ICML 2013-SUPPLEMENTARY MATERIAL

Sébastien Giguère, François Laviolette, Mario Marchand, Khadidja Sylla

In this supplementary material, we make use of the following notation. x_{i} denotes the $i^{\text {th }}$ entry of the (column) vector $X(x), y_{j}$ the $j^{\text {th }}$ entry of the (column) vector $Y(y), \mathbf{V}[i ; j]$ denotes the entry in position (i, j) of the matrix \mathbf{V}. Also, $\mathbf{V}[; j]$ denotes the $j^{\text {th }}$ column of the matrix V. Finally, $\delta_{i, j}$ denotes the delta function which gives 1 if $i=j$, and 0 otherwise.

7. Example of a distribution where the minimizer of the quadratic risk has a substantial higher error rate than the optimal classifier

We consider a simple one-dimensional binary classification problem where $\mathcal{X}=\mathbb{R}$ and $\mathcal{Y}=\{-1,+1\}$. We thus consider classifiers identified by a single scalar weight w such that the output $h_{w}(x)$ on an input x is given by $h_{w}(x)=\operatorname{sgn}(w x)$.
Consider a distribution D concentrated on four points $\left\{\left(x_{1}, y_{1}\right),\left(x_{2}, y_{2}\right),\left(x_{3}, y_{3}\right),\left(x_{4}, y_{4}\right)\right\}$. Let p_{i} denote the weight induced by D on x_{i}. Hence $\sum_{i=1}^{4} p_{i}=1$. The $0 / 1$ risk is then given by $\sum_{i=1}^{4} p_{i} I\left(h_{w}\left(x_{i}\right) \neq y_{i}\right)$ and the quadratic risk is given by $\sum_{i=1}^{4} p_{i}\left(y_{i}-w x_{i}\right)^{2}$.
Let w_{r} denote the value of w minimizing the quadratic risk. Since the derivative (with respect to w) of the quadratic risk must vanish at w_{r}, we find that it is given by the solution of $w_{r} \sum_{i=1}^{4} p_{i} x_{i}^{2}-\sum_{i=1}^{4} p_{i} y_{i} x_{i}=0$, or equivalently by

$$
w_{r}=\frac{\sum_{i=1}^{4} p_{i} y_{i} x_{i}}{\sum_{i=1}^{4} p_{i} x_{i}^{2}}
$$

Now let $x_{1}=\epsilon$ with $p_{1}=(1-\epsilon) / 2$ and $y_{1}=+1$. Let $x_{2}=-\epsilon$ with $p_{2}=(1-\epsilon) / 2$ and $y_{2}=-1$. Let $x_{3}=1 / \epsilon$ with $p_{3}=\epsilon / 2$ and $y_{3}=-1$. Let $x_{4}=-1 / \epsilon$ with $p_{4}=\epsilon / 2$ and $y_{4}=+1$.

Hence, with this distribution, the $0 / 1$ risk of a classifier with a positive weight w is equal to ϵ and the $0 / 1$ risk of a classifier with a negative weight w is equal to $1-\epsilon$. The difference tends to the maximum value of 1 when ϵ goes to zero.

However, with this distribution This gives

$$
w_{r}=\frac{-1+\epsilon(1-\epsilon)}{(1-\epsilon) \epsilon^{2}+(1 / \epsilon)}
$$

Hence w_{r} is negative for all ϵ between 0 and 1 . Hence the $0 / 1$ risk of $h_{w_{r}}$ is $(1-\epsilon)$ but there exists classifiers (those with positive w) having a $0 / 1$ risk of ϵ.

8. Proof of Equation (5)

$$
\begin{equation*}
\underset{\mathbf{V} \sim Q_{\mathbf{W}, \sigma}}{\mathbf{E}}\|Y(y)-\mathbf{V} X(x)\|^{2}=\|Y(y)-\mathbf{W} X(x)\|^{2}+\sigma^{2} N_{\mathcal{Y}} \mid X(x) \|^{2}, \tag{5}
\end{equation*}
$$

Proof. First, note that

$$
\|Y(y)-\mathbf{V} X(x)\|^{2}=\|Y(y)\|^{2}-2\langle Y(y) \mid \mathbf{V} X(x)\rangle+\|\mathbf{V} X(x)\|^{2}
$$

Let us now compute the expectation according to the posterior $Q_{\mathbf{W}, \sigma}$ of these three terms.
${ }^{\bullet} \underset{\mathbf{V} \sim Q_{\mathbf{W}, \sigma}}{\mathbf{E}}\|Y(y)\|^{2}=\|Y(y)\|^{2}$.

- For $\underset{\mathbf{V} \sim Q_{\mathbf{W}, \sigma}}{\mathbf{E}} 2\langle Y(y) \mid \mathbf{V} X(x)\rangle$:

$$
\begin{align*}
& \underset{\mathbf{V} \sim Q_{\mathbf{W}, \sigma}}{\mathbf{E}} 2\langle Y(y) \mid \mathbf{V} X(x)\rangle=2 \underset{\mathbf{V} \sim Q_{\mathbf{W}, \sigma}}{\mathbf{E}}\left\langle Y(y) \mid \sum_{l=1}^{N_{\mathcal{X}}} x_{l} \mathbf{V}[; l]\right\rangle \\
&=2 \underset{\mathbf{V} \sim Q_{\mathbf{W}, \sigma}}{\mathbf{E}} \sum_{l=1}^{N_{\mathcal{X}}}\left\langle Y(y) \mid x_{l} \mathbf{V}[; l]\right\rangle \\
&=2 \underset{\mathbf{V} \sim Q_{\mathbf{W}, \sigma}}{\mathbf{E}} \sum_{l=1}^{N_{\mathcal{X}}} \sum_{q=1}^{N_{\mathcal{Y}}} y_{q} \mathbf{V}[q ; l] x_{l} \\
&=2 \sum_{l=1}^{N_{\mathcal{X}}} \sum_{q=1}^{N_{\mathcal{Y}}} y_{q} x_{l} \\
& \mathbf{V} \sim Q_{\mathbf{W}, \sigma} \\
&=2 \sum_{l=1}^{N_{\mathcal{X}}} \sum_{q=1}^{N_{\mathcal{Y}}} y_{q} x_{l}[q ; l] \\
& \mathbf{W}[q ; l] \tag{15}\\
& \vdots \\
&=2\langle Y(y) \mid \mathbf{W} X(x)\rangle
\end{align*}
$$

- For $\underset{\mathbf{V} \sim Q_{\mathbf{W}, \sigma}}{\mathbf{E}}\|\mathbf{V} X(x)\|^{2}$, first note that since $Q_{\mathbf{W}, \sigma}$ is an isotropic Gaussian with mean \mathbf{W} and variance σ^{2}, we have

$$
\underset{\mathbf{V} \sim Q_{\mathbf{W}, \sigma}}{\mathbf{E}} \mathbf{V}[q ; l] \mathbf{V}[q ; k]=\mathbf{W}[q ; l] \mathbf{W}[q ; k] \quad \text { if } l \neq k
$$

and

$$
\underset{\mathbf{V} \sim Q_{\mathbf{W}, \sigma}}{\mathbf{E}} \mathbf{V}[q ; l] \mathbf{V}[q ; l]=\mathbf{W}[q ; l]+\sigma^{2}
$$

