Learning Connections in Financial Time Series

Gartheeban Ganeshapillai
John Guttag
Andrew W. Lo

GARTHEEQMIT.EDU
GUTTAGQMIT.EDU
ALOQMIT.EDU

Massachusetts Institute of Technology, 77 Massachusetts Ave, Cambridge MA 02139 USA

Abstract

To reduce risk, investors seek assets that
have high expected return and are unlikely
to move in tandem. Correlation measures are
generally used to quantify the connections
between equities. The 2008 financial crisis,
and its aftermath, demonstrated the need for
a better way to quantify these connections.
We present a machine learning-based method
to build a connectedness matrix to address
the shortcomings of correlation in capturing
events such as large losses. Our method uses
an unconstrained optimization to learn this
matrix, while ensuring that the resulting ma-
trix is positive semi-definite. We show that
this matrix can be used to build portfolios
that not only “beat the market,” but also
outperform optimal (i.e., minimum variance)
portfolios.

1. Introduction

It is widely accepted that in designing a portfolio of
equities there is a tradeoff to be made between risk
and return. The root cause of the tradeoff is that more
volatile equities typically have higher returns. Much of
modern financial theory is based upon the assumption
that a portfolio containing a diversified set of equities
can be used to control risk while achieving a good rate
of return. The basic idea is to choose equities that have
high expected returns, but are likely to move down in
tandem.

Different investors have different goals. Often, in-
vestors begin by choosing a minimum desired expected
return as the independent variable. They then formu-
late portfolio design as an optimization problem with
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return as a constraint and variance minimization as
the objective function. Central to this optimization is
the construction of a covariance matrix for the daily
returns of the equities in the portfolio.

A problem with this approach is that the covariance
matrix uses correlation, which gives equal weight to
positive and negative returns and to small and large
returns. This is inappropriate in a world in which risk
preference plays an increasingly important role. Some
investors, for example, hedge fund managers, expect
high returns, and in exchange, expect to bear corre-
sponding risks. For such investors, it is critical to con-
trol for tail risk, the risk of an improbable but poten-
tially catastrophic negative return (Bae, 2003; Forbes
& Rigobon, 2002). Hence, selective as opposed to
full-cover hedging is gaining popularity (Stulz, 2005).
Learning the connectedness between equities in terms
of large losses and exploiting this knowledge in port-
folio construction is the topic of this paper. We refer
to these large losses as events.

We formulate the learning problem as given a set of eq-
uities A, some of which had events and some of which
didn’t, which equities in a disjoint set B, are mostly
to experience an event on the same day. It may seem
that this is useless, because by the time we have the
returns for equities in A, we would already know the
returns for equities in B. However, the goal of this
phase is not to learn to predict events, but to learn
historical relationships among equities. This learned
relationship will then be used to construct a portfolio
containing assets that are less likely to have correlated
events in the future.

We apply our method to the daily returns for all 369
companies listed in S&P500 as of Jan 1, 2012 that were
publicly traded from Jan 1, 2000 through December
31, 2011.

We use a factor model to describe the daily return
of each equity in terms of the equity’s active return,
market sensitivity, and the daily returns of other eq-
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uities in the sector (e.g., financial or energy) to which
that equity belongs. We then train a regression model
on the historical data using regularized least squares
and estimate the parameters using gradient descent.
In contrast to methods that quantify the connected-
ness between equities using pairwise relationships, our
method accounts for interactions with all other equi-
ties in the portfolio. Since extreme events are rare, we
use all of the historical data rather than just events.
We use a cost function that differentially weights re-
turns of different magnitudes.

In our model, we update the weights daily and predict
the returns for the following day. We rank the equities
in B using the predicted returns. We compare this
list against the true occurrences of events using mean
average precision (MAP) scores. Using this metric,
our approach consistently outperforms the most pop-
ular techniques in the financial literature, e.g., t-copula
(Nelsen, 2006).

Our experiments provide strong evidence that by ex-
ploiting these learned relationships we can build port-
folios that outperform portfolios constructed using
techniques drawn from the literature. The compari-
son is done using minimum daily return, total cumu-
lative return, maximum drawdown, and the Sharpe
ratio (Sharpe, 1994).

