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Abstract

Integration is affected by the curse of dimen-
sionality and quickly becomes intractable as
the dimensionality of the problem grows. We
propose a randomized algorithm that, with
high probability, gives a constant-factor ap-
proximation of a general discrete integral de-
fined over an exponentially large set. This
algorithm relies on solving only a small num-
ber of instances of a discrete combinatorial
optimization problem subject to randomly
generated parity constraints used as a hash
function. As an application, we demonstrate
that with a small number of MAP queries
we can efficiently approximate the partition
function of discrete graphical models, which
can in turn be used, for instance, for marginal
computation or model selection.

1. Introduction

Computing integrals in very high dimensional spaces is
a fundamental and largely unsolved problem of scien-
tific computation (Dyer et al., 1991; Simonovits, 2003;
Cai & Chen, 2010), with numerous applications rang-
ing from machine learning and statistics to biology
and physics. As the volume grows exponentially in
the dimensionality, the problem quickly becomes com-
putationally intractable, a phenomenon traditionally
known as the curse of dimensionality (Bellman, 1961).

We revisit the problem of approximately computing
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discrete integrals, namely weighted sums over (ex-
tremely large) sets of items. This problem encom-
passes several important probabilistic inference tasks,
such as computing marginals or normalization con-
stants (partition function) in graphical models, which
are in turn cornerstones for parameter and structure
learning (Wainwright & Jordan, 2008).

There are two common approaches to approximate
such large discrete sums: variational methods and
sampling. Variational methods (Wainwright & Jor-
dan, 2008; Jordan et al., 1999), often inspired by sta-
tistical physics, are very fast but do not provide qual-
ity guarantees. Since sampling and counting can be re-
duced to each other (Jerrum & Sinclair, 1997), approx-
imate techniques based on sampling are quite popular,
but they suffer from similar issues because the num-
ber of samples required to obtain a statistically reli-
able estimate often grows exponentially in the problem
size. Importance sampling based techniques such as
SampleSearch (Gogate & Dechter, 2011) provide lower
bounds but without a tightness guarantee. Markov
Chain Monte Carlo (MCMC) methods for sampling
are asymptotically accurate, but guarantees for prac-
tical applications exist only in a limited number of
cases (fast mixing chains) (Jerrum & Sinclair, 1997;
Madras, 2002). They are therefore often used in a
heuristic manner. In practice, their performance cru-
cially depends on the choice of the proposal distribu-
tions, which often must be domain-specific and expert-
designed (Girolami & Calderhead, 2011).

We introduce a randomized scheme that computes
with high probability (1 − δ for any desired δ > 0)
an approximately correct estimate (within a factor of
1 + ε of the true value for any desired ε > 0) for gen-
eral weighted sums defined over exponentially large
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sets of items, such as the set of all possible vari-
able assignments in a discrete probabilistic graphical
model. From a computational complexity perspective,
the counting problem we consider is complete for the
#P complexity class (Valiant, 1979), a set of problems
encapsulating the entire Polynomial Hierarchy and be-
lieved to be significantly harder than NP.

The key idea is to reduce this #P problem to a
small number (polynomial in the dimensionality) of
instances of a (NP-hard) combinatorial optimization
problem defined on the same space and subject to ran-
domly generated “parity” constraints. The rationale
behind this approach is that although combinatorial
optimization is intractable in the worst case, it has
witnessed great success in the past 50 years in fields
such as Mixed Integer Programming (MIP) and propo-
sitional Satisfiability Testing (SAT). Problems such as
computing a Maximum a Posteriori (MAP) assign-
ment, although NP-hard, can in practice often be ap-
proximated or solved exactly fairly efficiently (Park,
2002; Sontag et al., 2008; Riedel, 2008). In fact, mod-
ern solvers can exploit structure in real-world problems
and prune large portions of the search space, often
dramatically reducing the runtime. In contrast, in a
#P counting problem such as computing a marginal
probability, one needs to consider contributions of an
exponentially large number of items.