Thus, we have

$$
\begin{align*}
& \underset{\mathbf{V} \sim Q_{\mathbf{W}, \sigma}}{\mathbf{E}}\|\mathbf{V} X(x)\|^{2}=\underset{\mathbf{V} \sim Q_{\mathbf{W}, \sigma}}{\mathbf{E}}\langle\mathbf{V} X(x) \mid \mathbf{V} X(x)\rangle \tag{16}\\
& =\underset{\mathbf{v} \sim Q_{\mathbf{W}, \sigma}}{\mathbf{E}}\left\langle\sum_{l=1}^{N_{\mathcal{X}}} x_{l} \mathbf{V}[; l] \mid \sum_{k=1}^{N_{\mathcal{X}}} x_{k} \mathbf{V}[; k]\right\rangle \\
& =\underset{\mathbf{V} \sim Q_{\mathbf{W}, \sigma}}{\mathbf{E}} \sum_{l=1}^{N_{\chi}} \sum_{k=1}^{N_{\chi}} x_{l} x_{k}\langle\mathbf{V}[; l] \mid \mathbf{V}[; k]\rangle \\
& =\underset{\mathbf{V} \sim Q_{\mathbf{W}, \sigma}}{\mathbf{E}} \sum_{l=1}^{N_{\chi}} \sum_{k=1}^{N_{\chi}} x_{l} x_{k} \sum_{q=1}^{N_{\mathcal{y}}} \mathbf{V}[q ; l] \mathbf{V}[q ; k] \\
& =\sum_{l=1}^{N_{X}} \sum_{k=1}^{N_{X}} x_{l} x_{k} \sum_{q=1}^{N_{\mathcal{Y}}} \underset{\mathbf{V} \sim Q_{\mathbf{W}, \sigma}}{\mathbf{E}} \mathbf{V}[q ; l] \mathbf{V}[q ; k] \tag{17}\\
& =\sum_{l=1}^{N_{\chi}} \sum_{\substack{k=1 \\
k \neq l}}^{N_{\chi}} x_{l} x_{k} \sum_{\substack{q=1}}^{N_{\nu}} \mathbf{W}[q ; l] \mathbf{W}[q ; k] \\
& +\sum_{k=1}^{N_{\chi}} x_{k} x_{k} \sum_{q=1}^{N_{\mathcal{\nu}}}\left(\mathbf{W}[q ; l] \mathbf{W}[q ; k]+\sigma^{2}\right) \\
& =\left(\sum_{l=1}^{N_{\mathcal{X}}} \sum_{k=1}^{N_{X}} x_{l} x_{k} \sum_{q=1}^{N_{y}} \mathbf{W}[q ; l] \mathbf{W}[q ; k]\right)+\sum_{k=1}^{N_{X}} x_{k}^{2} \sum_{q=1}^{N_{\mathcal{Y}}} \sigma^{2} \\
& =\|\mathbf{W} X(x)\|^{2}+\sigma^{2} N_{\mathcal{Y}} \sum_{k=1}^{N_{\chi}} x_{k}^{2} \tag{18}\\
& =\|\mathbf{W} X(x)\|^{2}+\sigma^{2} N_{\mathcal{Y}}\|X(x)\|^{2} . \tag{19}
\end{align*}
$$

From all that precedes, we then obtain:

$$
\begin{aligned}
\underset{\mathbf{V} \sim Q_{\mathbf{W}, \sigma}}{\mathbf{E}}\|Y(y)-\mathbf{V} X(x)\|^{2} & =\underset{\mathbf{V} \sim Q_{\mathbf{W}, \sigma}}{\mathbf{E}}\left(\|Y(y)\|^{2}-2\langle Y(y) \mid \mathbf{V} X(x)\rangle+\|\mathbf{V} X(x)\|^{2}\right) \\
& =\|Y(y)\|^{2}-2\langle Y(y) \mid \mathbf{W} X(x)\rangle+\|\mathbf{W} X(x)\|^{2}+\sigma^{2} N_{\mathcal{Y}}\|X(x)\|^{2} \\
& =\|Y(y)-\mathbf{W} X(x)\|^{2}+\sigma^{2} N_{\mathcal{Y}}\|X(x)\|^{2},
\end{aligned}
$$

and we are done.

9. Proof of Equation (6)

Proof. Let us now prove Equation (6), which is given by

$$
\begin{equation*}
\underset{\mathbf{V} \sim Q_{\mathbf{W}, \sigma}}{\mathbf{E}} e^{-2\|Y(y)-\mathbf{V} X(x)\|^{2}}=\left[\frac{\sigma^{N_{X}}}{\sqrt{1+4 \sigma^{2}\|X(x)\|^{2}}}\right]^{N_{y}} e^{-\frac{2\|Y(y)-\mathbf{W} X(x)\|^{2}}{1+4 \sigma^{2}\|X(x)\|^{2}}} . \tag{20}
\end{equation*}
$$

We will prove Equation (20) for the case of an arbitrary vector X for which each of its component is non zero. To see that the result will also hold for the case where X has some zero-valued components, note that the result will hold by replacing X with $X+\vec{\epsilon}$, where $\vec{\epsilon}$ is a vector whose entries are all equal to ϵ for an ϵ smaller than the smallest non zero component of X. The result then comes out from the continuity with respect to X of the right-hand side of Equation (20) and by taking the limit when ϵ goes to zero.

Now, let

$$
\begin{aligned}
I & \stackrel{\text { def }}{=} \underset{\mathbf{V} \sim Q_{\mathbf{W}, \sigma}}{\mathbf{E}} e^{-2\|Y(y)-\mathbf{V} X(x)\|^{2}} \\
& =\int \frac{d \mathbf{V}}{(\sigma \sqrt{2 \pi})^{N_{X} N_{\mathcal{V}}}} e^{-\frac{1}{2} \frac{\|\mathbf{V}-\mathbf{w}\|^{2}}{\sigma^{2}}} e^{-2\|Y(y)-\mathbf{V} X(x)\|^{2}} .
\end{aligned}
$$

Performing the change of variables $\mathbf{U}=\mathbf{V}-\mathbf{W}$ gives

$$
I=\int \frac{d \mathbf{U}}{(\sigma \sqrt{2 \pi})^{N_{\mathcal{X}} N_{\mathcal{Y}}}} e^{-\frac{1}{2} \frac{\|\mathbf{U}\|^{2}}{\sigma^{2}}} e^{-2\|Y(y)-(\mathbf{U}+\mathbf{W}) X(x)\|^{2}} .
$$

