk. In the case where all the ηk(x) are equal
there is nothing to prove, since all choices have the same probability of error. Therefore, suppose there is at least
one k such that ηk(x) < ηg(x)(x) and define

m(x) = ηg(x)(x)−max
k
{ηk(x) | ηk(x) < ηg(x)(x)}

mt(x) = η
g(x)
t (x)−max

k
{ηkt (x) | ηk(x) < ηg(x)(x)}

The function m(x) ≥ 0 is the margin function which measures how much better the best choice is than the second
best choice, ignoring possible ties for best. The function mt(x) measures the margin of gt(x). If mt(x) > 0 then
gt(x) has the same probability of error as the Bayes classifier.

The assumption above guarantees that there is some ε such that m(x) > ε. Using C to denote the number of
classes, by making t large we can satisfy

P
(
|ηkt (X)− ηk(X)| < ε/2

)
≥ 1− δ/C

since ηkt is consistent. Thus

P

(
C⋂
k=1

|ηkt (X)− ηk(X)| < ε/2

)
≥ 1−K +

C∑
k=1

P
(
|ηkt (X)− ηk(X)| < ε/2

)
≥ 1− δ

So with probability at least 1− δ we have

mt(X) = η
g(X)
t −max

k
{ηkt (X) | ηk(X) < ηg(X)(X)}

≥ (ηg(X) − ε/2)−max
k
{ηkt (X) + ε/2 | ηk(X) < ηg(x)(X)}

= ηg(X) −max
k
{ηk(X) | ηk(X) < ηg(X)(X)} − ε

= m(X)− ε
> 0

Since δ is arbitrary this means that the risk of gt converges in probability to the Bayes risk.

Consistency of Online Random Forests

A

A′

A′′

A′ A′′

A

d

Figure 6. This Figure shows the setting of Proposition 8. Conditioned on a partially built tree we select an arbitrary leaf
at depth d and an arbitrary candidate split in that leaf. The proposition shows that, assuming no other split for A is
selected, we can guarantee that the chosen candidate split will occur in bounded time with arbitrarily high probability.

B.6. Proof of Theorem 1

The proof of Theorem 1 is built in several pieces.

Proposition 8. Fix a partitioning sequence. Let t0 be a time at which a split occurs in a tree built using this
sequence, and let gt0 denote the tree after this split has been made. If A is one of the newly created cells in
gt0 then we can guarantee that the cell A is split before time t > t0 with probability at least 1 − δ by making t
sufficiently large.

Proof. Let d denote the depth of A in the tree gt0 and note that µ(A) > 0 with probability 1 since X has a
density. This situation is illustrated in Figure 6. By construction, if the following conditions hold:

1. For some candidate split in A, the number of estimation points in both children is at least α(d),

2. The number of estimation points in A is at least β(d),

then the algorithm must split A when the next structure point arrives. Thus in order to force a split we need
the following sequence of events to occur:

1. A structure point must arrive in A to create a candidate split point.

2. The above two conditions must be satisfied.

3. Another structure point must arrive in A to force a split.

It is possible for a split to be made before these events occur, but assuming a split is not triggered by some other
mechanism we can guarantee that this sequence of events will occur in bounded time with high probability.

Suppose a split is not triggered by a different mechanism. Define E0 to be an event that occurs at t0 with
probability 1, and let E1 ≤ E2 ≤ E3 be the times at which the above numbered events occur. Each of these
events requires the previous one to have occurred and moreover, the sequence has a Markov structure, so for
t0 ≤ t1 ≤ t2 ≤ t3 = t we have

P (E1 ≤ t ∩ E2 ≤ t ∩ E3 ≤ t |E0 = t0) ≥ P (E1 ≤ t1 ∩ E2 ≤ t2 ∩ E3 ≤ t3 |E0 = t0)

= P (E1 ≤ t1 |E0 = t0)P (E2 ≤ t2 |E1 ≤ t1)P (E3 ≤ t3 |E2 ≤ t2)

≥ P (E1 ≤ t1 |E0 = t0)P (E2 ≤ t2 |E1 = t1)P (E3 ≤ t3 |E2 = t2) .

