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Abstract

We propose a framework for collaborative fil-
tering based on Restricted Boltzmann Ma-
chines (RBM), which extends previous RBM-
based approaches in several important direc-
tions. First, while previous RBM research
has focused on modeling the correlation be-
tween item ratings, we model both user-user
and item-item correlations in a unified hybrid
non-IID framework. We further use real val-
ues in the visible layer as opposed to multi-
nomial variables, thus taking advantage of
the natural order between user-item ratings.
Finally, we explore the potential of combin-
ing the original training data with data gen-
erated by the RBM-based model itself in a
bootstrapping fashion. The evaluation on
two MovieLens datasets (with 100K and 1M
user-item ratings, respectively), shows that
our RBM model rivals the best previously-
proposed approaches.

1. Introduction

In recent years, we have seen steady growth in the
number of products and services that have been made
available to consumers online. While this growth has
created many opportunities for potential customers, it
has also made it practically impossible for someone to
manually examine the full list of online offerings.

The scale at which products and services are offered
has severely limited the utility of human-based solu-
tions such as asking a friend for advice or getting ex-
pert opinion from a review or a discussion forum.
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Collaborative Filtering (CF) offers an automated so-
lution by making recommendations based on scores
assigned by users with similar interests. The assump-
tion is that if two users have rated a set of items in
a similar way in the past, it would be reasonable to
expect them to rate new items likewise as well.

Collaborative Filtering works with user ratings that
are typically represented as an N ×M integer user-
item matrix, where each row contains the ratings of
one user on M items, while each column represents
the ratings for a single item by the N users. In prac-
tice, most of the entries in this user-item matrix are
zeroes, which indicates the absence of a rating. Hence,
CF systems usually have to deal with very large and
highly sparse datasets, which is a considerable chal-
lenge. It makes it harder for the system to gener-
ate accurate recommendations as generally there are
no enough commonly-rated items in order to compare
user-user preferences efficiently.

To deal with this problem, CF systems typically ap-
ply dimensionality reduction techniques (Sarwar et al.,
2000b), so that the rows in the matrix, or the user vec-
tors, are projected in a low-dimensional space. Unlike
the original vectors of all ratings by a given user, which
are very sparse, the low-dimensional vectors live in a
reduced space with increased density, which both al-
leviates data sparseness and offers an opportunity to
discover important latent item-item relationships.

The classic way to implement CF, known as user-based
CF, models the similarity between the different users,
and then derives predictions for the unknown ratings
of a given target user based on the ratings given by the
users it is most similar to in his/her known ratings.

Alternatively, one can take an item-oriented approach
to collaborative filtering: use the same methodology,
but apply it on items as opposed to users.
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By analogy, this technique is called item-based CF,
and has been reported to have certain advantages over
user-based CF (Sarwar et al., 2001). It models item-
item similarities and makes predictions for a given
user’s unknown ratings based on the ratings for items
that are similar to the ones the user has already rated.

Naturally, the prediction quality of user-based algo-
rithms drops when there is no enough information to
assess the similarities between the users, while item-
based algorithms underperform when the same holds
for items. To alleviate these issues, below we will com-
bine user-based and item-based CF.

Overall, the introduction of model-based CF and var-
ious dimensionality-reduction techniques has allowed
CF systems to handle very large datasets, which is
crucial for their practical applicability. One promis-
ing approach in this respect is the use of Restricted
Boltzmann Machines (RBMs) (Smolensky, 1986; Fre-
und & Haussler, 1994; Hinton, 2002), stochastic neu-
ral networks, which learn to infer lower-dimensional
representations automatically. It has been experimen-
tally shown that RBM-based models are a very com-
petitive way to implement CF (Salakhutdinov et al.,
2007): they can scale to hundreds of millions of user-
item ratings, while yielding state-of-the-art results on
standard benchmark datasets such as those of Netflix.