Now, let \vec{A} be the vector of \mathcal{H}_{y} defined as

$$
\begin{equation*}
\vec{A} \stackrel{\text { def }}{=} Y(y)-\mathbf{W} X(x), \tag{21}
\end{equation*}
$$

and let us denote by A_{l}, the $l^{\text {th }}$ component of the vector \vec{A}. Then

$$
-2\|Y(y)-(\mathbf{U}+\mathbf{W}) X(x)\|^{2}=-2\|\vec{A}\|^{2}+-2\|\mathbf{U} X(x)\|^{2}+4\langle\vec{A} \mid \mathbf{U} X(x)\rangle .
$$

This implies that

$$
\begin{equation*}
I=e^{-2\|\vec{A}\|^{2}} \int \frac{d \mathbf{U}}{(\sigma \sqrt{2 \pi})^{N_{X} N_{y}}} e^{-\frac{1}{2}\left(\frac{\|\mathbf{U}\|^{2}}{\sigma^{2}}+4\|\mathbf{U} X(x)\|^{2}-8\langle\vec{A} \mid \mathbf{U} X(x)\rangle\right)} . \tag{22}
\end{equation*}
$$

9.1. An analysis of the argument of the exponential function of the integral I

Let

$$
\begin{equation*}
Q \stackrel{\text { def }}{=}\left(\frac{\|\mathbf{U}\|^{2}}{\sigma^{2}}+4\|\mathbf{U} X(x)\|^{2}-8\langle\vec{A} \mid \mathbf{U} X(x)\rangle\right) . \tag{23}
\end{equation*}
$$

In the following, A_{l} denotes the $l^{t h}$ component of the vector \vec{A}. Then,

$$
\begin{aligned}
& Q=\sum_{i=1}^{N_{\chi}} \sum_{l=1}^{N_{y}} \frac{\mathbf{U}_{[l ; i]}^{2}}{\sigma^{2}}+4\left\|\sum_{i=1}^{N_{\chi}} \mathbf{U}_{[; i]} x_{i}\right\|^{2}-8 \sum_{i=1}^{N_{\chi}}\left\langle\vec{A} \mid \mathbf{U}_{[; i]}\right\rangle x_{i} \\
& =\sum_{i=1}^{N_{\chi}} \sum_{l=1}^{N_{\mathcal{y}}} \frac{\mathbf{U}_{[l ; i]}^{2}}{\sigma^{2}}+4 \sum_{i, j=1}^{N_{\chi}} \sum_{l=1}^{N_{\mathcal{\nu}}} \mathbf{U}_{[l ; i]} x_{i} \mathbf{U}_{[l ; j]} x_{j}-8 \sum_{i=1}^{N_{\mathcal{X}}} \sum_{l=1}^{N_{\mathcal{\nu}}} A_{l} \mathbf{U}[l ; i] x_{i} \\
& =\sum_{i=1}^{N_{\chi}} \sum_{l=1}^{N_{\mathcal{Y}}} \frac{\mathbf{U}_{[l ; i]}^{2}}{\sigma^{2}}+4 \sum_{i, j=1}^{N_{\chi}} \sum_{l=1}^{N_{\mathcal{Y}}} \mathbf{U}_{[l ; i]} x_{i} \mathbf{U}_{[l ; j]} x_{j}-8 \sum_{i, j=1}^{N_{\chi}} \sum_{l=1}^{N_{\mathcal{y}}} \delta_{i, j} A_{l} \mathbf{U}_{[l ; i]} x_{i} \\
& =\sum_{i, j=1}^{N_{\chi}} \sum_{l=1}^{N_{\mathcal{\nu}}}\left(\frac{\delta_{i, j}}{\sigma^{2}}+4 x_{i} x_{j}\right) \mathbf{U}_{[l ; i]} \mathbf{U}_{[l ; j]}-8 \sum_{i, j=1}^{N_{\chi}} \sum_{l=1}^{N_{\mathcal{\nu}}} \delta_{i, j} A_{l} \mathbf{U}_{[l ; i]} x_{i} .
\end{aligned}
$$

Let us now define the matrix \mathbf{N} of dimension $N_{\mathcal{X}} \times N_{\mathcal{Y}}$ as

$$
\begin{equation*}
\mathbf{N}_{[i ; j]}=\frac{\delta_{i, j}}{\sigma^{2}}+4 x_{i} x_{j} \tag{24}
\end{equation*}
$$

Now, let

$$
\begin{equation*}
\mathbf{Z}_{[l ; i]} \stackrel{\text { def }}{=} \frac{\mathbf{U}_{[l ; i]}}{x_{i}} \quad \text { for all } l=1, . ., N_{\mathcal{Y}} \quad \text { and } \quad i=1, . ., N_{\mathcal{X}} \tag{25}
\end{equation*}
$$

Recall that, w.l.o.g., x_{i} is different from 0 and that $\sigma>0$.
This new change of variables gives

$$
\begin{equation*}
Q=\sum_{l=1}^{N_{\mathcal{Y}}}\left(\sum_{i, j=1}^{N_{\mathcal{X}}} \mathbf{N}_{[i ; j]} x_{i} x_{j} \mathbf{Z}_{[l ; i]} \mathbf{Z}_{[l ; j]}-8 \sum_{i=1}^{N_{\mathcal{X}}} A_{l} x_{i}^{2} \mathbf{Z}_{[l ; i]}\right) \tag{26}
\end{equation*}
$$

The following claim will transform Q in such a way that it will contain a single term including the integration variable \mathbf{Z}. This will be achieved by using the Fermat's difference of square argument: $\left(A^{2}-B^{2}\right)=(A-B)(A+B)$.
CLAIM 1: For any $l=1, . ., N_{\mathcal{Y}}$, let

$$
B_{l} \stackrel{\text { def }}{=} \frac{4 \sigma^{2} A_{l}}{1+4 \sigma^{2}\|X(x)\|^{2}} .
$$

Then,

$$
Q=\sum_{l=1}^{N_{\mathcal{Y}}}\left(\sum_{i, j=1}^{N_{\mathcal{X}}} \mathbf{N}_{[i ; j]} x_{i} x_{j}\left(\mathbf{Z}_{[l ; i]}-B_{l}\right)\left(\mathbf{Z}_{[l ; j]}-B_{l}\right)\right)-\frac{16\|A\|^{2} \sigma^{2}\|X(x)\|^{2}}{1+4 \sigma^{2}\|X(x)\|^{2}}
$$

Proof of the claim. From the definition of B_{l}, we have that

$$
B_{l}\left(x_{i}^{2}+4 x_{i}^{2} \sigma^{2}\|X(x)\|^{2}\right)=4 A_{l} x_{i}^{2} \sigma^{2}
$$

Then, since $x_{i}^{2}=\sum_{j=1}^{N \mathcal{X}} \delta_{i, j} x_{i} x_{j}$ and $\|X(x)\|^{2} \stackrel{\text { def }}{=} \sum_{j=1}^{N \mathcal{X}} x_{j}^{2}$, we have

$$
\begin{equation*}
\sum_{j=1}^{N_{\mathcal{X}}} \mathbf{N}_{[i ; j]} x_{i} x_{j} B_{l}=4 A_{l} x_{i}^{2} \tag{27}
\end{equation*}
$$