We can rewrite the first and last term in more friendly notation as

P (E1 ≤ t1 |E0 = t0) = P
(
Ns
t0,t1(A) ≥ 1

)
,

P (E3 ≤ t3 |E2 = t2) = P
(
Ns
t2,t3(A) ≥ 1

)
.

Consistency of Online Random Forests

t
t0

E0 E1 E2 E3

t1 − t0
t2 − t1

t3 − t2

Figure 7. This Figure diagrams the structure of the argument used in Propositions 8 and 9. The indicated intervals are
show regions where the next event must occur with high probability. Each of these intervals is finite, so their sum is also
finite. We find an interval which contains all of the events with high probability by summing the lengths of the intervals
for which we have individual bounds.

Lemma 7 allows us to lower bound both of these probabilities by 1− ε for any ε > 0 by making t1− t0 and t3− t2
large enough that

Ns
t0,t1 ≥

2

µ(A)
max

{
1, µ(A)−1 log

(
1

ε

)}
and

Ns
t2,t3 ≥

2

µ(A)
max

{
1, µ(A)−1 log

(
1

ε

)}
respectively. To bound the centre term, recall that µ(A′) > 0 and µ(A′′) > 0 with probability 1, and β(d) ≥ α(d)
so

P (E2 ≤ t2 |E1 = t1) ≥ P
(
Ne
t1,t2(A′) ≥ β(d) ∩Ne

t1,t2(A′′) ≥ β(d)
)

≥ P
(
Ne
t1,t2(A′) ≥ β(d)

)
+ P

(
Ne
t1,t2(A′′) ≥ β(d)

)
− 1 ,

and we can again use Lemma 7 lower bound this by 1− ε by making t2 − t1 sufficiently large that

Ne
t1,t2 ≥

2

min{µ(A′), µ(A′′)}
max

{
β(d), min{µ(A′), µ(A′′)}−1 log

(
2

ε

)}

Thus by setting ε = 1− (1− δ)1/3 can ensure that the probability of a split before time t is at least 1− δ if we
make

t = t0 + (t1 − t0) + (t2 − t1) + (t3 − t2)

sufficiently large.

Proposition 9. Fix a partitioning sequence. Each cell in a tree built based on this sequence is split infinitely
often in probability. i.e all K > 0 and any x in the support of X,

P (At(x) has been split fewer than K times)→ 0

as t→∞.

Proof. For an arbitrary point x in the support of X, let Ek denote the time at which the cell containing x is split
for the kth time, or infinity if the cell containing x is split fewer than k times (define E0 = 0 with probability
1). Now define the following sequence:

t0 = 0

ti = min{t |P (Ei ≤ t |Ei−1 = ti−1) ≥ 1− ε}

Consistency of Online Random Forests

and set Tδ = tk. Proposition 8 guarantees that each of the above ti’s exists and is finite. Compute,

P (Ek ≤ Tδ) = P

(
k⋂
i=1

[Ei ≤ Tδ]

)

≥ P

(
k⋂
i=1

[Ei ≤ ti]

)

=

k∏
i=1

P

Ei ≤ ti | ⋂
j<i

[Ej ≤ tj]

=

k∏
i=1

P (Ei ≤ ti |Ei−1 ≤ ti−1)

≥
k∏
i=1

P (Ei ≤ ti |Ei−1 = ti−1)

≥ (1− ε)k

where the last line follows from the choice of ti’s. Thus for any δ > 0 we can choose Tδ to guarantee P (Ek ≤ Tδ) ≥
1− δ by setting ε = 1− (1− δ)1/k and applying the above process. We can make this guarantee for any k which
allows us to conclude that P (Ek ≤ t)→ 1 as t→∞ for all k as required.