We make the following contributions in this paper.

e A method of modeling returns using three factors:
active return a, market sensitivity b, and the con-
nectedness of equities w; .

e An alternative to the usual approach of using
a correlation matrix to represent relationships
among equities. Instead, we use what we refer
to as a connectedness matrix. This differs from a
correlation matrix in two important ways:

1. Traditional correlation matrices do not ac-
count for interactions among mneighbors.
Specifically, correlation is calculated between
i and j independently of other neighbors.
Therefore, these methods may end up incor-
porating information provided by neighbors
multiple times. Our method uses supervised
learning to discover the connections between
two entities while discounting the influence of
others. We use regularization to reduce the
impact of over fitting and spurious estimates.

2. Extreme returns occur rarely and therefore
play a minor role in a traditional correlation
matrix. The connectedness matrix focuses
on extreme returns without ignoring the non-
extreme returns.

e Formulating the problem of estimating one return
in terms of other returns as a recursive regression
problem, and providing a method to solve it us-
ing unconstrained least squares optimization. The
method ensures that the resulting connectedness
matrix G is positive semi-definite.

2. Related Work

We begin by discussing general methods that have
been used to study correlations among returns. We
then move on to discuss work specific to understand-
ing extreme returns.

2.1. Correlation and Partial Correlation

If one knows the correlation of equity e with all other
equities, one can estimate the expected return of e as a
weighted average over known returns of other equities.

Correlation measures give equal weight to small and
large returns, and therefore the differential impact of
large returns may be hidden. Since the absolute val-
ues of returns increase during volatile periods, uncon-
ditional correlation values also rise even when the con-
nectedness between two equities may remain the same
(Longin & Solnik, 1999). To address this, researchers
have proposed conditional correlations to focus on cer-
tain segments (Staricd, 1999).

However, it has been shown that conditional correla-
tion of multivariate normal returns will always be less
than the true correlation. This effect also exists when
a GARCH model generates the returns (Longin & Sol-
nik, 1999).

Longin & Solnik (1999) provides a formal statistical
method, based on extreme value theory, to model the
correlation of large returns. First, they model the tails
of marginal distributions using generalized Pareto dis-
tribution (GPD)(Castillo & Hadi, 1997). Then, they
learn the dependence structure between two univari-
ate distributions of extreme values. Semi-parametric
models have since been proposed to address the inflex-
ibilities of such parametric models (Boldi & Davison,
2007). A downside of these methods is that the link-
age is learned between two time series independently
of the rest.

Partial correlation measures the degree of association
between two time series while discounting the influ-
ence of others. It is calculated by fitting a regression
model for each of these two time series on the rest.
The correlation between the residuals of these regres-
sion models gives the partial correlation (Kendall &
Stuart, 1973). But, partial correlation doesn’t distin-
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guish extreme values.

2.2. Understanding Extreme Returns

Correlation between stocks has traditionally been used
when measuring co-movements of prices, and discov-
ering contagion in financial markets (Richards, 1995;
Bae, 2003). Researchers have also used partial cor-
relations to build correlation-based networks. These
networks are then used to identify the dominant
stocks that drive the correlations present among stocks
(Kenett et al., 2010).

Bae (2003) distinguishes extreme returns in establish-
ing the linkages between financial time series. They
capture the transmission of financial shocks to answer
questions such as how likely is it that two Latin Ameri-
can countries will have extreme returns on a day given
that two countries in Asia have extreme returns on
that or the preceding day. There has been extensive re-
search on multivariate extreme values (Coles & Tawn,
1991; Pekasiewicz, 2007). Chen & Chihying (2007)
provides a method to model the temporal sequence
associations for rare events. Arnold et al. (2007) ex-
amines a host of algorithms that, loosely speaking, fall
under the category of graphical Granger methods to
quantify the connectedness in time series.

3. Method

If the closing prices of the equity j on day T and T'—1
are pr,; and pr_1 j, the return for equity j on day T is
given by rr; = (prj —pr-1,)/Pr-1,5. Onday T+ 1,
we are given historical daily returns for m equities in
aT xmmatrix R={r;;};1<t<T,1<j<m. We
use indexing ¢ for days, and j,k for equities. When
ri; < —0.1 (10% loss), we say that equity j had an
event on day t.

We assume that daily returns (rows of R) are indepen-
dent. While daily returns are generally believed to be
heteroskedastic (White, 1980), since we focus on large
returns that are rare, we can safely assume that the
modeling errors are uncorrelated. We use regulariza-
tion to tackle over fitting. The regularization parame-
ter A is determined by cross validation.