Note also that

$$
\begin{aligned}
\frac{16 \sigma^{4} A_{l}^{2}\|X(x)\|^{2}}{1+4 \sigma^{2}\|X(x)\|^{2}} & =B_{l}^{2}\|X(x)\|^{2}\left(1+4 \sigma^{2}\|X(x)\|^{2}\right) \\
& =B_{l}^{2}\left(\|X(x)\|^{2}+4 \sigma^{2}\|X(x)\|^{4}\right) \\
& =B_{l}^{2}\left(\sum_{i=1}^{N_{\mathcal{X}}} x_{i}^{2}+\sum_{i, j=1}^{N_{\mathcal{X}}} 4 \sigma^{2} x_{i}^{2} x_{j}^{2}\right) \\
& =B_{l}^{2}\left(\sum_{i, j=1}^{N_{\mathcal{X}}} \delta_{i, j} x_{i} x_{j}+\sum_{i, j=1}^{N_{\mathcal{X}}} 4 \sigma^{2} x_{i}^{2} x_{j}^{2}\right) \\
& =\sum_{i, j=1}^{N_{\mathcal{X}}} \mathbf{N}_{[i ; j]} \sigma^{2} x_{i} x_{j} B_{l}^{2}
\end{aligned}
$$

Hence,

$$
\begin{aligned}
& \sum_{l=1}^{N_{\mathcal{Y}}} \sum_{i, j=1}^{N_{\mathcal{X}}}\left(\mathbf{N}_{[i ; j]} x_{i} x_{j}\left(\mathbf{Z}_{[l ; i]}-B_{l}\right)\left(\mathbf{Z}_{[l ; j]}-B_{l}\right)\right)-\frac{16\|A\|^{2} \sigma^{2}\|X(x)\|^{2}}{1+4 \sigma^{2}\|X(x)\|^{2}} \\
& =\sum_{l=1}^{N_{\mathcal{Y}}}\left(\sum_{i, j=1}^{N_{\mathcal{X}}}\left(\mathbf{N}_{[i ; j]} x_{i} x_{j}\left(\mathbf{Z}_{[l ; i]}-B_{l}\right)\left(\mathbf{Z}_{[l ; j]}-B_{l}\right)\right)-\frac{16 A_{l}^{2} \sigma^{2}\|X(x)\|^{2}}{1+4 \sigma^{2}\|X(x)\|^{2}}\right) \\
& =\sum_{l=1}^{N_{\mathcal{Y}}}\left(\sum_{i, j=1}^{N_{\mathcal{X}}}\left(\mathbf{N}_{[i ; j]} x_{i} x_{j}\left(\mathbf{Z}_{[l ; i]}-B_{l}\right)\left(\mathbf{Z}_{[l ; j]}-B_{l}\right)\right)-\sum_{i, j=1}^{N_{\mathcal{X}}} \mathbf{N}_{[i ; j]} x_{i} x_{j} B_{l}^{2}\right) \\
& =\sum_{l=1}^{N_{\mathcal{Y}}} \sum_{i, j=1}^{N_{\mathcal{X}}}\left(\mathbf{N}_{[i ; j]} x_{i} x_{j} \mathbf{Z}_{[l ; i]} \mathbf{Z}_{[l ; j]}-\mathbf{N}_{[i ; j]} x_{i} x_{j} \mathbf{Z}_{[l ; i]} B_{l}-\mathbf{N}_{[i ; j]} x_{i} x_{j} B_{l} \mathbf{Z}_{[l ; j]}\right. \\
& \left.+\mathbf{N}_{[i ; j]} x_{i} x_{j} B_{l}^{2}-\mathbf{N}_{[i ; j]} x_{i} x_{j} B_{l}^{2}\right) \\
& =\sum_{l=1}^{N_{\mathcal{Y}}} \sum_{i, j=1}^{N_{\mathcal{X}}}\left(\mathbf{N}_{[i ; j]} x_{i} x_{j} B_{l} \mathbf{Z}_{[l ; i]} \mathbf{Z}_{[l ; j]}-\mathbf{N}_{[i ; j]} x_{i} x_{j} \mathbf{Z}_{[l ; i]} B_{l}-\mathbf{N}_{[i ; j]} x_{i} x_{j} \mathbf{Z}_{[l ; j]} B_{l}\right) \\
& =\sum_{l=1}^{N_{\mathcal{Y}}} \sum_{i, j=1}^{N_{\mathcal{X}}}\left(\mathbf{N}_{[i ; j]} x_{i} x_{j} B_{l} \mathbf{Z}_{[l ; i]} \mathbf{Z}_{[l ; j]}-2 \mathbf{N}_{[i ; j]} x_{i} x_{j} \mathbf{Z}_{[l ; i]} B_{l}\right) \\
& =\sum_{l=1}^{N_{\mathcal{Y}}}\left(\sum_{i, j=1}^{N_{\mathcal{X}}} \mathbf{N}_{[i ; j]} x_{i} x_{j} \mathbf{Z}_{[l ; i]} \mathbf{Z}_{[l ; j]}-2 \sum_{i=1}^{N_{\mathcal{X}}}\left(\sum_{j=1}^{N_{\mathcal{X}}} \mathbf{N}_{[i ; j]} x_{i} x_{j} \mathbf{Z}_{[l ; i]} B_{l}\right)\right) \\
& =\sum_{l=1}^{N_{\mathcal{Y}}}\left(\sum_{i, j=1}^{N_{\mathcal{X}}} \mathbf{N}_{[i ; j]} x_{i} x_{j} \mathbf{Z}_{[l ; i]} \mathbf{Z}_{[l ; j]}-2 \sum_{i=1}^{N_{\mathcal{X}}} 4 A_{l} \mathbf{Z}_{[l ; i]} x_{i}^{2}\right) \\
& =Q \text {. }
\end{aligned}
$$

The penultimate equality comes from Equation (27). Thus, Claim 1 is proved.

9.2. Let us transform our integral I into a Gaussian integral

Definition 7.

- Let the operator $\star:\left\{1, . ., N_{\mathcal{Y}}\right\} \times\left\{1, . ., N_{\mathcal{X}}\right\} \longrightarrow\left\{1, . ., N_{\mathcal{Y}} N_{\mathcal{X}}\right\}$ be defined as

$$
l \star i \stackrel{\text { def }}{=}(l-1) \cdot N_{\mathcal{X}}+i .
$$

Note that for any $\tilde{l} \in\left\{1, \ldots, N_{\mathcal{Y}} N_{\mathcal{X}}\right\}$ there existe a unique 2 -tuple $(l, i) \in\left\{1, . ., N_{\mathcal{Y}}\right\} \times\left\{1, . ., N_{\mathcal{X}}\right\}$ such that $\tilde{l}=l \star i$.