Proposition 10. Fix a partitioning sequence. Let At(X) denote the cell of gt (built based on the partitioning
sequence) containing the point X. Then diam(At(X))→ 0 in probability as t→∞.

Proof. Let Vt(x) be the size of the first dimension of At(x). It suffices to show that E [Vt(x)]→ 0 for all x in the
support of X.

Let X1, . . . , Xm′ ∼ µ|At(x) for some 1 ≤ m′ ≤ m denote the samples from the structure stream that are used
to determine the candidate splits in the cell At(x). Use πd to denote a projection onto the dth coordinate, and
without loss of generality, assume that Vt = 1 and π1Xi ∼ Uniform[0, 1]. Conditioned on the event that the first
dimension is cut, the largest possible size of the first dimension of a child cell is bounded by

V ∗ = max(
m

max
i=1

π1Xi, 1−
m

min
i=1

π1Xi) .

Recall that we choose the number of candidate dimensions as min(1 + Poisson(λ), D) and select that number of
distinct dimensions uniformly at random to be candidates. Define the following events:

E1 = {There is exactly one candidate dimension}
E2 = {The first dimension is a candidate}

Then using V ′ to denote the size of the first dimension of the child cell,

E [V ′] ≤ E [I {(E1 ∩ E2)c}+ I {E1 ∩ E2}V ∗]
= P (Ec1) + P (Ec2|E1)P (E1) + P (E2|E1)P (E1)E [V ∗]

= (1− e−λ) + (1− 1

d
)e−λ +

1

d
e−λE [V ∗]

= 1− e−λ

D
+
e−λ

D
E [V ∗]

= 1− e−λ

D
+
e−λ

D
E
[
max(

m
max
i=1

π1Xi, 1−
m

min
i=1

π1Xi)

]
= 1− e−λ

D
+
e−λ

D
· 2m+ 1

2m+ 2

= 1− e−λ

2D(m+ 1)

Consistency of Online Random Forests

Iterating this argument we have that after K splits the expected size of the first dimension of the cell containing
x is upper bounded by (

1− e−λ

2D(m+ 1)

)K
so it suffices to have K →∞ in probability, which we know to be the case from Proposition 9.

Proposition 11. Fix a partitioning sequence. In any tree built based on this sequence, Ne(At(X)) → ∞ in
probability.

Proof. It suffices to show that Ne(At(x))→∞ for all x in the support of X. Fix such an x, by Proposition 9 we
can make the probability At(x) is split fewer than K times arbitrarily small for any K. Moreover, by construction
immediately after the K-th split is made the number of estimation points contributing to the prediction at x is
at least α(K), and this number can only increase. Thus for all K we have that P (Ne(At(x)) < α(K)) → 0 as
t→∞ as required.

We are now ready to prove our main result. All the work has been done, it is simply a matter of assembling the
pieces.

Proof (of Theorem 1). Fix a partitioning sequence. Conditioned on this sequence the consistency of each of the
class posteriors follows from Theorem 5. The two required conditions where shown to hold in Propositions 10
and 11. Consistency of the multiclass tree classifier then follows by applying Proposition 4.

To remove the conditioning on the partitioning sequence, note that Lemma 6 shows that our tree generation
mechanism produces a partitioning sequence with probability 1. Apply Proposition 3 to get unconditional
consistency of the multiclass tree.

Proposition 2 lifts consistency of the trees to consistency of the forest, establishing the desired result.

B.7. Extension to a Fixed Size Fringe

Proving consistency is preserved with a fixed size fringe requires more precise control over the relationship
between the number of estimation points seen in an interval, Ne

t0,t, and the total number of splits which have
occurred in the tree, K. The following two lemmas provide the control we need.

Lemma 12. Fix a partitioning sequence. If K is the number of splits which have occurred at or before time t
then for all M > 0

P (K ≤M)→ 0

in probability as t→∞.

Proof. Denote the fringe at time t with Ft which has max size |F |, and the set of leafs at time t as Lt with size
|Lt|. If |Lt| < |F | then there is no change from the unbounded fringe case, so we assume that |Lt| ≥ |F | so that
for all t there are exactly |F | leafs in the fringe.

