
Supplementary Material: Scaling Multidimensional Gaussian
Processes using Projected Additive Approximations

A. Conclusions of VBEM

A number of conclusions can be drawn from the fact that it is sufficient to run the standard state-space model
inference procedure using the pseudo observations to update the factors in the E step. First, since VBEM
iterations are guaranteed to converge, any moment computed using the factors q(Zi) is also guaranteed to
converge. Convergence of these moments is important because they are used to learn the hyperparameters.
Second, since the true posterior p(Z1, . . . ,ZD|y, θ) is a large joint Gaussian over all the latent variables, Eq(Z)
(the mean of the approximate posterior) will be equal to the true posterior mean. This is true because the true
posterior is Gaussian (unimodal with the mean as its mode) and the VB approximation is mode-seeking. This is
easily shown, since the mode of a multivariate Gaussian will have the same mode as the product of its marginals.
Specifically, since the VB approximation is a product of its exclusive marginals, its mode will be reached when
the marginals are at their mode, specifically

max
Z

q(Z) =
D∏
i=1

max
Zi

q(Zi).

Thus, since the marginals are Gaussian, the VB approximation is Gaussian, and its mode equals the true posterior
mean (conditioned on θ).

Although the VB approximation of the posterior mean is unbiased, as is typical for variational methods, the
posterior covariance will be underestimated because KL(q(Z)||p(Z|y, θ)) is an exclusive divergence measure
(Minka, 2005). As a result, this can cause a sense of false confidence in the estimate, and could discard important
off diagonal covariance information (Barber et al., 2011).

B. PPGPR Algorithm and Derivations

Here we expand the PPGPR algorithm and show examples of the derivations. For brevity, we will expand θ to
also include the projection weights {w1,w2, . . . ,wM}.

To begin, Figure 1 illustrates a simple example to help clarify the Projected GP structure. It can be seen from
the figure that the Additive GP is a special case of the Projected GP with unitary projections. Also, notice that
when transforming the multidimensional Full GP to a GMP model, the input space was separated and sorted
for each dimension.

The core PPGPR algorithm is detailed in Algorithm 1. As an instructive example, we give here the typical
structure of these matrices and show how to construct them in the PPGPR algorithm. We use the Mateŕn(3/2)
kernel (e.g., (Rasmussen & Williams, 2006), and we show how to derive the key algorithmic steps in Algorithm
1.

In order to construct the GMP model, we must connect the SDE of Equation (5) (main text) to a GMP model.
This involves calculating transition and observation matrices Φ and Q.

Initial state : p(z(x1)) = N (z(x1);µ,V). (S-1)

State update : p(z(xt)|z(xt−1)) = N (z(xt);Φt−1z(xt−1),Qt−1). (S-2)

Emission : p(y(xt)|z(xt)) = N (y(xt);h
⊤z(xt), σ

2
n). (S-3)

where the z vector is the state vector defined in Eq. (6). The vector h simply picks out the first element of
the vector z(xt) which corresponds to the latent function value inferred at location xt. Deriving the Φ, and Q

Scaling Multidimensional Gaussian Processes

matrices involves finding the A (main text Eq. (5)) matrix using the Fourier transform of the covariance function,
and solving the SDE of Eq. (1). Earlier works (Hartikainen & Särkkä, 2010; Saatci, 2011) derived these terms
for different kernels families. Extending these matrices for projected inputs, as in PPGPR, is straight forward
since each projection will result in a new GMP as in Eqs. (S-1)-(S-3). As an example, the Φ and Q matrices for
the m-th projection will result in a GMP with matrices:

Φmt−1 =
1

exp (λmδmt)

[
(λmδmt + 1) δmt

−(λ2
mδmt) (1− λmδmt)

]
, (S-4)

Qmt−1
=

 1
4λ3

m
− 4δ2mt

λ2
m+4δmtλm+2

8λ3
m exp(2δmtλm)

δ2mt

2 exp(2δmtλm)
δ2mt

2 exp(2δmtλm)
1

4λm
− 2δ2mt

λ2
m−2δmtλm+1

4λm exp(2δmtλm)

 , (S-5)

where δmt = wm (xt − xt−1) is the m-th linear projection of the input space, and λm is the m-th covariance
lengthscale hyperparameter. Notice, that in PPGPR, the projections are chosen sequentially in a greedy form,
and it is never necessary to consider all the projections simultaneously. For brevity, we will omit the m subscript
notation from now on, understanding that the Φ, and Q matrices correspond to the current projection.

In order to learn the optimal hyperparameters of the covariance function we calculate the negative log marginal
likelihood (NLML) and its derivatives with respect to the hyperparameters. Finding the NLML of a GMP is
simple as the Markov property induce conditional independence between the links of the chain. Hence, the
NLML can be written as

− log (p(z(x1), z(x2), . . . , z(xN)|θ)) = − log
N∏
i=1

p(z(xi)|z(xi−1), θ) = −
N∑
i=1

log p(z(xi)|z(xi−1), θ). (S-6)

For GMP, the terms in the sum can be efficiently calculated by running a Kalman filter on the chain.