Factor model representation of returns is common in fi-
nance and econometrics (Longin & Solnik, 1999; Khan-
dani & Lo, 2007).

We model the return of equity k& on day ¢ by

Pop=ap+bpria+ > wik(ry —diy) (1)
—_———

j=1:m;j#£k
dor J J#

In this model, we explicitly learn the factors for equity

k: equity’s active return ag, equity’s sensitivity to the
market by, and equity’s connectedness with other equi-
ties wjk, where 1 < j <m;j # k. The S&P500 index
return (r; 5) averages the returns of all the equities on
a given day.

Our focus is on negative returns, which are not nor-
mally distributed. Therefore, we apply the Box-Cox
transformation to make the daily return samples more
normal distribution-like (Box & Cox, 1964).

We use least squares minimization to estimate the
weights. We find that better performance is achieved,
when we capture the differential impact of certain val-
ues by weighting with a cost function f(z).

min Z Frer)(reg — fop)? (2)

ax,bx,wx
t=1:T
k=1:m

The flexibility in choosing the cost functions allows us
to optimize different aspects of the problem. For top-k
ranking evaluation, we define events at or below —10%
daily return. We use f(z) = e~ (=05 = —0.1 to
achieve higher accuracy because the maximum ambi-
guity is at the boundary. For portfolio construction
problems, we consider all negative returns, and use a
different cost function

We can efficiently compute model parameters (§ =
{(ak, bg, wik|l <k <m,1 < j < m,j#k}) by es-
timating the inner products. However, estimating the
weights directly on the observed data is prone to over-
fitting (Bell & Koren, 2007). Therefore, we learn the
parameters by solving the following regularized least
squares problem:

min Z F(res)(ree—7e ) >+ (ag +b3+|w|?) (3)

ax*,bx w
t=1:T
k=1:m

We use gradient descent to minimize the regularized
square errors. For each 7. € R, we update the pa-
rameters by:

ap + a +nleqr — A.ag)
b, «— b + etk -rea — A by)
Wik — Wik +nler(re; —dij) — A-wjp) Vi #k

Here, 7 is the learning rate that is dynamically ad-
justed using line search, and e j def Flrer)(re—7Tek)-
We use the last 500 days in the historical data to train
our model. We iterate 100 times for the initial esti-
mate of the parameters. The model is updated daily
to make predictions for the next day. Since this new
training set differs from the previous for only two days,
convergence is achieved within a few iterations.
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3.1. Connectedness Matrix

In portfolio construction, connectedness between equi-
ties is used to find less correlated assets. Generally, a
covariance matrix C is used to find the optimal diversi-
fication, i.e., minimum variance portfolio. In contrast,
our model uses the connectedness matrix G, which is
learned using the factor model. We assume that the
portfolio is built with m equities that belong to a sec-
tor and the S&P500 index (SPX).

Table 1. Connectedness matrix construction
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We build the connectedness matrix G € Rm+1x(m+1)
from the interpolation weights of the factor model, and
demonstrate that it provides better diversification. A
direct construction is given in Table 1. Here, 0]2 is the

variance of the daily returns of the equity j. A denotes
SPX.

Such a matrix should be positive semi-definite to
be used in portfolio optimization involving quadratic
programming. Since any positive semi-definite ma-
trix G can be decomposed into PPT, where P €
R+ (m+1) e reformulate Equations 1 and 3 as:

TAt,k =ag + Z Pk,vPA,th,A + Z Pk,UPj,?)(Tt,j - dt,j)
v

i#k
di ks
(4a)
min 37 fror)(ron — Fop)® + Maf + [P) (4b)
’ t=1:T
k=1:m

We begin the training by initializing P to P, where P
is the Cholesky factorization of the covariance matrix
C, i.e., C = PPT. We compute the covariance matrix
C on historical data. For each 7, € R, we update P
and ax by moving against the gradient. For 1 < j <
m;j # k, and 1 < v < m, the updates are:

Tt = Tt = dij

Py «— Prow +n(et,u(Paw - rea + Z P oTe5) — A+ Pry)
7k
Pjy — Pju+n(etk - PewTtj — A Pjo)
Ppw — Paw+n(etk - Pew - Ten — X Paw)
ar — ar +nlesry — X ak)

3.2. Discussion

In our model (Equation 1), we represent the relation-
ship between the returns of equities after discounting
their interactions with the market. Thus, interpolation
weights w; j, resemble partial correlation estimates. In
the factor model, we simultaneously fit the regression
model and learn the correlation weights. Further, reg-
ularization is employed in our model to reduce the like-
lihood of spurious estimates.