Below we extend the original RBM-based framework
as applied to CF in several important directions. Un-
like previous RBM research, which has modeled the
correlation between item ratings only, we model both
user-user and item-item correlations in a unified non-
IID framework, training a single RBM model to make
rating predictions for all users in the dataset. More-
over, we work with real numbers as opposed to categor-
ical variables, which allows us to take the natural order
between ratings into account, e.g., we consider predict-
ing a rating of 4 when the actual rating is 5 to be better
than predicting a rating of 2. This direct modeling of
the rating values on the visible layer improves the over-
all performance of the model. Finally, we explore the
potential of combining the original training data with
data generated by the RBM-based model itself in a
bootstrapping fashion. The evaluation of our extended
RBM models on two MovieLens datasets, of 100K and
1M user-item ratings, respectively, shows that they ri-
val the best previously-proposed approaches.

The remainder of the paper is organized as follows:
Section 2 presents the related work, Section 3 intro-
duces the general RBM-based framework and our ex-
tensions, Section 4 describes our experiments, Sec-
tion 5 discusses the results, and Section 6 concludes
with directions for future work.

2. Related Work

An early extensive comparison of user-based and item-
based CF algorithms is presented in (Sarwar et al.,
2001), where the item-based algorithms were reported
to work better. It was also noted that the item neigh-
borhood, i.e., the set of items that are similar to each
other, remains fairly static as new ratings are included,
which allows to precompute the item-item similarities,
and thus achieve better performance in terms of test-
time speed as compared to user-based algorithms.

Successful CF algorithms often involve low-rank ap-
proximations of the user-item matrix, e.g., using sin-
gular value decomposition (Billsus & Pazzani, 1998;
Sarwar et al., 2000a; 2002), or principal component
analysis (Goldberg et al., 2001; Kim & Yum, 2005;
Kozma et al., 2009). Related model-based approaches
include statistical latent models (Hofmann, 2004), un-
certain graphs (Taranto et al., 2012) and autoassocia-
tive networks (Vozalis et al., 2010).

Recently, matrix factorization techniques that model
both users and items in a joint latent factor space
have gained popularity for CF (Salakhutdinov &
Mnih, 2008; Koren et al., 2009; Lawrence & Urtasun,
2009). A similar probabilistic latent model that rep-
resents users and items simultaneously is described in
(Langseth & Nielsen, 2012); our model is related, but
simpler and based on RBM.

RBMs were first applied to CF in (Salakhutdinov
et al., 2007), where a separate RBM was trained for
each user. All RBMs had the same number of binary
hidden units, but each RBM had visible softmax units
for the items rated by the target user only. However,
all weights and biases were shared among the RBMs,
so that if two users had rated the same item, their
RBMs would use the same weights between the vis-
ible unit for that item and the hidden units. The
user ratings were modeled using multinomial random
variables. In contrast, our non-IID framework models
both user-user and item-item interactions in a single
RBM; we further use real-value visible units, which
capture the natural order between the ratings.

Finally, Truyen et al. (2009) explored joint modeling
of users and items for CF, but inside an unrestricted
version of Boltzmann Machines (BMs). Their network
topology, visible units and rating prediction schemes
are quite different from ours and rely on more com-
plex parametrization and preprocessing, such as cor-
relation computation and neighborhood formation to
determine the connectivity at their visible layer. More-
over, BMs are not as scalable as RBMs, which makes
our model preferable: it yields comparable quality.
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Figure 1. The user-based RBM model (left) vs. our user-
item-based RBM (right). Each visible unit represents a
numerical user rating. In the left model it is connected to
one hidden layer, while in the right it is linked to two inde-
pendent hidden layers: one modeling correlations between
items and another one modeling correlations between users.

3. Method

Below we introduce the general RBM-based framework
and our extensions and modifications thereof.