- Let \vec{z} be the vector of dimension $N_{\mathcal{Y}} N_{\mathcal{X}}$ defined as

$$
z_{l \star i} \stackrel{\text { def }}{=} \mathbf{Z}_{[l ; i]}
$$

for any $l \in\left\{1, . ., N_{\mathcal{Y}}\right\}$, and any $i \in\left\{1, . ., N_{\mathcal{X}}\right\}$.

- Let $\vec{\mu}$ be the vector of dimension $N_{\mathcal{Y}} N_{\mathcal{X}}$ defined as

$$
\mu_{l \star i} \stackrel{\text { def }}{=} B_{l}
$$

for any $l \in\left\{1, . ., N_{\mathcal{Y}}\right\}$, and any $i \in\left\{1, . ., N_{\mathcal{X}}\right\}$.

- Let \mathbf{M} be the matrix of dimension $\left(N_{\mathcal{Y}} N_{\mathcal{X}}\right) \times\left(N_{\mathcal{Y}} N_{\mathcal{X}}\right)$ defined as

$$
\begin{equation*}
\mathbf{M}_{[l \star i ; m \star j]} \stackrel{\text { def }}{=} \delta_{l, m} \mathbf{N}_{[i ; j]} x_{i} x_{j} \quad\left(=\delta_{l, m}\left(\frac{\delta_{i, j}}{\sigma^{2}}+4 x_{i} x_{j}\right) x_{i} x_{j}\right), \tag{28}
\end{equation*}
$$

for any $l, m \in\left\{1, . ., N_{\mathcal{Y}}\right\}$, and any $i, j \in\left\{1, . ., N_{\mathcal{X}}\right\}$.

Note that in what follows, the reader should interpret \tilde{l} as $l \star i$ and \tilde{m} as $m \star j$.
From the definitions above, we have

$$
\begin{aligned}
& Q=\sum_{l=1}^{N_{\nu}}\left(\sum_{i, j=1}^{N_{X}} \mathbf{N}_{[i ; j]} x_{i} x_{j}\left(\mathbf{Z}_{[l ; i]}-B_{l}\right)\left(\mathbf{Z}_{[l ; j]}-B_{l}\right)\right)-\frac{16\|A\|^{2} \sigma^{2}\|X(x)\|^{2}}{1+4 \sigma^{2}\|X(x)\|^{2}} \\
& =\sum_{m=1}^{N_{\nu}}\left(\sum_{l=1}^{N_{\nu}} \sum_{i, j=1}^{N_{\chi}}\left(\delta_{l, m} \mathbf{N}_{[i ; j]} x_{i} x_{j}\left(\mathbf{Z}_{[l ; i]}-B_{l}\right)\left(\mathbf{Z}_{[l ; j]}-B_{l}\right)\right)\right)-\frac{16\|A\|^{2} \sigma^{2}\|X(x)\|^{2}}{1+4 \sigma^{2}\|X(x)\|^{2}} \\
& =\sum_{l=1}^{N_{y}} \sum_{i=1}^{N_{\chi}} \sum_{m=1}^{N_{y}} \sum_{j=1}^{N_{\chi}}\left(\delta_{l, m} \mathbf{N}_{[i ; j]} x_{i} x_{j}\left(\mathbf{Z}_{[l ; i]}-B_{l}\right)\left(\mathbf{Z}_{[l ; j]}-B_{l}\right)\right)-\frac{16\|A\|^{2} \sigma^{2}\|X(x)\|^{2}}{1+4 \sigma^{2}\|X(x)\|^{2}} \\
& =\sum_{\tilde{l}=1}^{N_{\nu} N_{\chi}} \sum_{\tilde{m}=1}^{N_{\mathcal{\nu}} N_{X}}\left(\left(z_{\tilde{l}}-\mu_{\tilde{l}}\right) \mathbf{M}_{[\tilde{l} ; \tilde{m}]}\left(z_{\tilde{m}}-\mu_{\tilde{m}}\right)\right)-\frac{16\|A\|^{2} \sigma^{2}\|X(x)\|^{2}}{1+4 \sigma^{2}\|X(x)\|^{2}} .
\end{aligned}
$$

Substituing this expression for Q into the integral I given by Equation (22) gives

$$
\begin{equation*}
I=e^{-2\|\vec{A}\|^{2}} \int \frac{d \mathbf{U}}{(\sigma \sqrt{2 \pi})^{N \mathcal{X} N \mathcal{Y}}} e^{-\frac{1}{2}\left(\frac{\|\mathbf{U}\|^{2}}{\sigma^{2}}+4\|\mathbf{U} X(x)\|^{2}-8\langle\vec{A} \mid \mathbf{U} X(x)\rangle\right)} \tag{29}
\end{equation*}
$$

$$
\begin{align*}
&= e^{-2\|\vec{A}\|^{2}} \\
& \prod_{i=1}^{N_{\mathcal{X}}}\left|x_{i}\right|^{N_{\mathcal{Y}}}\left(\int \frac{d \vec{z}}{(\sigma \sqrt{2 \pi})^{N_{\mathcal{X}} N_{\mathcal{Y}}}} e^{-\frac{1}{2} \sum_{\tilde{l}=1}^{N_{\mathcal{Y}} N_{\mathcal{X}}} \sum_{\tilde{m}=1}^{N_{\mathcal{Y}} N_{\mathcal{X}}}\left(\left(z_{\tilde{l}}-\mu_{\tilde{l}}\right) \mathbf{M}_{[\tilde{i} ; \tilde{m}]}\left(z_{\tilde{m}}-\mu_{\tilde{m}}\right)\right)}\right) \tag{30}\\
& \cdot e^{\frac{8\|\vec{A}\|^{2} \sigma^{2}\|X(x)\|^{2}}{1+4 \sigma^{2}\|X(x)\|^{2}}} \tag{31}\\
&= e^{-2\|\vec{A}\|^{2}} \prod_{i=1}^{N_{\mathcal{X}}}\left|x_{i}\right|^{N_{\mathcal{Y}}} e^{\frac{8\|\vec{A}\|^{2} \sigma^{2}\|X(x)\|^{2}}{1+4 \sigma^{2}\|X(x)\|^{2}}} \int \frac{d \vec{z}}{(\sigma \sqrt{2 \pi})^{N_{\mathcal{X}} N_{\mathcal{Y}}}} e^{-\frac{1}{2}\left((\vec{z}-\vec{\mu})^{\top} \mathbf{M}(\vec{z}-\vec{\mu})\right)} \\
&=e^{-2\|\vec{A}\|^{2}} \prod_{i=1}^{N_{\mathcal{X}}}\left|x_{i}\right|^{N_{\mathcal{Y}}} e^{\frac{8\|\vec{A}\|^{2} \sigma^{2}\|X(x)\|^{2}}{1+4 \sigma^{2}\|X(x)\|^{2}}} \frac{1}{\sqrt{\operatorname{det}(\mathbf{M})}} \tag{32}\\
& \cdot \int \frac{d \vec{z}}{(\sigma \sqrt{2 \pi})^{N_{\mathcal{X}} N_{\mathcal{Y}}}} \frac{1}{\sqrt{\operatorname{det}\left(\mathbf{M}^{-1}\right)}} e^{-\frac{1}{2}\left((\vec{z}-\vec{\mu})^{\top}\left(\mathbf{M}^{-1}\right)^{-1}(\vec{z}-\vec{\mu})\right)} \tag{33}\\
&= e^{-2\|\vec{A}\|^{2}} \prod_{i=1}^{N_{\mathcal{X}}}\left|x_{i}\right|^{N_{\mathcal{Y}}} e^{\frac{8\|\vec{A}\|^{2} \sigma^{2}\|X(x)\|^{2}}{1+4 \sigma^{2}\|X(x)\|^{2}}} \frac{1}{\sqrt{\operatorname{det}(\mathbf{M})}} \cdot 1 .
\end{align*}
$$

