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A. Appendix: Proofs

Lemma 3 (pairwise independent hash functions con-
struction). Let a ∈ {0, 1}n, b ∈ {0, 1}. Then the fam-
ily H = {ha,b(x) : {0, 1}n → {0, 1}} where ha,b(x) =
a · x + b mod 2 is a family of pairwise independent
hash functions. The function ha,b(x) can be alterna-
tively rewritten in terms of XORs operations ⊕, i.e.
ha,b(x) = a1x1 ⊕ a2x2 ⊕ · · · ⊕ anxn ⊕ b.

Proof. Uniformity is clear because it is the sum of uni-
form Bernoulli random variables over the field F(2)
(arithmetic modulo 2). For pairwise independence,
given any two configurations x1, x2 ∈ {0, 1}n, con-
sider the sets of indexes S1 = {i : x1(i) = 1},
S2 = {i : x2(i) = 1}. Then

H(x1) =
∑

i∈S1∩S2

ai ⊕
∑

i∈S1\S2

ai ⊕ b

= R(S1 ∩ S2)⊕R(S1 \ S2)⊕ b
H(x2) = R(S1 ∩ S2)⊕R(S2 \ S1)⊕ b

where R(S) ,
∑
i∈S ai. Note that R(S1 ∩ S2), R(S1 \

S2), R(S2 \ S1) and b are independent as they depend
on disjoint subsets of independent variables. When
x1 6= x2, this implies that (H(x1), H(x2)) takes each
value in {0, 1}2 with probability 1/4.

As pairwise independent random variables are funda-
mental tools for derandomization of algorithms, more
complicated constructions based larger finite fields
generated by a prime power F(qk) where q is a prime
number are known (Vadhan, 2011). These construc-
tions require a smaller number of random bits as in-
put, and would therefore reduce the variance of our
algorithm (which is deterministic except for the ran-
domized hash function use).

Proof of Proposition 1. Follows immediately from
Lemma 3.

Proof of Lemma 1. The cases where i+c > n or i−c <
0 are obvious. For the other cases, let’s define the set
of the 2j heaviest configurations as in Definition 2:

Xj = {σ1, σ2, · · · , σ2j}

Define the following random variable

Sj(h
i
A,b) ,

∑
σ∈Xj

1{Aσ=b mod 2}

which gives the number of elements of Xj satisfying
i random parity constraints. The randomness is over

the choice of A and b, which are uniformly sampled in
{0, 1}i×n and {0, 1}i respectively. By Proposition 1,
hiA,b : Σ → {0, 1}i is sampled from a family of pair-
wise independent hash functions. Therefore, from the
uniformity property in Definition 1, for any σ the ran-
dom variable 1{Aσ=b mod 2} is Bernoulli with probabil-
ity 1/2i. By linearity of expectation,

E[Sj(h
i
A,b)] =

|Xj |
2i

=
2j

2i

Further, from the pairwise independence property in
Definition 1,

V ar[Sj(h
i
A,b)] =

∑
σ∈Xj

V ar
[
1{Aσ=b mod 2}

]
=

2j

2i

(
1− 1

2i

)
Applying Chebychev Inequality, we get that for any
k > 0,

Pr

[∣∣∣∣Sj(hiA,b)− 2j

2i

∣∣∣∣ > k

√
2j

2i

(
1− 1

2i

)]
≤ 1

k2

Recall the definition of the random variable wi =
maxσ w(σ) subject to Aσ = b mod 2 (the randomness
is over the choice of A and b). Then

Pr[wi ≥ bj ] = Pr[wi ≥ w(σ2j )] ≥ Pr[Sj(h
i
A,b) ≥ 1]

which is the probability that at least one configuration
from Xj “survives” after adding i parity constraints.

To ensure that the probability bound 1/k2 provided by
Chebychev Inequality is smaller than a 1/2, we need
k >
√

2. We use k = 3/2 for the rest of this proof, ex-
ploiting the following simple observations which hold
for k = 3/2 and any c ≥ 2:

k
√

2c ≤ 2c − 1

k
√

2−c ≤ 1− 2−c

For j = i+ c and k and c as above, we have that

Pr[wi ≥ bi+c] ≥ Pr[Si+c(h
i
A,b) ≥ 1] ≥

Pr
[
|Si+c(hi)− 2c| ≤ 2c − 1

]
≥

Pr
[
|Si+c(hi)− 2c| ≤ k

√
2c
]
≥

Pr

[∣∣Si+c(hiA,b)− 2c
∣∣ ≤ k√2c

(
1− 1

2i

)]
≥

1− 1

k2
= 5/9 > 1/2

Similarly, for j = i− c and k and c as above, we have
Pr[wi ≤ bi−c] ≥ 5/9 > 1/2.
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Finally, using Chernoff inequality (since w1
i , · · · , wTi

are i.i.d. realizations of wi)

Pr [Mi ≤ bi−c] ≥ 1− exp(−α′(c)T ) (5)

Pr [Mi ≥ bi+c] ≥ 1− exp(−α′(c)T ) (6)

where α′(2) = 2(5/9 − 1/2)2, which gives the desired
result

Pr [bi+c ≤Mi ≤ bi−c] ≥ 1− 2 exp(α′(c)T )