3.1. RBM for CF

An RBM uses an N ×M user-item matrix with in-
teger ratings between 1 and K, and 0 when a rating
is missing. It has a linear visible layer V consisting
of M real-valued units {v0, v1, . . . , vM}, which is fully
connected to a binary hidden layer H consisting of F
hidden units {h0, h1, . . . , hF }. All connection weights
are symmetric (wij = wji) and there are no connec-
tions within a layer. There are also some special units:
a bias ai for the visible unit vi, and a bias bj for the
hidden unit hj . See the left of Figure 1 for an example.

The probabilistic activation function of the hidden
layer conditioned on the visible layer is given by the
following equation: P (hj = 1|v) = L(bj +

∑M
i=1 wijvi),

where L(x) is the logistic function. Traditionally,
RBMs have modeled real-valued data using Gaus-
sian visible units (Hinton & Salakhutdinov, 2006):

P (vi|h) = N (ai+
∑F

j=1 wijhj , σ
2
i ). However, in our ex-

periments, we achieved better prediction quality when
using noise-free reconstructions, i.e., when the value
of a visible unit is equal to the sum of its total input
from the hidden units plus its bias.

We treat each user as a single training case for the
same RBM, which learns to model the joint distribu-
tion of all user vectors of ratings. Each of the hidden
units models the presence or absence of a particular
feature for a given user. The symmetric connections
between a hidden unit and all visible units, i.e., the
user’s ratings, learn to jointly model the correlations
between the ratings assigned to the different items.
The RBM model learns to represent each user with a
set of F binary features, and for each configuration of
features, it can generate ratings for all M items.

Naturally, we can neither expect that all N users have
rated all M items nor that they have rated the same
subset of items. Furthermore, most of the M ratings
by a given user will be missing. In order to allow our
RBM to make predictions for missing ratings, we make
a simple change to the learning procedure.

In general, during the learning process of an RBM, it
is trained to approximate the observed data distribu-
tion with the distribution that is eventually produced
by the machine when it reaches the state of thermal
equilibrium. So, normally if some rating is missing for
a given user, i.e., is set to 0, the RBM will always strive
to reconstruct the same value for it, i.e., 0; this is not
what we want. We deal with this problem by changing
the weight update function to ignore any terms that
are connected to visible units that were originally set
to 0. Of course, these visible units are ignored from all
computations in both the positive and negative phases.
For the rest, we update the weights as follows:

∆wij = ε(< vihj >
+ − < vihj >

−), v0i > 0 (1)

∆wij = 0, v0i = 0 (2)

This setting is logically equivalent to the multiple
RBMs with shared connections described in (Salakhut-
dinov et al., 2007), but it serves as a better foundation
for the introduction of our hybrid RBM model. In the
above formulas, v0i denotes the original value of vi, i.e.,
the rating for item i as given in the user-item matrix;
∆wij is the update for the weight between the visible
unit vi and the hidden unit hj ; ε is the learning rate1;
< vihj >

+ denotes the average of the product vihj
sampled from the positive phase, when a data vector
from the training set is clamped on the visible units;
< vihj >

− denotes the average of the product vihj
sampled from the negative phase, when the network
runs freely. Note that we can avoid computing the lat-
ter by following the gradient of the Contrastive Diver-
gence objective function instead of the log-likelihood,
as described in (Salakhutdinov et al., 2007).

To make predictions after the RBM model has been
trained in this way, we simply clamp a given user’s
ratings on the visible layer. Then, we let the features
in the hidden layer be activated via the weights of their
connections to the visible layer. Finally, we compute
the new values of the visible layer given the state of the
hidden layer and the weights of the connections to it.
The new values of the visible layer are the actual rating
predictions. The values could simply be rounded if
only integer values are allowed for the ratings.

1In the interest of clarity of presentation, we have in-
tentionally omitted some other factors from the equation
such as the weight decay and momentum.
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3.2. Hybrid RBM for CF

Given that the above-described RBM model represents
users on both its visible and its hidden layers, it could
be classified as a user-based CF model. However, we
can easily design an alternative item-based version of
it. The only difference would be that now the RBM
will have a linear visible layer V consisting of N real-
valued nodes {v0, v1, . . . , vN}, where vi would accept
the rating assigned to a given item by user i.