Line (30) is a consequence of the fact that $\mathbf{U}_{[l ; i]}=x_{i} \mathbf{Z}_{[l ; i]}$ (see Equation (25)) and of the fact that $\vec{z}_{\hat{l}}=\mathbf{Z}_{[l ; i]}$. Line (33) comes from the fact that the integral of the preceeding line is an integral of a Gaussian density and is therefore equal to 1 . Lines (32) and (33) force \mathbf{M} to be positive definite, so we have to prove that fact. This is one of the statements of the following claim.

CLAIM 2: Matrix \mathbf{M} is positive definite and

$$
\operatorname{det}(\mathbf{M})=\prod_{i=1}^{N_{\mathcal{X}}}\left(x_{i}^{2}\right)^{N_{\mathcal{Y}}}\left(\frac{1}{\sigma^{2}}\right)^{N_{\mathcal{X}} N_{\mathcal{Y}}}\left(1+4 \sigma^{2}\|X(x)\|^{2}\right)^{N_{\mathcal{Y}}}
$$

Before proving Claim 2, let us show that it implies the result.

$$
\begin{aligned}
I & =e^{-2\|\vec{A}\|^{2}} \prod_{i=1}^{N_{\mathcal{X}}}\left|x_{i}\right|^{N_{\mathcal{Y}}} e^{\frac{8\|\vec{A}\|^{2} \sigma^{2}\|X(x)\|^{2}}{1+4 \sigma^{2}\|X(x)\|^{2}}} \frac{1}{\sqrt{\operatorname{det}(\mathbf{M})}} \\
& =e^{-2\|\vec{A}\|^{2}} \prod_{i=1}^{N_{\mathcal{X}}}\left|x_{i}\right|^{N_{\mathcal{Y}}} e^{\frac{8\|\vec{A}\|^{2} \sigma^{2}\|X(x)\|^{2}}{1+4 \sigma^{2}\|X(x)\|^{2}}} \frac{1}{\sqrt{\prod_{i=1}^{N_{\mathcal{X}}}\left(x_{i}^{2}\right)^{N_{\mathcal{Y}}\left(\frac{1}{\sigma^{2}}\right)^{N_{\mathcal{X}} N_{\mathcal{Y}}}\left(1+4 \sigma^{2}\|X(x)\|^{2}\right)^{N_{\mathcal{Y}}}}}} \\
& =e^{-2\|\vec{A}\|^{2}} e^{\frac{8\|\vec{A}\|^{2} \sigma^{2}\|X(x)\|^{2}}{1+4 \sigma^{2}\|X(x)\|^{2}}} \frac{1}{\sqrt{\left(\frac{1}{\sigma^{2}}\right)^{N_{\mathcal{X}} N_{\mathcal{Y}}}\left(1+4 \sigma^{2}\|X(x)\|^{2}\right)^{N_{\mathcal{Y}}}}} \\
& =e^{-2\|\vec{A}\|^{2}} e^{\frac{8\|\vec{A}\|^{2} \sigma^{2}\|X(x)\|^{2}}{1+4 \sigma^{2}\|X(x)\|^{2}}} \frac{\sigma^{N_{\mathcal{X}} N_{\mathcal{Y}}}}{\sqrt{\left(1+4 \sigma^{2}\|X(x)\|^{2}\right)^{N_{\mathcal{Y}}}}} \\
& =e^{\frac{-2\|\vec{A}\|^{2}}{1+4 \sigma^{2}\|X(x)\|^{2}}} \frac{\sigma^{N_{\mathcal{X}} N_{\mathcal{Y}}}}{\sqrt{\left(1+4 \sigma^{2}\|X(x)\|^{2}\right)^{N_{\mathcal{Y}}}}} \\
& =e^{\frac{-2\|\mathcal{Y}(y)-\mathrm{W} X(x)\|^{2}}{1+4 \sigma^{2}\|X(x)\|^{2}}} \frac{\sigma^{N_{\mathcal{X}} N_{\mathcal{Y}}}}{\sqrt{\left(1+4 \sigma^{2}\|X(x)\|^{2}\right)^{N_{\mathcal{Y}}}}}
\end{aligned}
$$

To finish the proof, let us now prove Claim 2.

Proof of the claim. Let \mathbf{X} be the diagonal matrix whose entries are the x_{i} s and note that the matrix $\left(\mathbf{N}_{[i ; j]} x_{i} x_{j}\right)_{i ; j}$ can be expressed as follows:

$$
\begin{equation*}
\left(\mathbf{N}_{[i ; j]} x_{i} x_{j}\right)_{i ; j}=\mathbf{X N X} \tag{34}
\end{equation*}
$$

Now, from the definition of \mathbf{M}, and basic determinant's properties, we have

$$
\begin{align*}
\operatorname{det}(\mathbf{M}) & =\operatorname{det}\left(\left(\delta_{l, m} \mathbf{N}_{[i ; j]} x_{i} x_{j}\right)_{l \star i ; m \star j}\right) \tag{35}\\
& =\left(\operatorname{det}\left(\left(\mathbf{N}_{[i ; j]} x_{i} x_{j}\right)_{i ; j}\right)\right)^{N_{\mathcal{Y}}} \tag{36}\\
& =(\operatorname{det}(\mathbf{X N X}))^{N_{\mathcal{Y}}} \tag{37}\\
& =\left(\left(\prod_{i=1}^{N_{\mathcal{X}}} x_{i}\right)\left(\prod_{j=1}^{N_{\mathcal{X}}} x_{j}\right) \operatorname{det}(\mathbf{N})\right)^{N_{\mathcal{Y}}} \tag{38}\\
& =\left(\left(\prod_{i=1}^{N_{\mathcal{X}}} x_{i}^{2}\right) \operatorname{det}(\mathbf{N})\right)^{N_{\mathcal{Y}}}
\end{align*}
$$

