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Abstract

We reconsider randomized algorithms for the
low-rank approximation of SPSD matrices
such as Laplacian and kernel matrices that
arise in data analysis and machine learn-
ing applications. Our main results con-
sist of an empirical evaluation of the per-
formance quality and running time of sam-
pling and projection methods on a diverse
suite of SPSD matrices. Our results high-
light complementary aspects of sampling ver-
sus projection methods, and they point to
differences between uniform and nonuniform
sampling methods based on leverage scores.
We complement our empirical results with
a suite of worst-case theoretical bounds for
both random sampling and random projec-
tion methods. These bounds are qualitatively
superior to existing bounds—e.g., improved
additive-error bounds for spectral and Frobe-
nius norm error and relative-error bounds for
trace norm error.

1. Introduction

We reconsider randomized algorithms for the low-rank
approximation of SPSD matrices such as Laplacian
and kernel matrices that arise in data analysis and
machine learning applications. Of particular interest
are sampling-based versus projection-based methods
as well as the use of uniform sampling versus nonuni-
form sampling based on the leverage score probabili-
ties. Our main contributions are fourfold.

First, we provide an empirical evaluation of the
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complementary strengths and weaknesses of data-
independent random projection methods and data-
dependent random sampling methods when applied to
SPSD matrices. We do so for a diverse class of SPSD
matrices drawn from machine learning and more gen-
eral data analysis applications, and we consider recon-
struction error with respect to the spectral, Frobenius,
as well as trace norms.

Second, we consider the running time of high-quality
sampling and projection algorithms. By exploiting
and extending recent work on “fast” random projec-
tions and related recent work on “fast” approxima-
tion of the statistical leverage scores, we illustrate
that high-quality leverage-based random sampling and
high-quality random projection algorithms have com-
parable running times.

Third, our main technical contribution is a set of deter-
ministic structural results that hold for any “sketching
matrix” applied to an SPSD matrix. (A precise state-
ment of these results is given in Theorems 1, 2, and 3
in Section 4.1.) We call these “deterministic structural
results” since there is no randomness involved in their
statement or analysis and since they depend on struc-
tural properties of the input data matrix and the way
the sketching matrix interacts with the input data.

Fourth, our main algorithmic contribution is to show
that when the low-rank sketching matrix represents
certain random projections or random sampling oper-
ations, then (by using our deterministic structural con-
ditions) we obtain worst-case quality-of-approximation
bounds that hold with high probability. (A precise
statement of these results is given in Lemmas 1, 2,
3, and 4 in Section 4.2.) These bounds are qualita-
tively better than existing bounds (when nontrivial
prior bounds even exist).

Our analysis is timely for at least two reasons. First,
existing theory for the Nyström method is quite mod-
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est. For example, existing worst-case bounds such as
those of (Drineas & Mahoney, 2005) are very weak,
especially compared with existing bounds for least-
squares regression and general low-rank matrix ap-
proximation problems (Drineas et al., 2008; 2010;
Mahoney, 2011). Moreover, many other worst-case
bounds make strong assumptions about the coher-
ence properties of the input data (Kumar et al., 2012;
Gittens, 2011). Second, there have been conflicting
views about the usefulness of uniform sampling versus
nonuniform sampling based on the empirical statisti-
cal leverage scores of the data in realistic data analysis
and machine learning applications. For example, some
work has concluded that the statistical leverage scores
of realistic data matrices are fairly uniform, meaning
that the coherence is small and thus uniform sampling
is appropriate (Williams & Seeger, 2001; Kumar et al.,
2012), while other work has demonstrated that lever-
age scores are often very nonuniform in ways that ren-
der uniform sampling inappropriate and that can be
essential to highlight properties of downstream inter-
est (Paschou et al., 2007; Mahoney & Drineas, 2009).

Remark. Space limitations prevent us from present-
ing more details from our empirical analysis (including
results on additional data, results when the low-rank
approximation is regularized to be better conditioned,
detailed results on running times for different sketch-
ing methods, etc.) as well as additional theoretical
analysis. These results, as well as additional discus-
sion, are available in the technical report version of
this paper (Gittens & Mahoney, 2013).