The log marginal likelihood (logZ(θ)) can be written in closed form as

L(y(i(t)), θ) =− 1

2

log 2π + log
(
h⊤Pt−1(θ)h+ σ2

n

)
+

(
y(i(t))− h⊤Φt−1(θ)µ

(f)
t−1

)2

h⊤Pt−1(θ)h+ σ2
n

 (S-7)

where the matrix Pt is the estimated covariance, and µ
(f)
t is the estimated state, of the forward pass Kalman

filter. The i(t) function sorts the observations y according to the new projected scalar input. The derivatives

(d logZ(θ)
dθi

) are calculated in the same manner and are also summed following the Kalman forward pass.

The introduction of the projection weights in PPGPR will require the to calculate NLML derivatives with respect

to a weight components of the projection vector (d logZ(θ)
dwi

, i = 1, . . . , D). Since the projections weights are only
in the δmt term, and since these δm terms only appear in Φ and Q (Eqs. (S-4) and (S-5)), the log marginal
likelihood derivative can be written as

dL(y(i(t)), θ)

dwi
=

(
dL(y(i(t)), θ)

dPt−1

dPt−1

dδmt

+
dL(y(i(t)), θ)

dΦt−1

dΦt−1

dδmt

)
(xti − xt−1i) (S-8)

where,

dPt−1

dδmt

=
dPt−1

dΦt−1

dΦt−1

dδmt

+
dPt−1

dQt−1

dQt−1

dδmt

. (S-9)

Full details of the development, including important proofs, can be found in our preliminary work (Saatci, 2011).

Scaling Multidimensional Gaussian Processes

Figure 1. A simple example to illustrate the different models: Full GP, Additive GP, and Projected GP. The Full GP is
shown on the left for a two dimensional input space. The bold line represents a fully connected graph. The Additive
GP, and projected GP are shown on the middle, and right, respectively. Notice that in the projected GP a sort step is
performed after the projections to make it a Gauss-Markov process. The sorted outputs are written with a tilde.

References

Barber, D., Cemgil, A. T., and Chiappa, S. Bayesian Time Series Models. Cambridge University Press, 2011.

Hartikainen, J. and Särkkä, S. Kalman filtering and smoothing solutions to temporal Gaussian process regression
models. InMachine Learning for Signal Processing (MLSP), pp. 379–384, Kittilä, Finland, August 2010. IEEE.

Minka, T. Divergence measures and message passing. Technical report, Microsoft Research, 2005.

Rasmussen, C.E. and Williams, C.K.I. Gaussian Processes for Machine Learning. The MIT Press, 2006.

Saatci, Y. Scalable Inference for Structured Gaussian Process Models. PhD thesis, University of Cambridge,
2011.

Scaling Multidimensional Gaussian Processes

Algorithm 1 Gaussian Process Regression using SSMs

Input: Jointly sorted training and test input locations x. Targets y associated with training inputs. State
transition function stfunc that returns Φ and Q matrices. Hyperparameters θ.
outputs: Log-marginal likelihood logZ(θ) and its derivatives. Predictive means µ⋆ and variances v⋆. E-step
moments: E(ztz⊤t), E(ztz⊤t−1)

µ
(f)
0 ← µ; V

(f)
0 ← V; Z(θ) = 0

for t← 1 . . .K do
if t > 1 then
[Φt−1,Qt−1]← stfunc(θ, x(t)− x(t− 1))

else
[Φt−1,Qt−1]← stfunc(θ, ∞)

end if
Pt−1 ← Φt−1V

(f)
t−1Φ

⊤
t−1 +Qt−1

Gt = Pt−1h
(
h⊤Pt−1h+ σ2

n

)−1

L(y(i(t)), θ) = log
(
P
(
y(i(t))|h⊤Φt−1µ

(f)
t−1,h

⊤Pt−1h+ σ2
n

))
logZ(θ)← logZ(θ) + L(y(i(t)), θ)
d logZ(θ)

dθi
← d logZ(θ)

dθi
+ dL(y(i(t)),θ)

dθi

µ
(f)
t = Φt−1µ

(f)
t−1 +Gt[y(i(t))− h⊤Φt−1µ

(f)
t−1]

V
(f)
t = Pt−1 −Gth

⊤Pt−1

end for
µK ← µ

(f)
K ; VK ← V

(f)
K ; µ⋆(K)← h⊤µK ; v⋆(K)← h⊤VKh

E(zKz⊤K)← VK + µKµ⊤
K

E(zKz⊤K−1)← (ID −GKh)ΦK−1VK−1

for t← K − 1 . . . 1 do
Lt ← VtΦ

⊤
t P

−1
t

µt ← µ
(f)
t + Lt

(
µt+1 −Φtµ

(f)
t

)
; µ⋆(t)← h⊤µt

Vt ← V
(f)
t + Lt (Vt+1 −Pt)L

⊤
t ; v⋆(t)← h⊤Vth

E(ztz⊤t)← Vt + µtµ
⊤
t

if t < K − 1 then
E(ztz⊤t−1)← V

(f)
t+1L

⊤
t + Lt+1

(
E(zt+1z

⊤
t)−Φt+1Vt+1

)
L⊤
t

end if
end for