More importantly, we can combine the two RBM mod-
els into a single unified model that takes into account
both item-item and user-user correlations. In order to
do that, we consider an RBM model where the whole
user-item matrix is treated as a single training exam-
ple. Let vij be the visible unit that corresponds to the
rating of user i on item j. The unit vij is connected to
two independent hidden layers – one user-based and
another item-based. Assuming noise-free reconstruc-
tion, its value is given by the following equation:

vij =
1

2

aUi +

FU∑
p=1

wU
iph

U
ip + aIj +

F I∑
q=1

wI
jqh

I
jq

 (3)

Here the upper index U denotes that the corresponding
term is related to the user-based hidden layer, while
the upper index I stands for relation to the item-based
hidden layer. The size of the user-based hidden layer
is FU , while the size of the item-based hidden layer
is F I . It can be easily seen that in order to com-
pute a single rating vij , the entire i-th row as well as
the entire j-th column has to be available. Hence, in
order to compute all ratings for a given user, the en-
tire user-item matrix must be available. This is com-
putationally more intensive than the user/item-based
RBM model where only the row/column for the target
user/item is needed. Still, it is possible to reduce this
complexity by precomputing the sums in the equation
above. This model is shown on the right of Figure 1.

This hybrid RBM model could be also represented
by two standalone user-based and item-based RBMs,
after making some simple changes in their learning
schemes. Consider batch learning where the batch
equals the entire user-item matrix. Then, after each
learning step, an RBM generates a new prediction ma-
trix according to its current internal state. The learn-
ing rule changes the weights so that the prediction
matrix approximates the original user-item matrix for
all ratings that were not missing originally. So, in or-
der to train the hybrid model, we need to change the
learning rule, so that when the new weight updates
are being computed, we substitute each RBM predic-
tion matrix with the average sum of the two individual
RBM prediction matrices.

Hence, the training time of the hybrid model equals
roughly the sum of the training times of the two stan-
dalone models. This learning procedure corresponds to
contrastive divergence for the proposed hybrid RBM
model. It is very important that we take the aver-
age, as opposed to the direct sum of the two matrices,
so that we let each individual RBM, and its feature
detectors, model the real rating values as opposed to
parts of sums. We have experimentally confirmed the
significance of this: on the small MovieLens dataset,
using a simple sum yields MAE of just 0.875, while
using the average yields MAE of 0.690 (which is the
best result we report in this paper).

For comparison, we also try our hybrid user-item ap-
proach on RBM with a multinomial visible layer, as
described in (Salakhutdinov et al., 2007). In order for
this model to be efficient, equation (3) has to be com-
puted as the total input for each softmax unit. Note
that each softmax visible unit is connected to each unit
of the two hidden layers via symmetric connections.

3.3. RBM-boosted CF

It is possible to boost the final prediction quality by
combining the predictions of an RBM model with
those of a standard neighborhood-based model. Con-
sider an item-based approach where the weight wij is
computed as a combination of the few available origi-
nal ratings and the full set of ratings predicted by an
RBM model using Pearson correlation:

wij =

∑N
u=1(r′ui − ri)(r′uj − rj)√∑N

u=1(r′ui − ri)2
√∑N

u=1(r′uj − rj)2
(4)

Here r′ui is the rating of user u for item i as predicted
by the RBM model, and ri is the average rating for
item i. Unlike in previous research, we compute the
averages from the original ratings only, excluding the
ratings predicted by the RBM model. The final predic-
tion for the rating of user u on item i can be computed
using weighted average:

Pui = ri +

∑M
j=1(ruj − rj)wij∑M

j=1 |wij |
(5)

An individual user-based or item-based RBM has very
good performance in terms of speed. By combining
an RBM model with a neighborhood-based model, we
can retain much of the speed efficiency since the item
averages and item-item weights (correlations) could be
precomputed. Moreover, as noted in (Sarwar et al.,
2001), an item’s neighborhood is fairly static, and thus
we can retain only a small portion of the most similar
items to be used for the actual ratings prediction step.
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4. Experiments and Evaluation

Below, we first describe our test datasets and our eval-
uation measure; then, we present our evaluation setup
and we report our experimental results.

