Discrete Integration by Hashing and Optimization

A. Appendix: Proofs

Lemma 3 (pairwise independent hash functions con-
struction). Let a € {0,1}"™, b € {0,1}. Then the fam-
ily H = {hep(z) : {0,1}™ — {0,1}} where hqp(x) =
a-r+b mod2 is a family of pairwise independent
hash functions. The function hep(x) can be alterna-
tively rewritten in terms of XORs operations @, i.e.
hap(T) = 0121 ® a2z @ -+ & apzy, D b.

Proof. Uniformity is clear because it is the sum of uni-
form Bernoulli random variables over the field F(2)
(arithmetic modulo 2). For pairwise independence,
given any two configurations xi,zo € {0,1}", con-
sider the sets of indexes S1 = {i : z1(i) = 1},
Sy = {i:22(i) = 1}. Then

H(w) = Soowe Y aeb
i€S1NS2 i€51\S2

= R(S1NS2) @ R(S1\ S2) @b

H(xz) = R(S1NS2)®R(S2\ S1) @b

where R(S) £ 3", g a;. Note that R(S1 NS2), R(S: \
S2), R(S2\ S1) and b are independent as they depend
on disjoint subsets of independent variables. When
x1 # x9, this implies that (H(z1), H(z2)) takes each
value in {0,1}? with probability 1/4. O

As pairwise independent random variables are funda-
mental tools for derandomization of algorithms, more
complicated constructions based larger finite fields
generated by a prime power F(¢*) where ¢ is a prime
number are known (Vadhan, 2011). These construc-
tions require a smaller number of random bits as in-
put, and would therefore reduce the variance of our
algorithm (which is deterministic except for the ran-
domized hash function use).

Proof of Proposition 1. Follows immediately from
Lemma 3. O

Proof of Lemma 1. The cases where i4+c > nori—c <

0 are obvious. For the other cases, let’s define the set

of the 27 heaviest configurations as in Definition 2:
Xj={o1,09,-+ 09}

Define the following random variable

Sj( f4,b) £ Z ]-{Ao:b mod 2}

UEXj

which gives the number of elements of X satisfying
1 random parity constraints. The randomness is over

the choice of A and b, which are uniformly sampled in
{0,1}*™ and {0,1}! respectively. By Proposition 1,
hf&b : ¥ — {0,1}* is sampled from a family of pair-
wise independent hash functions. Therefore, from the
uniformity property in Definition 1, for any ¢ the ran-
dom variable 1{Ac=b mod 2} 18 Bernoulli with probabil-
ity 1/2*. By linearity of expectation,

BIS;(hiy)] = 152 = 2

)

20 2
Further, from the pairwise independence property in
Definition 1,

Var[S;(h'y,)] = Z Var [1{ ao0=b mod 2}
oEX;

2J
2t 20

Applying Chebychev Inequality, we get that for any

k>0,
27 1 1
P ky/=(1—-= < =
rl - % ( 2)] = k2
Recall the definition of the random variable w; =

max, w(o) subject to Ao =b mod 2 (the randomness
is over the choice of A and b). Then

i 2
Si(hing) = 5;

Prw; > b;] = Priw; > w(oys)] > Pr[S;(hly,) > 1]

which is the probability that at least one configuration
from X “survives” after adding ¢ parity constraints.

To ensure that the probability bound 1/k? provided by
Chebychev Inequality is smaller than a 1/2, we need
k > /2. We use k = 3/2 for the rest of this proof, ex-
ploiting the following simple observations which hold
for k =3/2 and any ¢ > 2:

kv2e <2°—1

kv2—e<1-27°¢

For j =i+ c and k and ¢ as above, we have that

Pr{w; > bite] > Pr[Sive(hla) 2 1] 2
Pr[|Sise(h') =2 <2°—1] >

Pr [|Sire(h) — 2°) < kV2° >

Pr([Sise(Pl,) —2°] < kyf2¢ <1 - ;)] >
1
1= 5 =5/9>1/2

Similarly, for j =i — ¢ and k and ¢ as above, we have
Pr[wi < bi,c] > 5/9 > 1/2.
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Finally, using Chernoff inequality (since w},---,wl
are i.i.d. realizations of w;)
Pr[M; <b,_. >1—exp(—a'(c)T) (5)
Pr[M; > by > 1—exp(—a'(c)T) (6)

where o/(2) = 2(5/9 — 1/2)2, which gives the desired
result
Pr(bite < M; <bi_.] >1—2exp(a/(c)T)
=1—exp(—a*(c)T)
where a*(2) = In2a/(2) = 2(5/9 — 1/2)%In2 > 0.0042