Line (35) comes straightforwardly from the definition (see Equation (28)). Line (36) comes from the fact that \mathbf{M} is a matrix whose entries are all 0 , except for $N_{\mathcal{Y}}$ identical blocks of size $N_{\mathcal{X}} \times N_{\mathcal{X}}$ that are positioned in the diagonal of M, each one of those blocks being the matrix $\left(\mathbf{N}_{[i ; j]} x_{i} x_{j}\right)_{i ; j}$. Line (38) follows from a basic determinant's property, and from the fact that $\operatorname{det}(\mathbf{X})=\left(\prod_{i=1}^{N_{\mathcal{X}}} x_{i}\right)$.
Note also that the block structure of the matrix \mathbf{M} implies that it has exactly the same eigenvalues as Matrix $\left(\mathbf{N}_{[i ; j]} x_{i} x_{j}\right)_{i ; j}$ (but with a multiplicity augmented by a factor of $\left.N \mathcal{Y}\right)$.
Also, it follows from Equation (34) that, for each eigenvalue λ of $\left(\mathbf{N}_{[i ; j]} x_{i} x_{j}\right)_{i ; j}$, there exists i such that $\frac{\lambda}{x_{i}^{2}}$ is an eigenvalue of \mathbf{N}. Indeed, because of Equation (34), we have that

$$
\operatorname{det}\left(\left(\mathbf{N}_{[i ; j]} x_{i} x_{j}\right)_{i ; j}-\lambda \mathbf{X X}\right)=\mathbf{0} \Leftrightarrow \operatorname{det}(\mathbf{N}-\lambda I)=\mathbf{0}
$$

This, in turn, implies that if \mathbf{N} is positive definite, so is \mathbf{M}.
Hence, to prove Claim 2, we only have to show that \mathbf{N} is positive definite and

$$
\operatorname{det}(\mathbf{N})=\left(\frac{1}{\sigma^{2}}\right)^{N_{\mathcal{X}}}\left(1+4 \sigma^{2}\|X(x)\|^{2}\right)
$$

Let us consider matrix \mathbf{O}, defined as $\mathbf{O}_{[i ; j]}=4 x_{i} x_{j}$. Then, it is easy to see that $\lambda=0$ is an eigenvalue of \mathbf{O} of multiplicity $N_{\mathcal{X}}-1$ because the rank of that matrix is 1 . Note that line L_{i} of that matrix is always equal to $\frac{x_{i}}{x_{1}} L_{1}$. Moreover we can easily see that $\left(x_{1}, \ldots, x_{m}\right)^{\top}$ is an eigenvector of \mathbf{O} with eigenvalue $4\|X(x)\|^{2}$.
Now, note that

$$
\mathbf{N}=\mathbf{O}+\frac{1}{\sigma^{2}} \cdot I
$$

Thus, there is a one-to-one correspondence between the eigenvalues of \mathbf{O} and those of \mathbf{N} : λ is an eigenvalue of the former if and only if $\lambda+\frac{1}{\sigma^{2}}$ is an eigenvalue of the latter. Thus N is positive definite, and

$$
\begin{aligned}
\operatorname{det}(\mathbf{N}) & =\left(\frac{1}{\sigma^{2}}\right)^{N_{\mathcal{X}}-1}\left(\frac{1}{\sigma^{2}}+4\|X(x)\|^{2}\right) \\
& =\left(\frac{1}{\sigma^{2}}\right)^{N_{\mathcal{X}}}\left(1+4 \sigma^{2}\|X(x)\|^{2}\right)
\end{aligned}
$$

10. Proof of $\frac{\partial}{\partial \mathbf{A}} R(\mathbf{A}, S)$ from Theorem (6)

Proof. From equation (9) we have

$$
\begin{equation*}
\mathbf{W}=\sum_{i=1}^{m} \sum_{j=1}^{m} Y\left(y_{i}\right) A_{[i ; j]} X^{\dagger}\left(x_{j}\right)=\mathbf{M}_{\mathcal{Y}} \mathbf{A M}_{\mathcal{X}}^{\dagger} \tag{39}
\end{equation*}
$$

Where $M_{\mathcal{Y}}$ is a $N_{\mathcal{Y}} \times m$ matrix with $Y\left(y_{i}\right)$ in it's i-th column. Similarly $M_{\mathcal{X}}$ is a $N_{\mathcal{X}} \times m$ matrix with $X\left(x_{j}\right)$ in it's j-th column.

$$
\begin{align*}
& R(\mathbf{A}, S)=\frac{1}{m} \sum_{i=1}^{m}\left\|Y\left(y_{i}\right)-\mathbf{W} X\left(x_{i}\right)\right\|^{2} \\
& =\frac{1}{m}\left\|\mathbf{M}_{\mathcal{Y}}-\mathbf{W M}_{\mathcal{X}}\right\|^{2} \\
& =\frac{1}{m}\left\|\mathbf{M}_{\mathcal{Y}}-\mathbf{M}_{\mathcal{Y}} \mathbf{A} \mathbf{M}_{\mathcal{X}}^{\dagger} \mathbf{M}_{\mathcal{X}}\right\|^{2} \\
& =\frac{1}{m}\left\|\mathbf{M}_{\mathcal{Y}}-\mathbf{M}_{\mathcal{Y}} \mathbf{A} \mathbf{K}_{\mathcal{X}}\right\|^{2} \\
& =\frac{1}{m}\left\|\mathbf{M}_{\mathcal{Y}}\left(\mathbf{I}-\mathbf{A} \mathbf{K}_{\mathcal{X}}\right)\right\|^{2} \tag{40}\\
& \frac{\partial}{\partial A_{[i ; j]}} R(\mathbf{A}, S)=\frac{1}{m} \frac{\partial}{\partial A_{[i ; j]}} \sum_{k, l=1}^{m}\left[\mathbf{M}_{\mathcal{Y}}\left(\mathbf{I}-\mathbf{A} \mathbf{K}_{\mathcal{X}}\right)\right]_{[k ; l]}^{2} \\
& =\frac{2}{m} \sum_{k, l=1}^{m}\left[\mathbf{M}_{\mathcal{Y}}\left(\mathbf{I}-\mathbf{A} \mathbf{K}_{\mathcal{X}}\right)\right]_{[k ; l]} \frac{\partial}{\partial A_{[i ; j]}}\left[\mathbf{M}_{\mathcal{Y}}\left(\mathbf{I}-\mathbf{A} \mathbf{K}_{\mathcal{X}}\right)\right]_{[k ; l]} \\
& =\frac{-2}{m} \sum_{k, l=1}^{m}\left[\mathbf{M}_{\mathcal{Y}}\left(\mathbf{I}-\mathbf{A} \mathbf{K}_{\mathcal{X}}\right)\right]_{[k ; l]} \frac{\partial}{\partial A_{[i ; j]}}\left[\mathbf{M}_{\mathcal{Y}} \mathbf{A} \mathbf{K}_{\mathcal{X}}\right]_{[k ; l]} \\
& =\frac{-2}{m} \sum_{k, l=1}^{m}\left[\mathbf{M}_{\mathcal{Y}}\left(\mathbf{I}-\mathbf{A} \mathbf{K}_{\mathcal{X}}\right)\right]_{[k ; l]} \frac{\partial}{\partial A_{[i ; j]}}\left[\sum_{k^{\prime}, l^{\prime}=1}^{m} \mathbf{M}_{\mathcal{Y}_{\left[k ; k^{\prime}\right]}} \mathbf{A}_{\left[k^{\prime} ; l^{\prime}\right]} \mathbf{K}_{\mathcal{X}_{\left[l^{\prime} ; l\right]}}\right] \\
& =\frac{-2}{m} \sum_{k, l=1}^{m}\left[\mathbf{M}_{\mathcal{Y}}\left(\mathbf{I}-\mathbf{A} \mathbf{K}_{\mathcal{X}}\right)\right]_{[k ; l]} \mathbf{M}_{\mathcal{Y}_{[k ; i]}} \mathbf{K}_{\mathcal{X}_{[j ; l]}} \\
& =\frac{-2}{m} \sum_{k, l=1}^{m}\left(\mathbf{M}_{\mathcal{Y}}\right)_{[i ; k]}^{\dagger}\left[\mathbf{M}_{\mathcal{Y}}\left(\mathbf{I}-\mathbf{A} \mathbf{K}_{\mathcal{X}}\right)\right]_{[k ; l]} \mathbf{K}_{\mathcal{X}_{[j ; l]}} \\
& =\frac{-2}{m} \sum_{l=1}^{m}\left[\mathbf{M}_{\mathcal{Y}}^{\dagger} \mathbf{M}_{\mathcal{Y}}\left(\mathbf{I}-\mathbf{A} \mathbf{K}_{\mathcal{X}}\right)\right]_{[i ; l]} \mathbf{K}_{\mathcal{X}_{[j ; l]}} \\
& =\frac{-2}{m}\left[\mathbf{K}_{\mathcal{Y}}\left(\mathbf{I}-\mathbf{A} \mathbf{K}_{\mathcal{X}}\right) \mathbf{K}_{\mathcal{X}}^{\top}\right]_{[i ; j]} \\
& =\frac{2}{m}\left[\mathbf{K}_{\mathcal{Y}}\left(\mathbf{A} \mathbf{K}_{\mathcal{X}}-\mathbf{I}\right) \mathbf{K}_{\mathcal{X}}\right]_{[i ; j]} \tag{41}
\end{align*}
$$