2. Preliminaries and Prior Work

Let A ∈ Rn×n be an arbitrary SPSD matrix with
eigenvalue decomposition A = UΣUT , where we par-
tition U and Σ as

U =
(
U1 U2

)
and Σ =

(
Σ1

Σ2

)
. (1)

Here, U1 comprises k orthonormal columns spanning
the top k-dimensional eigenspace of A; likewise, U2 is
an orthonormal basis for the bottom n−k dimensional
eigenspace of A. The diagonal matrix Σ1 contains the
largest k eigenvalues of A; likewise, Σ2 is a diagonal
matrix containing the smallest n− k eigenvalues of A.
We assume Σ1 is full-rank. Ak = U1Σ1U

T
1 is the

optimal rank-k approximation to A in any unitarily
invariant norm.

The statistical leverage scores of A relative to the best
rank-k approximation to A are the squared Euclidean
norms of the rows of the n× k matrix U1:

`j = ‖(U1)j‖2. (2)

We denote by S an arbitrary n × ` sketching matrix.
The matrices

Ω1 = UT
1 S and Ω2 = UT

2 S (3)

capture the interaction of S with the top and bottom
eigenspaces of A, respectively. The orthogonal projec-
tion onto the range space of a matrix M is written PM.
For a vector x ∈ Rn, let ‖x‖ξ, for ξ = 1, 2,∞, denote
the 1-norm, the Euclidean norm, and the∞-norm, re-
spectively. Then, ‖A‖2 = ‖Diag(Σ)‖∞ denotes the
spectral norm of A; ‖A‖F = ‖Diag(Σ)‖2 denotes the
Frobenius norm of A; and ‖A‖? = ‖Diag(Σ)‖1 de-
notes the trace norm (or nuclear norm) of A.

The following model for the low-rank approximation
of SPSD matrices subsumes sketches based on column-
sampling (also known as Nyström extensions) as well
as those based on mixtures of columns (also known
as projection-based sketches, since the mixtures are
often accomplished using Johnson–Lindenstrauss-type
dimensionality reducing “projections”).

• SPSD Sketching Model. Let A be an n × n pos-
itive semi-definite matrix, and let S be a matrix
of size n × `, where ` � n. Take C = AS and
W = STAS. Then CW†CT is a low-rank approx-
imation to A with rank at most `.

The distribution of the (random) matrix S leads to
different classes of low-rank approximations.

We point out that sketches formed using the so-called
power method (Halko et al., 2011), for which C =
AqS0 and W = ST0 A2q−1S0 for some integer q ≥ 2
and sketching matrix S0, fit this model if one consid-
ers the sketching matrix to be Aq−1S0. In (Gittens &
Mahoney, 2013), we provide theoretical guarantees on
the efficacy of the power method.

(Halko et al., 2011) considers SPSD sketches that
can be written in the forms PASAPAS and
A(PASAPAS)†A and finds that the second scheme
is empirically more effective, but it provides guaran-
tees only for the performance of the first scheme. We
note that both schemes fit into our SPSD Sketching
Model; we provide error bounds for the second sketch-
ing scheme by establishing that it is an instance of the
power method, with q = 2. See (Gittens & Mahoney,
2013) for details.

A large part of the recent body of work on randomized
matrix algorithms has been summarized in the recent
monograph of Mahoney (Mahoney, 2011) and the re-
cent review of Halko, Martinsson, and Tropp (Halko
et al., 2011). Much of the work in machine learning on
the Nyström method has focused on new proposals for
selecting columns (e.g., (Zhang et al., 2008; Zhang &
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Kwok, 2009; Liu et al., 2010; Arcolano & Wolfe, 2010))
and/or coupling the method with downstream applica-
tions. Ensemble Nyström methods, which mix several
simpler Nyström extensions, and related schemes for
improving the accuracy of Nyström extensions have
also been investigated (Kumar et al., 2009; Li et al.,
2010; Kumar et al., 2012).

On the theoretical side, much of the work has followed
that of Drineas and Mahoney (Drineas & Mahoney,
2005), who provided the first rigorous bounds for the
Nyström extension of a general SPSD matrix. Rather
than summarize this work in detail, we simply refer to
Table 1 (our results are from Lemma 4; we have similar
improvements for Lemmas 1, 2 and 3) to provide an
example of our improvement relative to related work.