Our algorithm, called Weighted-Integrals-And-Sums-
By-Hashing (WISH), relies on randomized hashing
techniques to probabilistically “evenly cut” a high di-
mensional space. Such hashing was introduced by
Valiant & Vazirani (1986) to study the relationship
between the number of solutions and the hardness of a
combinatorial search. These techniques were also ap-
plied by Gomes et al. (2006a) and Chakraborty et al.
(2013) to uniformly sample solutions for the SAT prob-
lem and to obtain bounds on their number (Gomes
et al., 2006b). Our work is more general in that it
can handle general weighted sums, such as the ones
arising in probabilistic inference for graphical mod-
els. Our work is also closely related to recent work
by Hazan & Jaakkola (2012), who obtain bounds on
the partition function by taking suitable expectations
of a combination of MAP queries over randomly per-
turbed models. We improve upon this in two crucial
aspects, namely, our estimate is a constant factor ap-
proximation of the true partition function (while their
bounds have no tightness guarantee), and we provide
a concentration result showing that our bounds hold
not just in expectation but with high probability with
a polynomial number of MAP queries. Note that this
is consistent with known complexity results regarding
#P and BPPNP; see Remark 1 below.

We demonstrate the practical efficacy of the WISH algo-
rithm in the context of computing the partition func-
tion of random Clique-structured Ising models, Grid
Ising models with known ground truth, and a challeng-
ing combinatorial application (Sudoku puzzle) com-
pletely out of reach of techniques such as Mean Field
and Belief Propagation. We also consider the Model
Selection problem in graphical models, specifically in
the context of hand-written digit recognition. We show
that our “anytime” and highly parallelizable algorithm
can handle these problems at a level of accuracy and
scale well beyond the current state of the art.

2. Problem Statement and Assumptions

Let Σ be a (large) set of items. Let w : Σ → R+ be
a non-negative function that assigns a weight to each
element of Σ. We wish to (approximately) compute
the total weight of the set, defined as the following
discrete integral or “partition function”

W =
∑
σ∈Σ

w(σ) (1)

We assume w is given as input and that it can be
compactly represented, for instance in a factored form
as the product of conditional probabilities tables. Note
however that our results are more general and do not
rely on a factored representation.

Assumption: We assume that we have access to an
optimization oracle that can solve the following con-
strained optimization problem

max
σ∈Σ

w(σ)1{C}(σ) (2)

where 1{C} : Σ → {0, 1} is an indicator function for a
compactly represented subset C ⊆ Σ, i.e., 1{C}(σ) = 1
iff σ ∈ C. For concreteness, we discuss our setup and
assumptions in the context of probabilistic graphical
models, which is our motivating application.

2.1. Inference in Graphical Models

We consider a graphical model specified as a fac-
tor graph with N = |V | discrete random variables
xi, i ∈ V where xi ∈ Xi. The global random vector
x = {xs, s ∈ V } takes value in the cartesian product
X = X1 × X2 × · · · × XN . We consider a probabil-
ity distribution over x ∈ X (called configurations)
p(x) = 1

Z

∏
α∈I ψα({x}α) that factors into potentials

or factors ψα : {x}α 7→ R+, where I is an index set
and {x}α ⊆ V a subset of variables the factor ψα de-
pends on, and Z is a normalization constant known as
the partition function.
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Given a graphical model, we let Σ = X be the set of all
possible configurations (variable assignments). Define
a weight function w : X → R+ that assigns to each
configuration a score proportional to its probability:
w(x) =

∏
α∈I ψα({x}α). Z may then be rewritten as

Z =
∑
x∈X

w(x) =
∑
x∈X

∏
α∈I

ψα({x}α) (3)

Computing Z is typically intractable because it in-
volves a sum over an exponential number of config-
urations, and is often the most challenging inference
task for many families of graphical models. Comput-
ing Z is however needed for many inference and learn-
ing tasks, such as evaluating the likelihood of data for
a given model, computing marginal probabilities, and
parameter estimation (Wainwright & Jordan, 2008).

In the context of graphical models inference, we as-
sume to have access to an optimization oracle that can
answer Maximum a Posteriori (MAP) queries, namely,
solve the following constrained optimization problem

arg max
x∈X

p(x | C) (4)

that is, we can find the most likely state (and its
weight) given some evidence C. This is a strong as-
sumption because MAP inference is known to be an
NP-hard problem in general. Notice however that
computing Z is a #P-complete problem, a complex-
ity class believed to be even harder than NP.