4.1. Datasets

We evaluated the above-described RBM-based mod-
els on two MovieLens datasets2, which are commonly
used for evaluating collaborative filtering algorithms.

The first dataset (MovieLens 100k) consists of 100,000
ratings for 1,682 movies assigned by 943 users, while
the second one (MovieLens 1M) contains one million
ratings for 3,952 movies by 6,040 users. Each rating is
an integer between 1 (worst) and 5 (best).3 The rat-
ings are highly sparse: around 93.7% of them are miss-
ing from the former and 95.8% from the latter dataset.
For both datasets, we follow previous researchers and
perform 5-fold cross-validation using the provided five
disjoint 80%:20% training:testing data splits.

4.2. Evaluation Measure

For evaluation, we use Mean Absolute Error (MAE),
which measures the deviation of the predicted ratings
from their true values as specified by the users. For
each pair of a true user-specified rating ui and a pre-
dicted rating pi, the absolute difference |ui−pi| is cal-
culated between them as the error for that pair. Then
MAE is computed as the average error over all L pairs:

MAE =

∑L
i |ui − pi|
L

(6)

4.3. Experimental Setup

We evaluated three RBM-based models: U-RBM, a
user-based RBM, I-RBM, an item-based RBM, and
UI-RBM, a joint user-item-based RBM.

We further experimented with the above-described
neighborhood-based algorithm, implemented to model
the similarities between items as opposed to users, and
further boosted with rating predictions generated by
an item-based RBM model. Below we refer to this
hybrid algorithm as I-RBM+INB.

We trained all models in batch mode using mean-field
update after a full pass through the data. We used
Contrastive Divergence learning with one step of Gibbs
sampling, which reduces training time considerably.

2http://www.grouplens.org/node/73
3The dataset provides some further information,

e.g., demographic, which has typically been ignored in pre-
vious research; we did the same in order to make our results
directly comparable to those in related work.

We trained all models for several epochs. For
the weight updates, we used a learning rate of
0.05/training-size, which is a good default value, where
the training size equals the number of users for the
user-based RBM or the number of items for the item-
based RBM. We also used a momentum of 0.6, again a
good default value, and a weight decay with regulariza-
tion parameter λ = 0.0002; we did not try to optimize
the values of these parameters. We sampled the initial
weights from a zero mean normal distribution with a
standard deviation of 0.1.

We trained the hybrid RBM model (UI-RBM) by
adapting the training procedures of the standalone
item-based and user-based RBMs, so that after each
pass through the training data and before calculating
the new weight updates, each RBM “thinks” that it
has generated the average of the values generated by
the two RBMs. The final rating predictions are also
obtained as an average of those of the two RBMs.

4.4. Results

We report results on both MovieLens 100k and 1M.

4.4.1. MovieLens 100k

We compared the prediction quality of our models for
different sizes of the hidden layers and for different
numbers of training epochs. The left side of Figure 2
shows the dependency of MAE on the number of units
in the hidden layer when the models are trained for
200 epochs. We can see that the user-based model
(U-RBM) works best with 50 hidden units, while for
the item-based model (I-RBM), it is best to use about
80 hidden units. In contrast, the hybrid, item-based
RBM and neighborhood-based model (I-RBM+INB),
is not affected much by the number of units in the
RBM hidden layer; this is a very attractive property.

Next, we studied the dependency of MAE on the
number of epochs in training. The experiments with
U-RBM (F = 50), I-RBM (F = 80), I-RBM+INB
(F = 130) and UI-RBM (FU = 40, F I = 40) are
shown on the right side of Figure 2. We can see
that U-RBM achieves optimal performance after 150
epochs and stays relatively stable afterwards; I-RBM
performs a bit worse when trained for less than 200
epochs and then slightly outperforms U-RBM. We can
further see that UI-RBM significantly outperforms the
standalone models U-RBM and I-RBM. It is also bet-
ter than the I-RBM+INB model, but not by much.