3. Empirical Aspects of SPSD
Low-rank Approximation

Here, we present our main empirical results, which
consist of evaluating sampling and projection algo-
rithms applied to a diverse set of SPSD matrices. We
don’t intend these results to be “comprehensive” but
instead to be “illustrative” case-studies. That is, we
illustrate the tradeoffs between these methods in dif-
ferent realistic applications.

3.1. SPSD Sketching Algorithms

We provide empirical results for four sketches, based
on sampling columns uniformly at random, sampling
columns using leverage scores, mixing columns using
a subsampled randomized Fourier transform (SRFT),
and taking Gaussian mixtures of columns.

In the case of Gaussian mixtures, S is a matrix of i.i.d.
N (0, 1) random variables. In the case of SRFT mix-
tures, S =

√
n
`DFR, where D is a diagonal matrix of

Rademacher random variables (i.e., random ±1s with
equal probability), F is the real Fourier transform ma-
trix, and R restricts to ` columns.

Observe that {`j/k}j∈{1,...,n} is a probability distribu-
tion over the columns of A. Sketches based on lever-
age scores take S = RD where R ∈ Rn×` is a column
selection matrix that samples columns of A from the
given distribution and D is a diagonal rescaling matrix
satisfying Djj = 1√

`pi
iff Rij = 1.

Exact computation of leverage scores is expensive, so
we also consider two sketches that use approximate
leverage scores: the “power” scheme iteratively ap-
proximates the leverage scores of A and uses the ap-
proximate leverage scores obtained once a specified
convergence condition has been met; and the “frob

lev” scheme uses the leverage scores of AΠ, where
Π is a fast Johnson-Lindenstrauss transform (Drineas
et al., 2012). See (Gittens & Mahoney, 2013) for the
full details.

3.2. Data Sets

We consider four classes of matrices: normalized
Laplacians of very sparse graphs drawn from “in-
formatics graph” applications; dense matrices corre-
sponding to Linear Kernels from machine learning ap-
plications; dense matrices constructed from a Gaus-
sian Radial Basis Function Kernel (RBFK); and sparse
RBFK matrices constructed using Gaussian radial ba-
sis functions, truncated to be nonzero only for nearest
neighbors.

Recall that, given a graph with weighted adjacency
matrix W, the normalized graph Laplacian is A =
I−D−1/2WD−1/2, where D is the diagonal matrix of
weighted degrees of the nodes of the graph, i.e., Dii =∑
j 6=iWij . Given a set of data points x1, . . . ,xn ∈ Rd,

the Linear Kernel matrix A corresponding to those
points is given by Aij = 〈xi,xj〉, and a Gaussian

RBFK matrix Aσ is given by Aσij = exp

(
−‖xi−xj‖22

σ2

)
,

where σ is a nonnegative number. One can spar-
sify RBF Kernels while preserving their SPSD nature.
See (Gittens & Mahoney, 2013) for the details of the
method employed.

Table 2 illustrates the diverse range of properties ex-
hibited by these four classes of data sets. Several ob-
servations are particularly relevant to our discussion
below. First, the Laplacian Kernels drawn from infor-
matics graph applications are extremely sparse, and
tend to have very slow spectral decay. Second, both
the Linear Kernels and the Dense RBF Kernels are
much denser and are much more well-approximated
by moderately to very low-rank matrices. In addition,
both the Linear Kernels and the Dense RBF Kernels
have more uniform leverage scores. Third, we con-
sider two values of the σ parameter for the RBF Ker-
nels, chosen (somewhat) arbitrarily. For AbaloneD, we
see that decreasing σ from 1 to 0.15, i.e., letting data
points “see” fewer nearby points, has two important
effects: first, it results in matrices that are much less
well-approximated by low-rank matrices; and second,
it results in matrices with much more heterogeneous
leverage scores. Fourth, for the Sparse RBF Kernels,
there are a range of sparsities, ranging from above the
sparsity of the sparsest Linear Kernel, but all are much
denser than the Laplacian Kernels. In addition, spar-
sifying a Dense RBF Kernel has the effects of making
the matrix less well approximated by a low-rank ma-
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Table 1. Comparison of our bounds on Nyström approximation errors with those of prior works. Here, A is an n × n
SPSD matrix, optξ is the smallest ξ-norm error possible when approximating A with a rank-k matrix, r = rank(A), `
is the number of column samples sufficient for the stated bounds to hold, k is a target rank, and ε ∈ (0, 1). With the
exception of (Drineas & Mahoney, 2005), which samples columns with probabilities proportional to the square of the
corresponding diagonal entries of A, these bounds are for column sampling uniformly at random. All bounds hold with
constant probability.