O

Proof of Lemma 2. Observe that we may rewrite L’ as
follows:

n—c—2
L' =by+ Z b2’ + Z biger12t =
i=n—c—1
bo + i b, 2" + i b;j2i—et
1=n—c—1 j=c+1

Similarly,

c—1 n—1
U' = by + Z bo2' + Y bip1-o2' =
=0 i=c
bo +Zb02’ = Zb gi+e-l

= 26y + 2° Z b2 =

i=0 j=1
2%bg + 2¢ szf Ty Z ;271 | <
j=c+1
2% +2° | Y b2 M4 Y b2 | =
j=1 j=ct+1
22cb0+22c Z bj2j—1—c§
j=c+1
n—1 n—1
220 b0+ Z bnzl‘i’ Z bj2j*6*1 :220L/
i=n—c—1 j=c+1
This finishes the proof. O

Proof of Theorem 1. It is clear from the pseudocode
of Algorithm 1 that it makes ©(nlnnlnl/6) MAP
queries. For accuracy analysis, we can write W as:

n—1

€ bo+2b1+12 b0+2b2

Note that U < 2L because 2L = 2by +
S b2 = 2bg + S b2t =g + S b2t >
U. Hence, if we had access to the true values of all b;,
we could obtain a 2-approximation to W.

We do not know true b; values, but Lemma 1 shows
that the M; values computed by Algorithm 1 are suf-
ficiently close to b; with high probability. Recall that
M; is the median of MAP values computed by adding i
random parity constraints and repeating the process T’
times. Specifically, for ¢ > 2, it follows from Lemma 1
that for 0 < o < a*(c),

Pr lm (M'L € [bmin{i+c,n}7bmax{i—c,O}])‘|
=0

>1—nexp(—aT) > (1-19)
for T = w logn, and My = by. Thus, with prob-

ability at least (1 — §) the output of Algorithm 1,
My + 321" Mi112¢, lies in the range:

n—1 n—1

bo + Z bmin{i+c+l,n}2iv bo + Z bnlax{i+1—c,0}2i‘|
i=0 i=0

Let us denote this range [L/,U’]. By monotonicity of

by, ' <L <U<U' Hence, W € [L',U"].

Applying Lemma 2, we have U’ < 22¢°L’, which im-
plies that with probability at least 1 — § the output of
Algorithm 1 is a 22¢ approximation of W. For ¢ = 2,
observing that a*(2) > 0.0042 (see proof of Lemma 1),
we obtain a 16-approximation for 0 < o < 0.0042. O

Proof of Theorem 2. As in the proof of Lemma 1, de-
fine the random variable

Su( f4,b) £ Z

oe{o|w(o)2u}

1{AU:b mod 2}

that gives the number of configurations with weight at
least u satisfying ¢ random parity constraints. Then
for i < |log G(u)| — ¢ < log G(u) — ¢ using Chebychev
and Chernoff inequalities as in Lemma 1

Pr[M; > u] > 1 —exp(—a'T)
For i > [log G(u)]+¢ > log G(u) + ¢, using Chebychev
and Chernoff inequalities as in Lemma 1

Pr[M; < u] > 1—exp(—a'T)

Therefore,
1
(u) c+1og(u)
Pr {2C+12q < G(u) < 201200 | >
llogy G(u)|—c
Pr m (Mz > U,) ﬂ (M[log2 G(u)]+c < ’LL) >

i=0
1—nexp(—a'T)>1-9§
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This finishes the proof. O

Proof of Theorem 3. If w! < w}, from Theorem 1
with probability at least 1 — ¢ we have W < M, +
S M2 <UB'. Since YB" < LB' <W < UB/,
it follows that with probability at least 1—4, % <W.

If w! > w! > fw!, then from Theorem 1 with proba-
bility at least 1 — § the output is %LB’ <W< UB',
and LB' <W < UB'. O