3. Preliminaries

We review some results on the construction and prop-
erties of universal hash functions (cf. Vadhan, 2011;
Goldreich, 2011). A reader already familiar with these
results may skip to the next section.

Definition 1. A family of functions H = {h :
{0, 1}n → {0, 1}m} is pairwise independent if the fol-
lowing two conditions hold when H is a function cho-
sen uniformly at random from H. 1) ∀x ∈ {0, 1}n,
the random variable H(x) is uniformly distributed in
{0, 1}m. 2) ∀x1, x2 ∈ {0, 1}n x1 6= x2, the random
variables H(x1) and H(x2) are independent.

A simple way to construct such a function is to think
about the family H of all possible functions {0, 1}n →
{0, 1}m. This is a family of not only pairwise indepen-
dent but fully independent functions. However, each
function requires m2n bits to be represented, and is
thus impractical in the typical case where n is large.
On the other hand, pairwise independent hash func-
tions can be constructed and represented in a much
more compact way as follows; see Appendix for a proof.

Proposition 1. Let A ∈ {0, 1}m×n, b ∈ {0, 1}m.
The family H = {hA,b(x) : {0, 1}n → {0, 1}m} where
hA,b(x) = Ax+ b mod 2 is a family of pairwise inde-
pendent hash functions.

The space C = {x : hA,b(x) = p} has a nice geometric
interpretation as the translated nullspace of the ran-
dom matrix A, which is a finite dimensional vector
space, with operations defined on the field F(2) (arith-
metic modulo 2). We will refer to constraints of the
form Ax = b mod 2 as parity constraints, as they
can be rewritten in terms of logical XOR operations
as Ai1x1 ⊕Ai2x2 ⊕ · · · ⊕Ainxn = bi.

4. The WISH Algorithm

We start with the intuition behind our algorithm to ap-
proximate the value of W called Weighted-Integrals-
And-Sums-By-Hashing (WISH).

Computing W as defined in Equation (1) is challeng-
ing because the sum is defined over an exponentially
large number of items, i.e., |Σ| = 2n when there are n
binary variables. Let us define the tail distribution
of weights as G(u) , |{σ | w(σ) ≥ u}|. Note that G
is a non-increasing step function, changing values at
no more than 2n points. Then W may be rewritten
as
∫
R+ G(u)du, i.e., the total area A under the G(u)

vs. u curve. One way to approximate W is to (im-
plicitly) divide this area A into either horizontal or
vertical slices (see Figure 2), approximate the area in
each slice, and sum up.

Suppose we had an efficient procedure to estimate
G(u) given any u. Then it is not hard to see that one
could create enough slices by dividing up the x-axis,
estimate G(u) at these points, and estimate the area A
using quadrature. However, the natural way of doing
this to any degree of accuracy would require a number
of slices that grows at least logarithmically with the
weight range on the x-axis, which is undesirable.
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Figure 2. Horizontal vs. vertical slices for integration.

Alternatively, one could split the y-axis, i.e., the G(u)
value range [0, 2n], at geometrically growing values
1, 2, 4, · · · , 2n, i.e., into bins of sizes 1, 1, 2, 4, · · · , 2n−1.
Let b0 ≥ b1 ≥ · · · ≥ bn be the weights of the configu-
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Figure 1. Visualization of the “thinning” effect of random parity constraints, after adding 0, 1, 2, and 3 parity constraints.
Leftmost plot shows the original function to integrate. Constrained optimal solution in red.

rations at the split points. In other words, bi is the 2i-
th quantile of the weight distribution. Unfortunately,
despite the monotonicity of G(u), the area in the hor-
izontal slice defined by each bin is difficult to bound,
as bi and bi+1 could be arbitrarily far from each other.
However, the area in the vertical slice defined by bi
and bi+1 must be bounded between 2i(bi − bi+1) and
2i+1(bi − bi+1), i.e., within a factor of 2. Thus, sum-
ming over the lower bound for all such slices and the
left-most slice, the total area A must be within a factor
of 2 of

∑n−1
i=0 2i(bi − bi+1) + 2nbn = b0 +

∑n
i=1 2i−1bi.

Of course, we don’t know bi. But if we could approx-
imate each bi within a factor of p, we would get a
2p-approximation to the area A, i.e., to W .