For a matrix X, a column vector Y, and a regression
problem expressed as Xw = Y, an explicit solution,
denoted by  is given by: w = (XTX)"1XTY. If the
variables are mean adjusted, X is the covariance of X,
and C' is the covariance between Y and each column of
X, it can be rewritten as, 0 = X~'C. In Equation 1,
we can observe the similarity between these variables
(X and Y') and adjusted returns, i.e., y, = (ryp—dpx),
and z;; ~ (r¢; — d¢ ;). The connectedness matrix G,
built from the interpolation weights, models the pair-
wise connection between the adjusted returns of two
equities while discounting the connectedness among all
other equities.

4. Results

Though univariate time series of daily equity returns
lack both significant autocorrelation and stationarity,
multivariate time series of returns exhibit consistent
correlation that persist over time. This persistent cor-
relation is what makes portfolio diversification possible
(Borodin et al., 2004; Kalai & Vempala, 2000; Kenett
et al., 2010).

4.1. Data

We use daily return data from CRSP!'. We examine
all 369 companies that were in the S&P500 from 2000
to 2011. This time period contains two major finan-
cial crises (2001 and 2008). The set of companies are

LCRSP, Center for Research in Security Prices. Gradu-
ate School of Business, The University of Chicago (2004).
Used with permission. All rights reserved. www.crsp.
uchicago.edu
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Table 2. MAP scores for different methods.

SECTORS FAC CR PCR EVCR

CONSUMER DISCRETIONARY 0.72 +£0.082 0.30 £0.075 0.45 +0.114 0.34 £0.101
ENERGY 0.81 +0.044 0.62 +£0.073 0.71 £0.073 0.68 +0.081
FINANCIALS 0.74 +£0.051 0.44 £0.055 0.62 +£0.062 0.65 +£0.114
HEALTH CARE 0.78 +£0.161 0.33 £0.144 0.58 +£0.212 0.27 £0.073
INDUSTRIALS 0.81 +£0.087 0.33 £0.095 0.56 £0.112 0.26 +0.067
INFORMATION TECHNOLOGY 0.61 +£0.054 0.41 £0.057 0.52 £0.049 0.42 £0.071
MATERIALS 0.91 +£0.089 0.70 £0.105 0.84 £0.215 0.73 +0.195

from ten sectors: consumer discretionary, consumer
staples, energy, financials, health care, industrials, in-
formation technology, materials, telecommunications
services, and utilities.

4.2. Top-K Ranking

Given all returns for days 1 to T and returns on day
T +1 for equities in A, we predict which equities from
B will have events (losses greater than 10%) on that
day. We produce an ordered list of equities from B,
ranked by their likelihoods of having events on day
T + 1 based on their predicted returns #71.

4.2.1. EVALUATION

We use mean average precision (MAP) to evaluate the
correctness of the ordered list. Average precision (AP)
is a popular measure that is used to evaluate an or-
dered list while taking into account both recall and
precision (Zhu, 2004). MAP is the mean of average
precision across the test set. For an ordered list of
top-k items, MAP and AP are given by:

k
AP(R) = 3 p()Ar() )
MAP(K) = zn:APi(k)/n (6)

Here, n is the size of the test set, p(j) is the precision
at cut-off j, and Ar(j) is the change in the recall from
j—1to j. We produce a top-10 list, and evaluate with
M AP(10).

4.2.2. EXPERIMENTAL RESULTS

Since diversification inevitably involves using equities
from multiple sectors, we focused on the question of
which equities to own within sectors. We randomly
select 20% of the companies in each sector for set A,
and the rest for set B. We ran our experiments from
2001 to 2011, so that at the start of the experiment
we will have at least a year of historical data to train

on. We evaluated our methods only on days that had
at least two events. Three sectors had less than 5 such
days in the last decade, and therefore were excluded
in the experiments. Across all the sectors, there were
539 days that had two events out of 3019 days in the
full dataset.