Suppose a leaf A1 ∈ Ft0 for some t0 then for every δ > 0 there is a finite time t1 such that for all t ≥ t1

P (A1 has not been split before time t) ≤ δ

|F |

Now fix a time t0 and δ > 0. For each leaf Ai ∈ Ft0 we can choose ti to satisfy the above bound. Set t = maxi ti
then the union bound gives

P (K ≤ |F | at time t) ≤ δ

Consistency of Online Random Forests

Iterate this argument dM/|F |e times with δ = ε/ dM/|F |e and apply the union bound again to get that for
sufficiently large t

P (K ≤M) ≤ ε

for any ε > 0.

Lemma 13. Fix a partitioning sequence. If K is the number of splits which have occurred at or before time t
then for any t0 > 0, K/Ne

t0,t → 0 as t→∞.

Proof. First note that Ne
t0,t = Ne

0,t −Ne
0,t0−1 so

K

Ne
t0,t

=
K

Ne
0,t −Ne

0,t0−1

and since Ne
0,t0−1 is fixed it is sufficient to show that K/Ne

0,t → 0. In the following we write N = Ne
0,t to lighten

the notation.

Define the cost of a tree T as the minimum value of N required to construct a tree with the same shape as T .
The cost of the tree is governed by the function α(d) which gives the cost of splitting a leaf at level d. The cost
of a tree is found by summing the cost of each split required to build the tree.

Note that no tree on K splits is cheaper than a tree of max depth d = dlog2(K)e with all levels full (except
possibly the last, which may be partially full). This is simple to see, since α(d) is an increasing function of d,
meaning it is never more expensive to add a node at a lower level than a higher one. Thus we assume wlog that
the tree is full except possibly in the last level.

When filling level d of the tree, each split incurs a cost of at least 2α(d+ 1) points. This also tells us that filling
level d requires that N increase by at least 2dα(d) (filling level d corresponds to splitting each of the 2d−1 leafs
on level d− 1). Filling the first d levels incurs a cost of at least

Nd =

d∑
k=1

2kα(k)

points. When N = Nd the tree can be at most a full binary tree of depth d, meaning that K ≤ 2d − 1.

The above argument gives a collection of linear upper bounds on K in terms of N . We know that the maximum
growth rate is linear between (Nd, 2

d − 1) and (Nd+1, 2
d+1 − 1) so for all d we can find that since

(2d+1 − 1)− (2d − 1)

(Nd+1)− (Nd)
=

2d+1 − 2d∑d+1
k=1 2kα(k)−

∑d
k=1 2kα(k)

=
2d

2d+1α(d+ 1)
=

1

2α(d+ 1)

we have that for all N and d,

K ≤ 1

2α(d+ 1)
N + C(d)

where C(d) is given by

C(d) = 2d − 1− 1

2

d∑
k=1

2k
α(k)

α(d+ 1)
.

From this we have

K

N
≤ 1

2α(d+ 1)
+

1

N

(
2d − 1− 1

2

d∑
k=1

2k
α(k)

α(d+ 1)

)
,

so if we choose d to make 1/α(d + 1) ≤ δ/2 and then pick N such that C(d)/N ≤ δ/2 we have K/N ≤ δ for
arbitrary δ > 0 which proves the claim.

Consistency of Online Random Forests

K

Ne
0,t0

21 − 1

22 − 1

23 − 1

C(2)

1
2α(1)

1
2α(2)

1
2α(3)

Figure 8. Diagram of the bound in Lemma 13. The horizontal axis is the number of estimation points seen at time t and
the vertical axis is the number of splits. The first bend is the earliest point at which the root of the tree could be split,
which requires 2α(1) points to create 2 new leafs at level 1. Similarly, the second bend is the point at which all leafs at
level 1 have been split, each of which requires at least 2α(2) points to create a pair of leafs at level 2.