WISH provides an efficient way to realize this strategy,
using a combination of randomized hash functions and
an optimization oracle to approximate the bi values
with high probability. Note that this method allows
us to compute the partition function W (or the area
A) by estimating weights bi at n + 1 carefully chosen
points, which is “only” an optimization problem.

The key insight to compute the bi values is as follows.
Suppose we apply to configurations in Σ a randomly
sampled pairwise independent hash function with 2m

buckets and use an optimization oracle to compute the
weight wm of a heaviest configuration in a fixed (arbi-
trary) bucket. If we repeat this process T times and
consistently find that wm ≥ w∗, then we can infer by
the properties of hashing that at least 2m configura-
tions (globally) are likely to have weight at least w∗.
By the same token, if there were in fact at least 2m+c

configurations of a heavier weight ŵ > w∗ for some
c > 0, there is a good chance that the optimization or-
acle will find wm ≥ ŵ and we would not underestimate
the weight of the 2m-th heaviest configuration. As we
will see shortly, this process, using pairwise indepen-
dent hash functions to keep variance low, allows us to
estimate bi accurately with only T = O(lnn) samples.

The pseudocode of WISH is shown as Algorithm 1. It
is parameterized by the weight function w, the dimen-

Algorithm 1 WISH (w : Σ→ R+, n = log2 |Σ|, δ, α)

T ←
⌈

ln(1/δ)
α lnn

⌉
for i = 0, · · · , n do

for t = 1, · · · , T do
Sample hash function hiA,b : Σ→ {0, 1}i, i.e.

sample uniformly A ∈ {0, 1}i×n, b ∈ {0, 1}i
wti ← maxσ w(σ) subject to Aσ = b mod 2

end for
Mi ← Median(w1

i , · · · , wTi )
end for
Return M0 +

∑n−1
i=0 Mi+12i

sionality n, a correctness parameter δ > 0, and a con-
stant α > 0. Notice that the algorithm requires solv-
ing only Θ(n lnn ln 1/δ) optimization instances (MAP
inference) to compute a sum defined over 2n items.
In the following section, we formally prove that the
output is a constant factor approximation of W with
probability at least 1−δ (probability over the choice of
hash functions). Figure 1 shows the working of the al-
gorithm. As more and more random parity constraints
are added in the outer loop of the algorithm (“lev-
els” increasing from 1 to n), the configuration space is
(pairwise-uniformly) thinned out and the optimization
oracle selects the heaviest (in red) of the surviving con-
figurations. The final output is a weighted sum over
the median of T such modes obtained at each level.

Remark 1. The parity constraints Aσ = b mod 2 do
not change the worst-case complexity of an NP-hard
optimization problem. Our result is thus consistent
with the fact that #P can be approximated in BPPNP,
that is, one can approximately count the number of so-
lutions with a randomized algorithm and a polynomial
number of queries to an NP oracle (Goldreich, 2011).

Remark 2. Although the parity constraints we im-
pose are simple linear equations over a field, they can
make the optimization harder. For instance, finding a
configuration with the smallest Hamming weight sat-
isfying a set of parity constraints is known to be NP-
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hard, i.e. equivalent to computing the minimum dis-
tance of a parity code (Berlekamp et al., 1978; Vardy,
1997). On the other hand, most low density parity
check codes can be solved extremely fast in practice
using heuristic methods such as message passing.

Remark 3. Each of the optimization instances can be
solved independently, allowing natural massive paral-
lelization. We will also discuss how the algorithm can
be used in an anytime fashion, and the implications
of obtaining suboptimal solutions.

5. Analysis

Since many configurations can have identical weight, it
will help for the purposes of the analysis to fix, w.l.o.g.,
a weight-based ordering of the configurations, and a
natural partition of the |Σ| = 2n configurations into
n+ 1 bins that the ordering induces.

Definition 2. Fix an ordering σi, 1 ≤ i ≤ 2n, of the
configurations in Σ such that for 1 ≤ j < 2n, w(σj) ≥
w(σj+1). For i ∈ {0, 1, · · · , n}, define bi , w(σ2i). De-

fine a special bin B , {σ1} and, for i ∈ {0, 1, · · · , n−
1}, define bin Bi , {σ2i+1, σ2i+2, · · · , σ2i+1}.