` ‖A−CW†CT ‖2 ‖A−CW†CT ‖F ‖A−CW†CT ‖?
(Drineas & Mahoney, 2005) Ω(k/ε4) opt2 + ε

∑n
i= A

2
ii optF + ε

∑n
i=1 A

2
ii –

(Belabbas & Wolfe, 2009) Ω(1) – – O
(
n−`
n

)
‖A‖?

(Talwalkar & Rostamizadeh, 2010) Ω(max
i,j
|(U1)i,j |2nr ln r) 0 0 0

(Kumar et al., 2012) Ω(1) opt2 + O( 2n√
`
) ‖A‖2 optF + O(n( k` )1/4) ‖A‖2 –

this work, Lemma 4 Ω
(
µk ln k

(1−ε)2

)
opt2(1 + n

ε` ) optF + O(ε−1)opt? opt?(1 + O(ε−1))

Table 2. Summary statistics for the data sets that we used. Data sets are from (Leskovec et al., 2007; Klimt & Yang,
2004; Guyon et al., 2005; Gustafson et al., 2006; Nielsen et al., 2002; Corke, 1996; Asuncion & Newman, 2012).

Name %nnz
⌈ ‖A‖2F
‖A‖22

⌉
k

λk+1
λk

100
‖A−Ak‖F
‖A‖F

100
‖A−Ak‖?
‖A‖?

kth-largest
leverage score
scaled by n/k

Laplacian Kernels
HEP 0.06 3078 20 0.998 7.8 0.4 128.8
HEP 0.06 3078 60 0.998 13.2 1.1 41.9
GR 0.12 1679 20 0.999 10.5 0.74 71.6
GR 0.12 1679 60 1 17.9 2.16 25.3
Enron 0.22 2588 20 0.997 7.77 0.352 245.8
Enron 0.22 2588 60 0.999 12.0 0.94 49.6
Gnutella 0.09 2757 20 1 8.1 0.41 166.2
Gnutella 0.09 2757 60 0.999 13.7 1.20 49.4

Linear Kernels
Dexter 83.8 176 8 0.963 14.5 .934 16.6
Protein 99.7 24 10 0.987 42.6 7.66 5.45
SNPs 100 3 5 0.928 85.5 37.6 2.64
Gisette 100 4 12 0.90 90.1 14.6 2.46

Dense RBF Kernels
AbaloneD (dense, σ = .15) 100 41 20 0.992 42.1 3.21 18.11
AbaloneD (dense, σ = 1) 100 4 20 0.935 97.8 59 2.44
WineD (dense, σ = 1) 100 31 20 0.99 43.1 3.89 26.2
WineD (dense, σ = 2.1) 100 3 20 0.936 94.8 31.2 2.29

Sparse RBF Kernels
AbaloneS (sparse, σ = .15) 82.9 400 20 0.989 15.4 1.06 48.4
AbaloneS (sparse, σ = 1) 48.1 5 20 0.982 90.6 21.8 3.57
WineS (sparse, σ = 1) 11.1 116 20 0.995 29.5 2.29 49.0
WineS (sparse, σ = 2.1) 88.0 39 20 0.992 41.6 3.53 24.1

trix and making the leverage scores more nonuniform.

3.3. Reconstruction Accuracy of Sampling and
Projection Algorithms

Here, we describe the performances of the SPSD
sketches in terms of reconstruction accuracy for the
data sets described in Section 3.2.

