8 Appendix — Lemmas and Derivations

8.1 Lemmas

Lemma 8.1. Suppose a probability distribution P(x;,xy) = f(x;,X;) is defined in terms
of xi = (xin, i, wi) € R¥ and x; = (wj1,2j2,...,2j0) € RF. Let m = 3 be the
midpoint of x; and x;, and let d = 5

==L be the points’ (symmetric) displacement from the
midpoint. Then P(m,d) = 2F f(x;, x;).

Likewise, the factor is 2% for the inverse transformation: P(x;,x;) = 2L,CP(m, d).

Proof. The transformation is one-to-one. For each vector component [, the transforms and
their inverses are:

Ty + T

m; = —5 T =my+d;
Til — Tl

dzzizz ! xTj=my —d

We can show by induction that in k& dimensions, the determinant of the Jacobian, |Ag|, is
—2F_ Then, its absolute value 2F is the factor used in the transformation.

For a single dimension, |A;]| is

Ory 1 9za _q
omy ad; 9 — 21
6Ijl _ 1 B:Ejl _ 1 - T e =
8ml - adl -
In general,
'aﬂf,‘ﬂ — 8331'1 — 1 6:1%1 — 0 81‘“ — O . 83%1 — 0 ((hiil _ T
omq ody omo Ods omy, ddy,
8xj1 _ 1 8(2]'1 o _1 81’j1 o O 82]'1 _ 0 . 69cj1 _ 0 8xj1 _
Ty B, Gl I T mT ) -
L2 — 0 Li2 — 0 Li2 — 1 Zi2 — 1 .. Li2 — 0 Li2 — 0
om1 ad1 Oma dds Omy ddy,
Oxjo 0 Oxja 0 Oxjo 1 Oxjo 1 ... Oxja 0 Oxjo _
Ak = 8m1 - 8d1 - 8m2 - 6(12 - 8mk - 8dk -
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677]'1@ _ al’jk o 8$]'k o 0 LTik __ .. al‘jk - 1 8:2]'1 o _1
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Lemma 8.2. Given points x; and X; € R*, with midpoint my; and displacement vector d;;
from the midpoint. Define m = ||m;; — p|| and d = ||d;j||. Then ||x; — pl|® + ||lx; — p||? =
2(m? + d?).

It then follows (see main text, Eqgs. and (8)) that if ¢ ~ Normal(p, 0®I), then P(x; |
¢)P(x; | ¢) depends on x; and x; only through m and d.

Proof. The vectors (p,x;) and (p,x;) define a plane, which contains m;;. In that plane,
Figure |4]is as shown. The law of cosines tells us that ||x; — p||? = m? +d? — 2md cos f, and
that ||x; — p||? = m? + d? — 2md cos (m — f). Since cos (7 — f) = —cos f, we can rewrite
x; — p||*> = m? + d? + 2md cos f. This yields ||x; — p||? + [|x; — p]|? = 2(m? + d?).

Figure 4: Triangle formed by x;, x;, and p.

O]

Lemma 8.3. Given z € R¥ with magnitude z = ||z||, and with a probability density that
depends only on that magnitude: f,(z) = g(z). Then, changing variables to write the

k
2zk—1x3
)

r&

density as a function of z gives f,(z) = g(z)
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Ezplanation. To transform, we would write z in spherical coordinates (z = (z, a1, ag, ..., ak—1),
with aq,...,a5-2 € [0,7] and ag_1 € [0,27)), then integrate out the angles. The factor
28173

r(%)
in R¥. (References for the formula: http://mathworld.wolfram.com/Hypersphere.html and
http://en.wikipedia.org/wiki/Hypersphere.)

introduced by this process is S, = , the surface area of a hypersphere of radius z

_k 2
ol k—1

Lemma 8.4. If f,(y) = 2y e%, defined on y > 0 with a € R and k € Z,k > 0,

L) o

then z = ¥ ~ xy.

Proof. Perform the change of variables: z = %, so y = az and % =aq.

gl-% gkl 2

fy(y) = T & €27 (14)
ol=5 . [1\ -2 dy
fz(z): F(g)zk ! (a)e 2 ’% (15)
_ 2
= F(g)z e (16)

Equation is exactly the density function for the distribution x;. We will also use the
notation xx(z) to represent that density function, so we would write above that f,(z) =

xk(z) and also that f,(y) = Xk(%)(é) O

8.2 Distributions for positive and negative pairs

Beginning with the expression from @ for the density function for positive pairs,

1 ko 2 1 ko d}
P(mij | (Z))P(dw | 6) = ( ) e 207 ( ) 6_2v2, (17)

2ro 2y

we apply Lemma to the first and second parts, respectively, to get

omb—1r3 1 \* _m2 [(2d" 7% 1 \* _%
P(mW)P(d\e):( () )(\/ﬂo) e 2a2< o) )( 27”/) e 2 (18)
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With the use of Lemma we can recognize this as the product of two i distributions:

o —=m' ~ xk, and % = %’ ~ Xk. Rewriting in terms of m/, d’ and ¢, and using the notation

(o2
Xk(z) to represent the density function for yy:

d’ 1
P | 9P 10 =xm e (1) (7)- (20)
This is intuitively reasonable because xj is known to describe the distance from the origin
to points that are distributed as k-dimensional normals, which is exactly where m;; and
d;; came from.

For the negative density, we take the expression from Equation and transform from
coordinates (x;,X;) to (m;;,d;;) to (m,d).

1 2k m2+d2
A - el
o
T \F w2/ 1 \F -
Py |00y 1 0) =2 (o) 3 (o) 22
TOo 2ro

mh—lrs b2 h=lrs b
ot = (255 () o (55) () # o
2 2

- (7w) () i)\ e -

(25)

Lemma now applies, to show this term is also a product of two xj distributions:
dv2
g

myv2 Yk, and

- ~ Xk, or in terms of m’ and d’:

P(m' | ¢)P(d' | ¢) = 2xx(m'v2)xi(d'V2). (26)

8.3 The effect of increasing k£, the number of dimensions

Figure[2] was for 2-dimensional data. In k dimensions the contour lines have the same shape
for a given value of ¢, but as k grows the distributions end up better separated.

The peak of the negatives is always at (¥ \k/%l, . \k/%l), and that of the positives is at

(Vk —1,tv/k —1). As the dimensionality varies, the relative positions of the peaks are
the same apart for the scale factor vk — 1. However, the variances of the distributions
do not scale as fast. So, compared to their positions, the distributions get proportionally
narrower and easier to distinguish.
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o
Figure 5: Theoretical distributions of positive and negative pairs, as functions of parame-

ters, and score assigned. From left to right, ¢ takes on values (.02, .3, .7, 1). From top to
bottom, number of dimensions k£ = 1,2, 10,100. n = 25, E(r) = 10.
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