Table 2 compares the MAP scores (higher is better) for
our factor model (FAC) with the scores for benchmark
methods: correlation (CR), correlation of extreme val-
ues (EVCR), and partial correlation (PCR). The re-
sults are averaged over 100 runs. The best result for
each sector is in bold face. Results for FAC are statis-
tically different (p-value < 0.001) from the results of
every other method under paired t-test.

For CR and PCR we use standard implementations.
For EVCR, we apply a GARCH model to remove se-
rial dependencies, if there are any. Then, we fit a uni-
variate generalized Pareto distribution with tail frac-
tion 0.1 on the innovations of the GARCH model. Fi-
nally, we model the multivariate distribution with a
t-Copula, and learn the linear correlations on extreme
values (Cherubini et al., 2004).

Our factor model consistently outperforms the other
methods. EVCR often underperforms PCR, and at
times, CR. We conjecture that the inflexibility of the
parametric modeling of the tails and not consider-
ing the relationship between non-extreme values con-
tribute to this failure. The poor performance of EVCR
is striking because t-copula is widely used in financial
risk assessment, especially in the pricing of collateral-
ized debt obligations (CDO) (Meneguzzo & Vecchiato,
2004; MacKenzie, 2008).

Table 3 compares the MAP scores for different sizes of
known and unknown sets. We change the size of B as
a fraction of the total number of companies available,
using 10%,20%, and 40%. Set A contains the rest.
Even when we train on only 60% of the companies and
test on 40%, our method remains effective. Notice that
FAC trained with only 60% of the data outperforms
other methods trained with 80% of the data.
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Table 3. MAP scores for different test sizes.

SECTORS 10%  20% 40%
CONSUMER Disc. 0.81 0.72 0.6
ENERGY 0.83 0.81 0.71
FINANCIALS 0.78 0.74 0.61
HeALTH CARE 0.95 0.78 0.72
INDUSTRIALS 0.86 0.81 0.52
INFORMATION TECH. 0.71 0.61 0.51
MATERIALS 0.94 0.91 0.81

As an example, we look at an S&P500 constituent,
Bank of America (BAC). Between 2001 and 2011, BAC
had 29 events, i.e., daily losses of at least 10%. Fig-
ure 1 shows the parameters learned using the factor
model for BAC. Notice that the market dependence
drastically increases during the 2008 crisis. Further,
the “herding effect,” as given by the spread in the
weights, widens during the crises of 2001 and 2008/9.
BAC becomes heavily connected to smaller number of
other equities.

03 03 03

02 02 02

0.1 0.1 0.1 MPN
Op———— ([ 0

-0.1 -0.1 -0.1
gct—UZ Mar-03  Aug-03 890—05 May-06 Oct-06 gep—OS Feb-09  Jul-09

(a) Market dependence (bg)

0.2 0.2 0.2
0.1 . ‘ 0.1 0.1 \
o ——— 0 0 ]
-0.1 -0.1 -0.1

—82 —8.2 —8.2
ct-02 Mar-03 Aug-03 Dec-05 May-06 Oct-06 Sep-08 Feb-09 Jul-09

(b) Co-movements with neighbors (w; i)

Figure 1. Connectedness estimated by the factor model for
BAC: (a) Active return a, and market sensitivity b for
BAC.(b) Median and 10*" — 90*" percentile range of the
correlation weights wj r between BAC and neighbors.

4.3. Portfolio Construction

The major application of our method is the reduction
of large losses in equity portfolios. Since there is a
tradeoff between risk and expected return, portfolio
design usually starts by the investor choosing a de-
sired level of expected return (or a risk tolerance). For
a given desired expected return r., in the absence of

any side information, the minimum variance portfo-
lio (MVP) is the optimal portfolio (Markowitz, 1959).
For the MVP, portfolio weights w are derived by solv-
ing the optimization problem:

1
min —w? Cw (7)
w 2
m—+1
subject to Z Tjwj 2> Te
j=1

m—+1
dwi=L0<w;<lj=1,..,m+1
j=1

Here, C' is the covariance matrix of returns, and 7;
is the expected return of equity j. Typically, the co-
variance and the expected return are calculated from
historical data. Here, we assume fixed capital (no
leverage), no short positions, daily readjusted portfolio
weights, and we ignore the costs of transactions.