Abridged Empirical Evaluation. Figure 1 shows
the Frobenius (top panel) and trace (bottom panel)
norm errors of several Nyström schemes, as a func-
tion of the number of column samples `, for datasets
from Table 2. “unif” denotes uniform column sam-
pling; “srft” denotes SRFT mixtures; “gaussian” de-
notes Gaussian mixtures; “levscore” denotes column
sampling using the exact leverage scores; and “power”

and “frob lev” are as described in Section 3.1. Figure 2
shows the times required to compute these sketches.

Summary of Comparison of Sampling and Pro-
jection Algorithms. Linear Kernels and to a lesser
extent Dense RBF Kernels with larger σ parameter
have relatively low-rank and relatively uniform lever-
age scores. In these circumstances uniform sampling
does quite well. These data sets correspond most
closely with those that have been studied previously
in the machine learning literature; for these data sets
our results are in agreement with those of prior work.

Sparsifying RBF Kernels and/or choosing a smaller
σ parameter tends to make these kernels less well-
approximated by low-rank matrices and to have more
heterogeneous leverage scores. In general, these two
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(a) GR, k = 20
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(b) HEP, k = 60
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(c) Dexter, k = 8
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(d) Gisette, k = 12
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(e) AbaloneD,
σ = .15, k = 20
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(f) AbaloneD,
σ = 1, k = 20
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(g) AbaloneS,
σ = .15, k = 20
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(h) AbaloneS,
σ = 1, k = 20

Figure 1. Frobenius and trace norm errors of several SPSD sketching schemes, as a function of number of column samples.
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(b) HEP, k = 60
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(c) Dexter, k = 8
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(d) Gisette, k = 12
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(e) AbaloneD,
σ = .15, k = 20
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(f) AbaloneD,
σ = 1, k = 20
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(g) AbaloneS,
σ = .15, k = 20
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Figure 2. The times required to compute several SPSD sketches, as a function of the number of column samples.
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properties are not directly related—the spectrum is a
property of eigenvalues, while the leverage scores are
determined by the eigenvectors—but for the data we
examined they are related, in that matrices with more
slowly decaying spectra also often have more hetero-
geneous leverage scores.

For Dense RBF Kernels with smaller σ and Sparse
RBF Kernels, leverage score sampling tends to out-
perform other methods. Interestingly, the Sparse RBF
Kernels have many properties of very sparse Lapla-
cian Kernels corresponding to relatively-unstructured
informatics graphs, an observation which should be
of interest for researchers who construct sparse graphs
from data using, e.g., “locally linear” methods to try to
reconstruct hypothesized low-dimensional manifolds.

Reconstruction quality under exact leverage score sam-
pling saturates, as a function of choosing more sam-
ples `. As a consequence, the value of ` used deter-
mines whether leverage score sampling or other sketch-
ing methods result in lower errors.

Summary of Leverage Score Approximation
Algorithms. The running time of computing the
exact leverage scores is generally much worse than
that of uniform sampling and both SRFT-based and
Gaussian-based random projection methods. The run-
ning time of computing approximations to the lever-
age scores can, with appropriate choice of parameters,
be much faster than the exact computation; and, es-
pecially for “‘frob lev,”’ it can be comparable to the
time needed to execute the random projection used in
the leverage score approximation algorithm (Drineas
et al., 2012). For methods that involve q > 1 it-
erations to compute stronger approximations to the
leverage scores, the running time can vary consider-
ably depending on the stopping condition.

The leverage scores computed by the “frob lev” pro-
cedure are typically very different than the “exact”
leverage scores, but they are leverage scores for a low-
rank space that is near the best rank-k approximation
to the matrix. This is often sufficient for good low-
rank approximation, although the reconstruction accu-
racy can degrade in the rank-restricted cases (not pre-
sented here) as ` is increased. The approximate lever-
age scores computed from “power” approach those of
the exact leverage scores, as q is increased; and they
obtain reconstruction accuracy that is no worse, and
in many cases is better, than those obtained using the
exact leverage scores. This suggests that, by not fit-
ting exactly to the empirical statistical leverage scores,
we are observing a form of regularization.