In order to show that our algorithm remains consistent with a fixed size fringe we must ensure that Proposition 8
does not fail in this setting. Interpreted in the context of a finite fringe, Proposition 8 says that any cell in the
fringe will be split in finite time. This means that to ensure consistency we need only show that any inactive
point will be added to the fringe in finite time.

Remark 14. If s(A) = 0 for any leaf then we know that e(A) = 0, since µ(A) > 0 by construction. If e(A) = 0
then P (g(X) 6= Y |X ∈ A) = 0 which means that any subdivision of A has the same asymptotic probability of
error as leaving A in tact. Our rule never splits A and thus fails to satisfy the shrinking leaf condition, but our
predictions are asymptotically the same as if we had divided A into arbitrarily many pieces so this doesn’t matter.

Proposition 15. Every leaf with s(A) > 0 will be added to the fringe in finite time with arbitrarily high
probability.

Proof. Pick an arbitrary time t0 and condition on everything before t0. For an arbitrary node A ⊂ RD, if A′ is
a child of A then we know that if {Ui}Dmi=1 are iid on [0, 1] then

E [µ(A′)] ≤ µ(A)E
[
Dm
max
i=1

(max(Ui, 1− Ui))
]

= µ(A)

(
2Dm+ 1

2Dm+ 2

)
since there are at most D candidate dimensions and each one accumulates at most m candidate splits. So if AK

is any leaf created by K splits of A then

E
[
µ(AK)

]
≤ µ(A)

(
2Dm+ 1

2Dm+ 2

)K
Notice that since we have conditioned on the tree at t0 so,

E
[
p̂(AK)

]
= E

[
E
[
p̂(AK) |µ(AK)

]]
= E

[
µ(AK)

]
.

We can bound p̂(AK) with Hoeffding’s inequality,

P

(
p̂(AK) ≥ µ(A)

(
2Dm+ 1

2Dm+ 2

)K
+ ε

)
≤ exp

(
−2|AK |ε2

)
.

Consistency of Online Random Forests

Set (2K+1|L|)−1δ = exp
(
−2|AK |ε2

)
and invert the bound to get

P

(
p̂(AK) ≥ µ(A)

(
2Dm+ 1

2Dm+ 2

)K
+

√
1

2|AK |
log

(
2K+1|L|

δ

))
≤ δ

2K+1|L|

Pick an arbitrary leaf A0 which is in the tree at time t0. We can use the same approach to find a lower bound
on ŝ(A0):

P

(
ŝ(A0) ≤ s(A0)−

√
1

2|A0|
log

(
2K+1|L|

δ

))
≤ δ

2K+1|L|

To ensure that ŝ(A0) ≥ p̂(AK) (≥ ŝ(AK)) fails to hold with probability at most δ2−K |L|−1 we must choose K
and t to make

s(A0) ≥ µ(A)

(
2Dm+ 1

2Dm+ 2

)K
+

√
1

2|AK |
log

(
2K+1|L|

δ

)
+

√
1

2|A0|
log

(
2K+1|L|

δ

)
The first term goes to 0 as K → ∞. We know that |AK | ≥ α(K) so the second term also goes to 0 provided
that K/α(K)→ 0, which we require.

The third term goes to 0 if K/|A0| → 0. Recall that |A0| = Ne
t0,t(A0) and for any γ > 0

P

(
Ne
t0,t(A) ≤ Ne

t0,tµ(A)−

√
1

2Ne
t0,t

log

(
1

γ

))
≤ γ

From this we see it is sufficient to have K/Ne
t0,t → 0 which we established in a lemma.

In summary, there are |L| leafs in the tree at time t0 and each of them generates at most 2K different AK ’s.
Union bounding over all these leafs and over the probability of Ne

t0,t(A0) growing sublinearly in Ne
t0,t we have

that, conditioned on the event that A0 has not yet been split, A0 is the leaf with the highest value of ŝ with
probability at least 1− δ − γ in finite time. Since δ and γ are arbitrary we are done.