We demonstrate our method’s utility by building port-
folios with our connectedness matrix G (Section 3.1),
and compare their performance to portfolios built us-
ing methods drawn from the financial literature.

e Our baseline is an MVP portfolio built using the
estimated covariance matrix C. This is the con-
ventional approach; we refer it as COV.

e For the factor model, we replace C' with connect-
edness matrix G' and 7; with active return a;. We
learn both G and a; using our factor model. We
use the same optimization as MVP, i.e., Equation
7.

1. FAC: is the factor model with cost func-
tion f(x) = e */%%% applied. This model
focuses on minimizing the co-occurrences of
large losses. This risk avoidance results in
smaller overall return compared to F AC5.

2. FAC; is the factor model without any cost
functions. It captures the connections on
large returns. It produces significantly larger
overall returns, at the cost of larger worst
case daily losses.

When a portfolio is heavily diversified, the expected
return is smaller. Therefore, in our formulation the
desired expected return r. governs the amount of di-
versification. The range of achievable values for 7. is
the minimum and maximum of the expected returns
of the equities. Maximum expected return is achieved
by owning the equity with the highest historical re-
turn. Minimum risk relative to the market is achieved
by owning everything in that market.
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Table 4. Portfolio Returns

MEASURES ENERGY FINANCIALS MATERIALS
COV FAC, FACy | COV FAC, FAC,; | COV FAC, FAC,

LARGEST LOSS IN A DAY MIN(7¢) |-0.23 -0.16 -0.18 |-0.11 -0.11 -0.16 |-0.19 -0.08 -0.12

EXPECTED SHORTFALL (5%) -0.06 -0.05 -0.06 |-0.04 -0.03 -0.05 |-0.06 -0.04 -0.05

MAX DRAWDOWN -0.72 -0.74 -0.66 |-0.77 -0.69 -0.74 |-0.79 -0.31 -0.69

ToTtaL CUMULATIVE RETURN Rt 3.58 11.72 13.53 | 1.82 2.71 8.13 | 3.28 6.1 7.87

SHARPE RATIO % 0.04 0.03 0.06 | 0.04 0.0l 0.06 | 0.04 0.03 0.06

r—rp

It has been shown that 90% of the maximum benefit
of diversification is achieved with portfolios contain-
ing roughly 5% of the market constituents (Reilly &
Brown, 2011). This led us to set 7 to the 95® per-
centile of the expected returns of the equities. This
setting causes the optimization to choose about 3 — 5
equities per sector (5% to 10%).

Table 4 summarizes the return characteristics for the
three sectors with the most events. We re-weight the
portfolio daily, and estimate the returns daily. Cu-
mulative return Ry from day 1 to day T is given by
Ry = Hle(rt + 1) — 1. Total cumulative return is
the overall return from year 2001 to 2011, i.e., Rp
on December 31, 2011. Maximum drawdown is the
largest drop from the maximum cumulative return.
The Sharpe ratio measures the excess return for ad-
dltlonal risks taken (Sharpe, 1994) It is given by
S = E(r — rp)/+/var(r —ry), where r is the daily
return of the portfolio and r, is the reference return
(return on the S&P500 index). A positive Sharpe ra-
tio implies that excess return is greater than the addi-
tional risk taken. The expected shortfall (also known
as CVaR) at 5% level gives the expected return on the
portfolio in the worst 5% of the cases. Table 4 shows
that by learning the connectedness between equities,
our portfolios cannot only beat the market (positive
Sharpe Ratio), but also beat the optimal (minimum-
variance) portfolios.

Figure 2 shows the impact of our method on returns
in the energy sector. Until the 2008 crisis, because
the energy sector remained calm, our FAC model per-
formed comparably to COV. Note that 2001 crisis, un-
like 2008 crisis, was limited to few sectors not including
energy. After the collapse in May 2008, our model be-
gan learning new connectivities related to large nega-
tive returns and was able to reduce large losses (Figure
2(a)) late that year and going forward. It took about
200 days to learn the new model, but it persisted long
enough to be useful. Figure 2(b) demonstrates the
effectiveness of our method in making the large nega-
tive returns smaller without significantly affecting pos-
itive and small negative returns. The largest daily loss

I =
o a

&3

Cumulative Returns

o

i i i i i i i
Dec-01 Aug-03 Mar-05 Oct-06 May-08 Dec-09 Jul-11

(a) Cumulative Returns

o
cov

(b) Daily Returns

Figure 2. Cumulative returns (a), and daily returns (b) of
COV and FAC: models for the energy sector. In figure
(b), positive returns with COV are highlighted with the
darker color. Size of the points correspond to the absolute
values of the returns with COV. Returns above the line
correspond to an improvement with FAC:. A clockwise
shift that is more prominent in the negative side (lighter
region) is noticeable.

dropped 30%, i.e., from 23% to 16%.