4. Theoretical Aspects of SPSD
Low-rank Approximation

In this section, we present our main theoretical re-
sults, which consist of a suite of bounds on the qual-
ity of low-rank approximation under several different
sketching methods. These were motivated by our em-
pirical observation that all of the sampling and projec-
tion methods we considered perform much better on
the SPSD matrices we considered than previous worst-
case bounds (e.g., (Drineas & Mahoney, 2005; Kumar
et al., 2012; Gittens, 2011)) would suggest.

Our results are based on the fact, established in (Git-
tens, 2011), that approximations which satisfy our
SPSD Sketching Model satisfy

CW†CT = A1/2PA1/2SA1/2. (4)

4.1. Deterministic Error Bounds

Here, we present theorems that bound the spec-
tral, Frobenius, and trace norm approximation errors.
Throughout, A is an n × n SPSD matrix with eigen-
value decomposition partitioned as in Equation (1),
S is a sketching matrix of size n × `, C = AS and
W = STAS, and Ω1 and Ω2 are defined in Equa-
tion (3).

Spectral Norm Bounds. We start with a bound
on the spectral norm of the residual error.

Theorem 1. If Ω1 has full row-rank, then∥∥A−CW†CT
∥∥

2
≤ ‖Σ2‖2 +

∥∥∥Σ1/2
2 Ω2Ω

†
1

∥∥∥2

2
.

Proof. It follows from Equation (4) that∥∥A−CW†CT
∥∥

2
=
∥∥∥A1/2 −PA1/2SA1/2

∥∥∥2

2
. (5)

Next, recall that Ωi = UT
i S, and that Ω1 has full-row

rank. It can be shown that

‖X−PXSX‖22 ≤ ‖Σ2‖22 +
∥∥∥Σ2Ω2Ω

†
1

∥∥∥2

2
, (6)

for any matrix X (Boutsidis et al., 2009; Halko et al.,
2011).

Frobenius Norm Bounds. Next, we state the
bound on the Frobenius norm of the residual error.

Theorem 2. If Ω1 has full row-rank, then∥∥A−CW†CT
∥∥

F
≤ ‖Σ2‖F

+
∥∥∥Σ1/2

2 Ω2Ω
†
1

∥∥∥
2

(√
2 ‖Σ2‖? +

∥∥∥Σ1/2
2 Ω2Ω

†
1

∥∥∥
F

)
.
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Proof. It follows from Equation (4) that

E :=
∥∥A−CW†CT

∥∥
F

=
∥∥∥A1/2(I−PA1/2S)A1/2

∥∥∥
F
.

To bound this, we first use the unitary invariance
of the Frobenius norm and the fact that PA1/2S =
UPΣ1/2UTSUT to obtain

E =
∥∥∥Σ1/2(I−PΣ1/2UTS)Σ1/2

∥∥∥2

F
.

Then we take

Z = Σ1/2UTSΩ†1Σ
−1/2
1 =

(
I
F

)
, (7)

where I ∈ Rk×k and F ∈ Rn−k×k is given by F =

Σ
1/2
2 Ω2Ω

†
1Σ
−1/2
1 . The latter equality holds because of

our assumption that Ω1 has full row-rank. Since the
range of Z is contained in the range of Σ1/2UTS,

E ≤
∥∥∥Σ1/2(I−PZ)Σ1/2

∥∥∥2

F
.

The fact that Z has full column-rank allows us to write

I−PZ = I− Z(ZTZ)−1ZT

=

(
I− (I + FTF)−1 −(I + FTF)−1FT

−F(I + FTF)−1 I− F(I + FTF)−1FT

)
.

(8)
This implies that

E ≤
∥∥∥∥Σ1/2

(
I− (Ξ)−1 −(Ξ)−1FT

−F(Ξ)−1 I− F(Ξ)−1FT

)
Σ1/2

∥∥∥∥2

F

=
∥∥∥Σ1/2

1

(
I− (Ξ)−1

)
Σ

1/2
1

∥∥∥2

F

+ 2
∥∥∥Σ1/2

1 (Ξ)−1FTΣ
1/2
2

∥∥∥2

F

+
∥∥∥Σ1/2

2

(
I− F(Ξ)−1FT

)
Σ

1/2
2

∥∥∥2

F

:= T1 + T2 + T3.