We made an experiment averaging the results of U-
RBM and I-RBM, and this also led to significant im-
provement (MAE = 0.74) over the standalone models.
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Figure 2. MAE on 100k: user-based RBM (U-RBM), item-based RBM (I-RBM), neighborhood-based boosted with data
from I-RBM (I-RBM+INB) and hybrid RBM model (UI-RBM), FU = 40, F I = 40 (right side only). On the left, the
x-axis is hidden nodes, for 200 epochs. On the right, the x-axis is epochs, for the optimal hidden size from the left.

We can attribute this to the two models having differ-
ent kinds of errors. However, as we see on the right side
of Figure 2, the unified model UI-RBM yields even bet-
ter results, which indicates that modeling user-based
and item-based correlations is a better idea.

Next, we compared the prediction quality achieved
by our models to that of previous work that used
the MovieLens 100k dataset. These include not
only RBMs, but also collaborative filtering approaches
based on singular value decomposition (SVD), princi-
pal component analysis (PCA), and nearest neighbors.

Table 1. Comparison (on 100k) of the prediction quality of
various CF models and our RBM-based models (in bold).

CF Model MAE

SVD PCA (Vozalis et al., 2010) 0.793
H-NLPCA (Vozalis et al., 2010) 0.784
U-RBM 0.779
I-RBM 0.775
SVD (Sarwar et al., 2002) 0.733
Item-based CF (Sarwar et al., 2001) 0.726
Iter PCA + K-means (Kim & Yum, 2005) 0.712
Iter PCA + RRC (Kim & Yum, 2005) 0.700
I-RBM+INB 0.699
UI-RBM 0.690
Latent CF (Langseth & Nielsen, 2012) 0.685

The results are shown in Table 1. We can see that
our two baselines, U-RBM and I-RBM, perform bet-
ter than two strong models from the literature: the au-
toencoder network and the SVD- and the PCA-based
approaches of Vozalis et al. (2010); the difference in
MAE is statistically significant according to the two-
tailed Pearson’s χ2 test. Also, the results of our I-
RBM+INB model are comparable to the results of the
improved but more complex PCA-based models com-
bined with clustering methods (Kim & Yum, 2005).

The improvement of our hybrid UI-RBM over the
PCA-based algorithms of Kim & Yum (2005) is also
statistically significant. Our final result gets very close
to the state-of-the-art result of Langseth & Nielsen
(2012): with a difference of only half a point of MAE.

4.4.2. MovieLens 1M

Next, we evaluated the performance of our RBM-based
models on the larger MovieLens 1M dataset. We fur-
ther compared the use of real-valued visible layers
vs. multinomial ones, e.g., the latter were used in
(Salakhutdinov et al., 2007). The results are sum-
marized on Table 2 along with the best previously-
published results on this dataset.

Figure 3. MAE on 1M: a user-based RBM with a real-
valued visible layer (Real U-RBM) vs. a user-based RBM
with multinomial visible layer (Multinomial U-RBM).

Figure 3 shows the dependency of MAE on the number
of epochs for U-RBM when using a real-valued vs. a
multinomial visible layer. We used F = 150 hidden
units for the former and F = 50 for the latter. We
determined these values experimentally, as we did for
the 100k dataset; however, due to the lack of space,
this time we skip the detailed results.
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Figure 3 shows that the real-valued model initially
works better, but then falls behind the multinomial
model as the training continues. Hence, while the real-
valued model is simpler and has fewer parameters to
learn, it is also more sensitive to overfitting and thus
it should not be preferred to the multinomial model.

Figure 4. MAE on 1M for two hybrid RBM models: with
a real-valued visible layer, FU = 70, F I = 70 and with a
multinomial visible layer, FU = 50, F I = 50.