Figure 3 shows the equity weights learned using the
connectedness matrix for the financials sector. Until
August 2008, our factor model based portfolio consis-
tently focused on two equities in the financial sector:
BlackRock (ID 19), Inc. and Ventas, Inc. (ID 55). In
the aftermath of the 2008 crisis, our model increases
the diversification.

Finally, in Table 5 we demonstrate the effectiveness
of our model in constructing a market wide portfo-
lio. We build a market wide portfolio by combining
the portfolios built for each sector weighted equally.
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Table 5. Market wide portfolios.

MEASURES FAC, FAC: | COV PCR EVCR | EW MIN-CVAR SPX
WORST DAY -0.04 -0.10 | -0.11 -0.12 -0.09 -0.1 -0.11 -0.09
EXPECTED SHORTFALL(5%) -0.02 -0.04 | -0.03 -0.04 -0.03 | -0.02 -0.04 -0.02
MAX DRAWDOWN -0.13 -0.5 -0.60 -0.59 -0.6 -0.6 -0.58 -1.02
ToTAL CUMULATIVE RETURN 6.52 10.25 3.68 5.29 1.89 3.2 6.36 -0.09
SHARPE RATIO 0.14 0.21 0.09 0.1 0.02 0.17 0.13 N/A
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Figure 3. Heat map of the weights of the equities for the
portfolios built for the financials sector.

We compare our method with COV, PCR and EVCR.
We also compare these “MVP-like” portfolios with
other benchmark portfolios: a equi-weighted portfo-
lio (EW), where the portfolio is rebalanced to equal
weights daily, a Min-CVaR portfolio where the opti-
mization minimizes conditional variance at 5% level
(Rockafellar & Uryasev, 2000), and the S&P500 in-
dex (SPX). FAC; achieves annualized sharpe ratio of
0.21x1/260 = 3.39. Tt is significant that, in every mea-
sure, the portfolio built with our method outperforms
the “hard-to-beat” equal-weighted portfolio (Plyakha
et al., 2012).

4.4. Limitations

Our portfolios achieve returns several times greater
than minimum-variance portfolios. Like minimum-
variance portfolios, our method rebalances the portfo-
lio daily, and therefore incurs transaction costs. These
costs are ignored here, therefore absolute returns are
overstated for both methods. COV leads to slightly
more transactions than our method, and would there-
fore incur higher transaction costs.

Relationships among equities can be viewed as oc-
curring on three time scales: permanent (e.g., sec-
tor grouping), long-term (e.g., based on fundamentals
and technicals), and short-term (e.g., based on real-
time news and announcements). In this work, we cap-
ture only the long-term relationships. This may result
in a slower response when market conditions change
rapidly as in 2008 (Figure 2). We intend to address

this in future work by attempting to incorporate news
and sentimental analysis into our model.

We show that by limiting the large losses, risk man-
agement can be a source of excess returns. During the
2008 crisis, all equities became heavily correlated as
the market crashed, and market risk governed returns
(Figure 1). Without short positions (or derivatives
that simulate short positions), this kind of risk cannot
be diversified away. Our current portfolio construc-
tion method (Equation 7) does not permit negative
weights. We are currently working on extending our
method to cover more kinds of portfolios.

5. Summary

We presented a method for learning connections be-
tween financial time series. We modeled daily returns
using three factors: active return, market sensitivity,
and connectedness of returns. We learned these fac-
tors using a recursive regression. We solved the re-
gression problem using an unconstrained least squares
optimization that ensures that the resulting matrix is
positive semi-definite so that it can be used in portfolio
construction.

We evaluated our method in two ways. First, we evalu-
ated its accuracy in producing a list of equities ordered
by their likelihoods of having large losses, given infor-
mation about the behavior of other equities. We then
presented and demonstrated the potential real world
utility of a method that constructs portfolios using the
learned relationships. The performance of portfolios
constructed using our methods were compared to the
performance of portfolios constructed using conven-
tional approaches, including traditional correlation-
matrix based methods. Portfolios constructed using
our method not only “beat the market,” but also beat
the so-called “optimal portfolios.”
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