Note that bin Bi has precisely 2i configurations. Fur-
ther, for all σ ∈ Bi, it follows from the definition of
the ordering that w(σ) ∈ [bi+1, bi]. This allows us to
bound the sum of the weights of configurations in Bi
(the “horizontal” slices) between 2ibi+1 and 2ibi.

5.1. Estimating the Total Weight

Our main theorem, whose proof relies on the two lem-
mas below, is that Algorithm 1 provides a constant
factor approximation to the partition function. The
complete proof of the theorem and all lemmas may be
found in the Appendix.

Lemma 1. Let Mi = Median(w1
i , · · · , wTi ) be defined

as in Algorithm 1 and bi as in Definition 2. Then,
for any c ≥ 2, there exists α∗(c) > 0 such that for
0 < α ≤ α∗(c),

Pr
[
Mi ∈ [bmin{i+c,n}, bmax{i−c,0}]

]
≥ 1− exp(−αT )

Lemma 2. Let L′ , b0 +
∑n−1
i=0 bmin{i+c+1,n}2

i and

U ′ , b0 +
∑n−1
i=0 bmax{i+1−c,0}2

i. Then U ′ ≤ 22cL′.

Theorem 1. For any δ > 0 and positive constant
α ≤ 0.0042, Algorithm 1 makes Θ(n lnn ln 1/δ) MAP
queries and, with probability at least (1− δ), outputs a
16-approximation of W =

∑
σ∈Σ w(σ).

Proof Sketch. It is clear from the pseudocode that it
makes Θ(n lnn ln 1/δ) MAP queries. For accuracy

analysis, we can write W as:

W ,
2n∑
j=1

w(σj) = w(σ1) +

n−1∑
i=0

∑
σ∈Bi

w(σ)

∈

[
b0 +

n−1∑
i=0

bi+12i, b0 +

n−1∑
i=0

bi2
i

]
, [L,U ]

Note that U ≤ 2L because 2L = 2b0 +∑n−1
i=0 bi+12i+1 = b0 +

∑n
`=0 b`2

` ≥ U . Hence, if we
had access to the true values of all bi, we could ob-
tain a 2-approximation to W . We do not know true bi
values, but Lemma 1 shows that the Mi values com-
puted by Algorithm 1 are sufficiently close to bi with
high probability. Specifically, applying Lemma 1 with

T = log(1/δ)
α log n, we can show that with probabil-

ity at least (1 − δ), the output of Algorithm 1 lies in
[L′, U ′] as defined in Lemma 2. Observing that [L,U ]
is contained in [L′, U ′] and applying Lemma 2, we have
a 22c-approximation of W . Fixing c = 2 and noting
that α∗(2) ≥ 0.0042 finishes the proof.

5.2. Estimating the Tail Distribution

We can also estimate the entire tail distribution of the
weights, defined as G(u) , |{σ | w(σ) ≥ u}|.
Theorem 2. Let Mi be defined as in Algorithm 1,
u ∈ R+, and q(u) be the maximum i such that ∀j ∈
{0, · · · , i},Mj ≥ u. Then, for any δ > 0, with prob-
ability ≥ (1− δ), 2q(u) is an 8-approximation of G(u)
computed using O(n lnn ln 1/δ) MAP queries.

While this is an interesting result in its own right, if the
goal is to estimate the total weight W , then the scheme
in Section 5.1, requiring a total of only Θ(n lnn ln 1/δ)
MAP queries, is more efficient than first estimating the
tail distribution for several values of u.

5.3. Improving the Approximation Factor

Given a κ-approximation algorithm such as Algorithm
1 and any ε > 0, we can design a (1+ε)-approximation
algorithm with the following construction. Let ` =
log1+ε κ. Define a new set of configurations Σ` = Σ×
Σ × · · · × Σ, and a new weight function w′ : Σ` → R
as w′(σ1, · · · , σ`) = w(σ1)w(σ2) · · ·w(σ`).

Proposition 2. Let Ŵ be a κ-approximation of∑
σ′∈Σ` w′(σ′). Then Ŵ 1/` is a κ1/`-approximation

of
∑
σ∈Σ w(σ).