However, Figure 4, which compares the prediction
quality of the hybrid model when applied to the real-
valued and to the multinomial visible layers, shows
that the situation is different when users and items are
modeled jointly. Here, the real-valued model yields
consistently better results compared to the multino-
mial one and is ultimately significantly better than
it. Therefore, we can conclude that modeling user-
item ratings directly using a linear real-valued visible
layer is preferable over the multinomial alternative as
it yields better predictions while also being simpler
topologically and computationally, and while requir-
ing less parameters to learn.

Finally, Table 2 shows a comparison of the predic-
tion quality of all models we experimented with to
previously-published results on the MovieLens 1M
dataset.4 Note, that all RBM-based models include
RBM in their names, while all BM-based models in-
clude BM;5 also, Multinomial U-RBM denotes our im-
plementation of the categorical RBM model described
by (Salakhutdinov et al., 2007). We can see that the re-
sults for our real-valued U-RBM and I-RBM are com-
parable, and the latter is slightly better. The rest of
our RBM-based models are better than the best results
reported in (Taranto et al., 2012).

4The compared methods on the two datasets are differ-
ent because we compare against published results, and the
best results for the two datasets are different.

5In order to save space, we abbreviate the original model
names given in the literature by substituting USER-ITEM
with UI. We further append BM to model names to denote
that they are based on an unrestricted Boltzmann Machine.

Table 2. Comparison (on 1M) of the prediction quality of
various CF models and our RBM-based models (in bold).
The values for (Truyen et al., 2009) are approximate and
derived from the graphs in their work.

CF Model MAE

Real U-RBM 0.762
Real I-RBM 0.761
L8 (Taranto et al., 2012) 0.720
Multinomial U-RBM 0.711
Multinomial I-RBM 0.710
Multinomial UI-RBM 0.685
GAUSS-UI-BM (Truyen et al., 2009) 0.675
Real I-RBM+INB 0.669
ORD-UI-BM (Truyen et al., 2009) 0.657
Real UI-RBM 0.645
ORD-UI-BM-CORR (Truyen et al., 2009) 0.640

Also, both our real-valued hybrid RBM model (Real
UI-RBM) and our neighbourhood-based RBM model
(I-RBM+INB) perform better than the more complex
joint user-item Gaussian BM-based model (GAUSS-
UI-BM) described by Truyen et al. (2009). The visible
nodes in the latter are connected not only to the hid-
den layers but also to other nodes in the visible layer.
This introduces additional parameters to be learned,
which, combined with the different types of parame-
ters used, complicates and slows down learning (this
holds for all BM-based models in Table 2), leading to
worse model performance as compared to ours.

Our real-valued hybrid RBM model further outper-
forms the ordinal joint user-item BM-based model
(ORD-UI-BM) proposed by Truyen et al. (2009). Fi-
nally, we can see in the last row of Table 2 that
the additional preprocessing, which includes user-
user and item-item correlation computation followed
by neighborhood formation for each visible node in
the input layer, helps the ORD-UI-BM-CORR model
(Truyen et al., 2009) to achieve state-of-the-art perfor-
mance. Yet, our real-valued hybrid RBM-based model
is preferable as it requires no additional preprocessing,
has simpler parametrization, and still achieves a very
similar performance (worse by 0.005 MAE only).

5. Discussion

There are several important observations we can make.
First, the relatively simple RBM models with linear
visible nodes, such as U-RBM and I-RBM, can yield
prediction quality that outperforms more complex ap-
proaches based on autoencoder networks, SVD, PCA,
and correlation-based neighborhood formation.