11. Details on how equation (14) becomes $\gamma_{i, j}\left(\delta_{i} \lambda_{j}^{2}+m \beta\right)=\delta_{i} \lambda_{j}\left(u_{i}^{\top} v_{j}\right)$

Because $\left\{u_{i} v_{j}^{\top}\right\}_{(i, j) \in \mathcal{I}}$ constitutes an orthonormal basis of $\mathbb{R}^{m^{2}}$ we have

$$
\begin{equation*}
\mathbf{A}=\sum_{i=1}^{m} \sum_{j=1}^{m} \gamma_{i, j} u_{i} v_{j}^{\top} \tag{42}
\end{equation*}
$$

and the following equalities (recall that $\mathbf{K}_{\mathcal{Y}}=\sum_{k=1}^{m} \delta_{k} u_{k} u_{k}^{\top}$ and $\mathbf{K}_{\mathcal{X}}=\sum_{l=1}^{m} \lambda_{l} v_{l} v_{l}^{\top}$)

$$
\begin{aligned}
\mathbf{K}_{\mathcal{Y}} \mathbf{K}_{\mathcal{X}} & =\sum_{k=1}^{m} \delta_{k} u_{k} u_{k}^{\top} \sum_{l=1}^{m} \lambda_{l} v_{l} v_{l}^{\top} \\
& =\sum_{k, l=1}^{m} \delta_{k} \lambda_{l}\left(u_{k}^{\top} v_{l}\right) u_{k} v_{l}^{\top} \\
\mathbf{K}_{\mathcal{X}}^{2} & =\sum_{l=1}^{m} \lambda_{l} v_{l} v_{l}^{\top} \sum_{l^{\prime}=1}^{m} \lambda_{l^{\prime}} v_{l^{\prime}} v_{l^{\prime}}^{\top} \\
& =\sum_{l=1}^{m} \lambda_{l}^{2} v_{l} v_{l}^{\top} \\
\mathbf{A K}_{\mathcal{X}}^{2} & =\sum_{k=1}^{m} \sum_{l=1}^{m} \gamma_{k, l} u_{k} v_{l}^{\top} \sum_{l=1}^{m} \lambda_{l}^{2} v_{l} v_{l}^{\top} \\
& =\sum_{k=1}^{m} \sum_{l=1}^{m} \gamma_{k, l} \lambda_{l}^{2} u_{k} v_{l}^{\top} \\
\mathbf{K}_{\mathcal{Y}} \mathbf{A} \mathbf{K}_{\mathcal{X}}^{2} & =\sum_{k^{\prime}=1}^{m} \delta_{k^{\prime}} u_{k^{\prime}} u_{k^{\prime}}^{\top} \sum_{k=1}^{m} \sum_{l=1}^{m} \gamma_{k, l} \lambda_{l}^{2} u_{k} v_{l}^{\top} \\
& =\sum_{k=1}^{m} \sum_{l=1}^{m} \gamma_{k, l} \delta_{k} \lambda_{l}^{2} u_{k} v_{l}^{\top}
\end{aligned}
$$

Equation (14) then becomes

$$
\begin{aligned}
\frac{2}{m} \mathbf{K}_{\mathcal{Y}}\left(\mathbf{A} \mathbf{K}_{\mathcal{X}}-\mathbf{I}\right) \mathbf{K}_{\mathcal{X}}+2 \beta \mathbf{A} & =0 \\
\frac{2}{m} \mathbf{K}_{\mathcal{Y}} \mathbf{A} \mathbf{K}_{\mathcal{X}}^{2}-\frac{2}{m} \mathbf{K}_{y} \mathbf{K}_{\mathcal{X}}+2 \beta \mathbf{A} & =0 \\
\sum_{k=1}^{m} \sum_{l=1}^{m}\left[\frac{2}{m} \gamma_{k, l} \delta_{k} \lambda_{l}^{2}-\frac{2}{m} \lambda_{l}\left(u_{k}^{\top} v_{l}\right)+2 \beta \gamma_{k, l}\right] u_{k} v_{l}^{\top} & =0
\end{aligned}
$$

Since $u_{k} v_{l}^{\top}$ are linearly independent vectors of $\mathbb{R}^{m^{2}}$, the previous equation is satisfied when

$$
\begin{aligned}
\frac{2}{m} \gamma_{k, l} \delta_{k} \lambda_{l}^{2}-\frac{2}{m} \lambda_{l}\left(u_{k}^{\top} v_{l}\right)+2 \beta \gamma_{k, l} & =0 \\
\frac{2}{m} \gamma_{k, l} \delta_{k} \lambda_{l}^{2}+2 \beta \gamma_{k, l} & =\frac{2}{m} \lambda_{l}\left(u_{k}^{\top} v_{l}\right) \\
\gamma_{k, l}\left(\delta_{k} \lambda_{l}^{2}+m \beta\right) & =\delta_{k} \lambda_{l}\left(u_{k}^{\top} v_{l}\right)
\end{aligned}
$$