To see why this holds, observe that W ′ =∑
σ′∈Σ` w′(σ′) =

(∑
σ∈Σ w(σ)

)`
= W `. Since 1

κW
′ ≤

Ŵ ≤ κW ′, we obtain that Ŵ 1/` must be a κ1/` = 1+ε
approximation of W .
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Note that this construction requires running Algo-
rithm 1 on an enlarged problem with ` times more vari-
ables. Although the number of optimization queries
grows polynomially with `, increasing the number of
variables might significantly increase the runtime.

5.4. Further Approximations

When the instances defined in the inner loop are not
solved to optimality, Algorithm 1 still provides approx-
imate lower bounds on W with high probability.

Theorem 3. Let w̃ti be suboptimal solutions for the
optimization problems in Algorithm 1, i.e., w̃ti ≤ wti .

Let W̃ be the output of Algorithm 1 with these subop-
timal solutions. Then, for any δ > 0, with probability

at least 1− δ, W̃
16 ≤W .

Further, if w̃ti ≥ 1
Lw

t
i for some L > 0, then with prob-

ability at least 1− δ, W̃ is a 16L-approximation to W .

The output is always an approximate lower bound,
even if the optimization is stopped early. The lower
bound is monotonically non-decreasing over time, and
is guaranteed to eventually reach within a constant
factor of W . We thus have an anytime algorithm.

6. Experimental Evaluation

We implemented WISH using the open source solver
ToulBar2 (Allouche et al., 2010) to solve the MAP in-
ference problem. ToulBar2 is a complete solver (i.e.,
given enough time, it will find an optimal solution and
provide an optimality certificate), and it was one of the
winning algorithms in the UAI-2010 inference compe-
tition. We augmented ToulBar2 with the IBM ILOG
CPLEX CP Optimizer 12.3 based techniques borrowed
from Gomes et al. (2007) to efficiently handle the ran-
dom parity constraints. Specifically, the set of equa-
tions Ax = b mod 2 are linear equations over the field
F(2) and thus allow for efficient propagation and do-
main filtering using Gaussian Elimination.

For our experiments, we run WISH in parallel using a
compute cluster with 642 cores. We assign each opti-
mization instance in the inner loop to one core, and
finally process the results when all optimization in-
stances have been solved or have reached a timeout.

For comparison, we consider Tree Reweighted Belief
Propagation (Wainwright, 2003) which provides an up-
per bound on Z, Mean Field (Wainwright & Jordan,
2008) which provides a lower bound, and Loopy Belief
Propagation (Murphy et al., 1999) which provides an
estimate with no guarantees. We use the implementa-
tions available in the LibDAI library (Mooij, 2010).

6.1. Provably Accurate Approximations

For our first experiment, we consider the problem of
computing the partition function, Z (cf. Eqn. (3)), of
random Clique-structured Ising models on n binary
variables xi ∈ {0, 1} for i ∈ {1, · · · , n}. The inter-
action between xi and xj is defined as ψij(xi, xj) =
exp(−wij) when xi 6= xj , and 1 otherwise, where wij
is uniformly sampled from [0, w

√
|i− j| ] and w is a

parameter set to 0.2. We further inject some struc-
ture by introducing a closed chain of strong repulsive
interactions uniformly sampled from [−10w, 0]. We
consider models with n ranging from 10 to 60. These
models have treewidth n and can be solved exactly (by
brute force) only up to about n = 25 variables.
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Figure 3. Log parition function for cliques.

Figure 3 shows the results using various methods for
varying problem size. We also computed ground truth
for n ≤ 25 by brute force enumeration. While other
methods start to diverge from the ground truth at
around n = 25, our estimate, as predicted by Theo-
rem 1, remains very accurate, visually overlapping in
the plot. The actual estimation error is much smaller
than the worst-case factor of 16 guaranteed by Theo-
rem 1, as in practice over- and under-estimation errors
tend to cancel out. For n > 25 we don’t have ground
truth, but other methods fall well outside the prov-
able interval provided by WISH, reported as an error
bar that is very small compared to the magnitude of
errors made by the other methods.