A non-IID Framework for Collaborative Filtering with Restricted Boltzmann Machines

Training our models is speed-efficient, which allows us
to handle potentially very large datasets. Moreover,
the evaluation on a small and on a ten times larger
datasets has demonstrated that the prediction quality
remains consistent and improves when the amount of
training data increases by an order of magnitude; this
is a good indication for potential practical applicabil-
ity. The user-based RBM achieves its optimal MAE
with fewer parameters to learn, F = 50, while the
item-based one achieves its best results for F = 80
on MovieLens 100k dataset. While the latter yields
slightly better results than the former, the difference
is not statistically significant. Also, the user-based
model is more susceptible to overfitting as the number
of hidden nodes (user features) grows, which is not the
case for the item-based RBM model and especially for
its combination with Pearson correlation. The pre-
diction quality of the latter remains stable for differ-
ent numbers of item features, which means that it can
handle a variety of dataset scales without the need to
retune its parameters. While averaging the results of
both models yields significant improvements, unifying
them in a joint RBM model works even better.

We have further shown that using a real-valued visi-
ble layer that directly models the user-item ratings is
not only more efficient and simpler, but also yields ul-
timately better prediction quality compared to using
a multinomial binary visible layer. This holds for all
but the standalone user- or item-based RBM models,
where the multinomial model achieves better results
after a certain number of training epochs.

Our final results are comparable to the best pub-
lished results for CF algorithms on the two Movie-
Lens datasets. The training/prediction time of our
best model equals the sum of the training/prediction
times of two standalone RBM models. However, in or-
der to predict the ratings for a single user, the whole
user-item matrix needs to be clamped on the RBM’s
visible layer. This could be optimized by precomput-
ing the activation signal to each hidden node.

Furthermore, using the predictions generated by the
standalone item-based RBM in the computation of the
item-item correlations with Pearson correlation yields
significant improvements for the neighborhood-based
algorithm. The final results are slightly worse than
those of the hybrid user-item-based RBM model.

Finally, the performance of the ratings prediction pro-
cess could be optimized by precomputing the item
neighborhoods as noted in (Sarwar et al., 2001). How-
ever, computing the correlations using the predictions
generated by the hybrid RBM model does not lead to
further improvements.

6. Conclusion and Future Work

We have introduced and experimentally evaluated ex-
tensions of the original RBM-based framework for
collaborative filtering in several important directions.
While the original RBM framework only uses user-
based modeling, we model both user-based and item-
based correlation in a unified framework. In particular,
we have proposed a non-IID hybrid RBM model that
uses two types of hidden features: the first type mod-
els dependencies between the ratings of different items,
while the second type models user-user dependencies.

Our evaluation on two MovieLens datasets of differ-
ent sizes has shown that this model yields results that
rival the prediction quality of the best previously-
proposed CF algorithms, which are also more com-
plex. We have further proposed a combination of our
standalone item-based RBM model with a standard
neighborhood-based algorithm that relies on Pear-
son correlation. We experimentally confirmed that
this combination also yields comparable results, while
maintaining high speed.

Moreover, we used linear (as opposed to sigmoid) vis-
ible nodes that model the numerical rating values and
their predictions directly. Unlike the original binary
visible nodes, the linear ones allow the model to take
into account the natural order between real-valued rat-
ings. This means that when the actual score is 5, our
model considers lower penalty when predicting a score
of 4 than if the prediction was 2. Also, the direct mod-
eling of the rating numbers leads to improved predic-
tion and overall performance of the model. In order
to examine the effects of this simplification on the pre-
diction quality, we also have implemented alternative
variants of our models that use multinomial visible lay-
ers. The evaluation on both datasets we experimented
with shows that using real-valued input nodes yields
significant improvement.

In future work, we are considering a number of inter-
esting extensions of the proposed framework. One way
to extend the hybrid RBM model is to stack an ad-
ditional hidden layer on top of the independent item-
based and user-based feature detectors. This new layer
could potentially model higher-order correlations be-
tween users and items. Another possibility for exten-
sion is to incorporate various content-based features
such as user’s demographic information, item’s cate-
gorizations and others (Pazzani, 1999; Melville et al.,
2002). Finally, the prediction quality of the combined
RBM and the neighborhood-based approach could be
potentially improved by better tuning the sizes of the
items neighborhood.
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