= 1− exp(−α∗(c)T )

where α∗(2) = ln 2α′(2) = 2(5/9− 1/2)2 ln 2 > 0.0042

Proof of Lemma 2. Observe that we may rewrite L′ as
follows:

L′ = b0 +

n−1∑
i=n−c−1

bn2i +

n−c−2∑
i=0

bi+c+12i =

b0 +

n−1∑
i=n−c−1

bn2i +

n−1∑
j=c+1

bj2
j−c−1

Similarly,

U ′ = b0 +

c−1∑
i=0

b02i +

n−1∑
i=c

bi+1−c2
i =

b0 +

c−1∑
i=0

b02i +

n−c∑
j=1

bj2
j+c−1 = 2cb0 + 2c

n−c∑
j=1

bj2
j−1 =

2cb0 + 2c

 c∑
j=1

bj2
j−1 +

n−c∑
j=c+1

bj2
j−1

 ≤
2cb0 + 2c

 c∑
j=1

b02j−1 +

n−c∑
j=c+1

bj2
j−1

 =

22cb0 + 22c
n−c∑
j=c+1

bj2
j−1−c ≤

22c

b0 +

n−1∑
i=n−c−1

bn2i +

n−1∑
j=c+1

bj2
j−c−1

 = 22cL′

This finishes the proof.

Proof of Theorem 1. It is clear from the pseudocode
of Algorithm 1 that it makes Θ(n lnn ln 1/δ) MAP
queries. For accuracy analysis, we can write W as:

W ,
2n∑
j=1

w(σj) = w(σ1) +

n−1∑
i=0

∑
σ∈Bi

w(σ)

∈

[
b0 +

n−1∑
i=0

bi+12i, b0 +

n−1∑
i=0

bi2
i

]
, [L,U ]

Note that U ≤ 2L because 2L = 2b0 +∑n−1
i=0 bi+12i+1 = 2b0 +

∑n
`=1 b`2

` = b0 +
∑n
`=0 b`2

` ≥
U . Hence, if we had access to the true values of all bi,
we could obtain a 2-approximation to W .

We do not know true bi values, but Lemma 1 shows
that the Mi values computed by Algorithm 1 are suf-
ficiently close to bi with high probability. Recall that
Mi is the median of MAP values computed by adding i
random parity constraints and repeating the process T
times. Specifically, for c ≥ 2, it follows from Lemma 1
that for 0 < α ≤ α∗(c),

Pr

[
n⋂
i=0

(
Mi ∈ [bmin{i+c,n}, bmax{i−c,0}]

)]
≥ 1− n exp(−αT ) ≥ (1− δ)

for T = log(1/δ)
α log n, and M0 = b0. Thus, with prob-

ability at least (1 − δ) the output of Algorithm 1,

M0 +
∑n−1
i=0 Mi+12i, lies in the range:[

b0 +

n−1∑
i=0

bmin{i+c+1,n}2
i, b0 +

n−1∑
i=0

bmax{i+1−c,0}2
i

]
Let us denote this range [L′, U ′]. By monotonicity of
bi, L

′ ≤ L ≤ U ≤ U ′. Hence, W ∈ [L′, U ′].

Applying Lemma 2, we have U ′ ≤ 22cL′, which im-
plies that with probability at least 1− δ the output of
Algorithm 1 is a 22c approximation of W . For c = 2,
observing that α∗(2) ≥ 0.0042 (see proof of Lemma 1),
we obtain a 16-approximation for 0 < α ≤ 0.0042.

Proof of Theorem 2. As in the proof of Lemma 1, de-
fine the random variable

Su(hiA,b) ,
∑

σ∈{σ|w(σ)≥u}

1{Aσ=b mod 2}

that gives the number of configurations with weight at
least u satisfying i random parity constraints. Then
for i ≤ blogG(u)c − c ≤ logG(u)− c using Chebychev
and Chernoff inequalities as in Lemma 1

Pr [Mi ≥ u] ≥ 1− exp(−α′T )

For i ≥ dlogG(u)e+c ≥ logG(u)+c, using Chebychev
and Chernoff inequalities as in Lemma 1

Pr[Mi < u] ≥ 1− exp(−α′T )

Therefore,

Pr

[
1

2c+1
2q(u) ≤ G(u) ≤ 2c+12q(u)

]
≥

Pr

blog2G(u)c−c⋂
i=0

(Mi ≥ u)
⋂(

Mdlog2G(u)e+c < u
) ≥

1− n exp(−α′T ) ≥ 1− δ
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This finishes the proof.

Proof of Theorem 3. If w̃ti ≤ wti , from Theorem 1

with probability at least 1 − δ we have W̃ ≤ M0 +∑n−1
i=0 Mi+12i ≤ UB′. Since UB′

22c ≤ LB′ ≤ W ≤ UB′,

it follows that with probability at least 1−δ, W̃
22c ≤W .

If wti ≥ w̃ti ≥ 1
Lw

t
i , then from Theorem 1 with proba-

bility at least 1 − δ the output is 1
LLB

′ ≤ W̃ ≤ UB′,
and LB′ ≤W ≤ UB′.