All optimization instances generated by WISH for n ≤
60 were solved (in parallel) to optimality within a time-
out of 8 hours, resulting in high confidence tight ap-
proximations of the partition function. We are not
aware of any other practical method that can provide
such guarantees for counting problems of this size, i.e.,
a weighted sum defined over 260 items.
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(a) Attractive. Field 0.1.
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(b) Attractive. Field 1.0.
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(c) Mixed. Field 0.1.

0 0.5 1 1.5 2 2.5 3
−20

−10

0

10

20

30

40

50

Coupling Strength

Lo
g 

pa
rt

iti
on

 fu
nc

tio
n 

es
tim

at
io

n 
er

ro
r

 

 

WISH
Belief Propagation
TRW−BP
MeanField

(d) Mixed. Field 1.0.

Figure 4. Estimation errors for the log-partition function on 10× 10 randomly generated Ising Grids.

6.2. Anytime Usage with Suboptimal Solutions

Next, we investigate the quality of our results when not
all of the optimization instances can be solved to opti-
mality because of timeouts, so that the strong theoret-
ical guarantees of Theorem 1 do not apply (although
Theorem 3 still applies). We consider 10 × 10 binary
Grid Ising models, for which ground truth can be com-
puted using the junction tree method (Lauritzen &
Spiegelhalter, 1988). We use the same experimental
setup as Hazan & Jaakkola (2012), who also use ran-
dom MAP queries to derive bounds (without a tight-
ness guarantee) on the partition function. Specifically,
we have n = 100 binary variables xi ∈ {−1, 1} with
interaction ψij(xi, xj) = exp(wijxixj). For the attrac-
tive case, we draw wij from [0, w]; for the mixed case,
from [−w,w]. The “local field” is ψi(xi) = exp(fixi)
where fi is sampled uniformly from [−f, f ], where f is
a parameter with value 0.1 or 1.0.

Figure 4 reports the estimation error for the log-
partition function, when using a timeout of 15 min-
utes. We see that WISH provides accurate estimates for
a wide range of weights, often improving over all other
methods. The slight performance drop of WISH for cou-
pling strengths w ≈ 1 appears to occur because in that
weight range the terms corresponding to i ≈ n/2 par-
ity constraints are the most significant in the output
sum M0 +

∑n−1
i=0 Mi+12i. Empirically, optimization in-

stances with roughly n/2 parity constraints are often
the hardest to solve, resulting in possibly a significant
underestimation of the value of W = Z when a time-
out occurs. We do not directly compare with the work
of Hazan & Jaakkola (2012) as we did not have access
to their code. However, a visual look at their plots
suggests that WISH would provide an improvement in
accuracy, although with longer runtime.

6.3. Hard Combinatorial Structures

An interesting and combinatorially challenging graph-
ical model arises from Sudoku, which is a popular

number-placement puzzle where the goal is to fill a
9 × 9 grid (see Figure 5) with digits from {1, · · · , 9}
so that the entries in each row, column, and 3 × 3
block composing the grid, are all distinct. The puz-
zle can be encoded as a graphical model with 81 dis-
crete variables with domain {1, · · · , 9}, with potentials
ψα({x}α) = 1 if and only if all variables in {x}α are
different, and α ∈ I where I is an index set contain-
ing the subsets of variables in each row, column, and
block. This defines a uniform probability distribution
over all valid complete Sudoku grids (a non-valid grid
has probability zero), and the normalization constant
Zs equals the total number of valid grids. It is known
that Zs ≈ 6.671 × 1021. This number was computed
exactly with a combination of computer enumeration
and clever exploitation of symmetry properties (Fel-
genhauer & Jarvis, 2005). Here, we attempt to ap-
proximately compute this number using the general-
purpose scheme WISH.

1 2 3
4 5 6
7 8 9

Figure 5. Partially completed Sudoku puzzle.

First, following Felgenhauer & Jarvis (2005), we sim-
plify the problem by fixing the first block as in Figure
5, obtaining a new problem over 72 variables whose
normalization constant is Z ′ = Zs/9! ≈ 254. Next,
since we are dealing with a feasibility rather than op-
timization problem, we replace ToulBar2 with Cryp-
toMiniSAT (Soos et al., 2009), a SAT solver designed
for unweighted cryptographic problems and which na-
tively supports parity constraints. We observed that
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WISH can consistently find solutions (60% of the times)
after adding 52 random parity constraints, while for 53
constraints the success rate drops below 0.5, at 45%.
Therefore Mi = 1 in Algorithm 1 for i ≤ 52 and there
should thus be at least 252 ·9! ≈ 1.634×1021 solutions
to the Sudoku puzzle. Although Theorem 1 cannot
be applied due to timeouts for larger values of i, this
estimate is clearly very close to the known true count.
In contrast, the simple “local reasoning” done by vari-
ational methods is not powerful enough to find even
a single solution. Mean Field and Belief Propagation
report an estimated solution count of exp(−237.921)
and exp(−119.307), resp., on a relaxed problem where
violating a constraint gives a penalty exp(−10) (simi-
lar results are obtained using a wide range of weights
to model hard constraints). A sophisticated adapa-
tive MCMC approach tailored for (weighted) SAT in-
stances (Ermon et al., 2011) reports 5.6822× 1021 so-
lutions, with a runtime of about 45 minutes.

6.4. Model Selection

Many inference and learning tasks require computing
the normalization constant of graphical models. For
instance, it is needed to evaluate the likelihood of ob-
served data for a given model. This is necessary for
Model Selection, i.e., to rank candidate models, or to
trigger early stopping during training when the likeli-
hood of a validation set starts to decrease, in order to
avoid overfitting (Desjardins et al., 2011).

We train Restricted Boltzmann Machines (RBM)
(Hinton et al., 2006) using Contrastive Divergence
(CD) (Welling & Hinton, 2002; Carreira-Perpinan &
Hinton, 2005) on MNIST hand-written digits dataset.
In an RBM there is a layer of nh hidden binary vari-
ables h = h1, · · · , hnh

and a layer of nv binary visible
units v = v1, · · · , vnv

. The joint probability distribu-
tion is given by P (h, v) = 1

Z exp(b′v + c′h + h′Wv).
We use nh = 50 hidden units and nv = 196 visible
units. We learn the parameters b, c,W using CD-k for
k ∈ {1, 10, 15}, where k denotes the number of Gibbs
sampling steps used in the inference phase, with 15
training epochs and minibatches of size 20.

Figure 6 depicts confabulations (samples generated
with Gibbs sampling) from the three learned models.
To evaluate the loglikelihood of the data and deter-
mine which model is the best, one needs to compute
Z. We use WISH to estimate this quantity, with a time-
out of 10 minutes, and then rank the models according
to the average loglikelihood of the data. The scores we
obtain are −41.70,−40.35,−40.01 for k = 1, 10, 15, re-
spectively (larger scores means higher likelihood). In
this case ToulBar2 was not able to prove optimality

Figure 6. Model selection for hand-written digits: confab-
ulations from RBM models trained with CD-k for k ∈
{1, 10, 15}.

for all instances, so only Theorem 3 applies to these
results. Although we do not have ground truth, it can
be seen that the ranking of the models is consistent
with what visually appears closer to a large collection
of hand-written digits in Figure 6. Note that k = 1 is
clearly not a good representative, because of the highly
uneven distribution of digit occurrences. The ranking
of WISH is also consistent with the fact that using more
Gibbs sampling steps in the inference phase should
provide better gradient estimates and therefore a bet-
ter learned model. In contrast, Mean Field results in
scores −35.47,−36.08,−36.84, resp., and would thus
rank the models in reverse order of what is visually
the most representative order.

7. Conclusion

We introduced WISH, a randomized algorithm that,
with high probability, gives a constant-factor approx-
imation of a general discrete integral defined over an
exponentially large set. WISH reduces the intractable
counting problem to a small number of instances of a
combinatorial optimization problem subject to parity
constraints used as a hash function. In the context
of graphical models, we showed how to approximately
compute the normalization constant, or partition func-
tion, using a small number of MAP queries. Using
state-of-the-art combinatorial optimization tools, we
are thus able to provide discrete integral or partition
function estimates with approximation guarantees at
a scale that could till now be handled only heuristi-
cally. One advantage of our method is that it is mas-
sively parallelizable, allowing it to easily benefit from
the increasing availability of large compute clusters.
Finally, it is an anytime algorithm which can also be
stopped early to obtain empirically accurate estimates
that provide lower bounds with a high probability.
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