(9)

where Ξ = I + FTF.

Next, we will provide bounds for T1, T2, and T3. Using
the fact that 0 � I − F(I + FTF)−1FT � I, we can
bound T3 with

T3 ≤ ‖Σ2‖2F .

Likewise, the fact that I−(I+FTF)−1 � FTF (readily
verifiable with an SVD) implies that we can bound
T1 as

T1 ≤
∥∥∥Σ1/2

1 FTFΣ
1/2
1

∥∥∥2

F
≤
∥∥∥Σ1/2

1 FT
∥∥∥2

2

∥∥∥Σ1/2
1 FT

∥∥∥2

F

=
∥∥∥Σ1/2

2 Ω2Ω
†
1

∥∥∥2

2

∥∥∥Σ1/2
2 Ω2Ω

†
1

∥∥∥2

F

To bound T2, observe that

T2 ≤ 2
∥∥∥Σ1/2

1 Ξ−1FT
∥∥∥2

2

∥∥∥Σ1/2
2

∥∥∥2

F

= 2
∥∥∥Σ1/2

1 (I + M)−1M(I + M)−1Σ
1/2
1

∥∥∥
2
‖Σ2‖?

where M = FTF. It is readily verifiable, using the
SVD, that any SPSD matrix M satisfies the semidefi-
nite inequality

(I + M)−1M(I + M)−1 �M,

so we conclude that

T2 ≤ 2
∥∥∥FΣ

1/2
1

∥∥∥2

2
‖Σ2‖2F = 2

∥∥∥Σ1/2
2 Ω2Ω

†
1

∥∥∥2

2
‖Σ2‖? .

Combining our estimates for T1, T2, and T3 with Equa-
tion (9) gives

E ≤ ‖Σ2‖2F

+
∥∥∥Σ1/2

2 Ω2Ω
†
1

∥∥∥2

2

(
2 ‖Σ2‖? +

∥∥∥Σ1/2
2 Ω2Ω

†
1

∥∥∥2

F

)
The claimed bound follows by applying the subaddi-
tivity of the square-root function.

Trace Norm Bounds. Finally, we state the follow-
ing bound on the trace norm of the residual error.

Theorem 3. If Ω1 has full row-rank, then∥∥A−CW†CT
∥∥
?
≤ Tr (Σ2) +

∥∥∥Σ1/2
2 Ω2Ω

†
1

∥∥∥2

F
,

Proof. Since A−CW†CT = A1/2(I−PA1/2S)A1/2 �
0, its trace norm simplifies to its trace. Thus∥∥A−CW†CT

∥∥
?

= Tr
(
A−CW†CT

)
= Tr

(
Σ1/2(I−PΣ1/2S)Σ1/2

)
≤ Tr

(
Σ1/2(I−PZ)Σ1/2

)
,

where Z is defined in Equation (7). The expression for
PZ supplied in Equation (8) implies that

Tr
(
Σ1/2(I−PZ)Σ1/2

)
≤Tr

(
Σ

1/2
1 FTFΣ

1/2
1

)
+Tr (Σ2)

=Tr (Σ2) +
∥∥∥Σ1/2

2 Ω2Ω
†
1

∥∥∥2

F
.

The final equality follows from identifying F and the
squared Frobenius norm.

Remark. The assumption that Ω1 has full row-rank
is very non-trivial; it is false, for non-trivial param-
eter values, for common sketching methods such as
uniform sampling. It is satisfied by our procedures in
Section 4.2.
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4.2. Stochastic Error Bounds for Low-rank
SPSD Approximation

In this section, we apply the theorems from Section 4.1
to bound the reconstruction errors for several random
sampling and random projection methods that con-
form to our SPSD Sketching Model. Throughout, A
is an n× n SPSD matrix.

Lemma 1 (Leverage-based sketches). Let S be a
sketching matrix of size n × ` corresponding to a
leverage-based probability distribution derived from the
top k-dimensional eigenspace of A, satisfying

pj ≥
β

k
‖(U1)j‖22 and

∑n

j=1
pj = 1,

for some β ∈ (0, 1]. Fix a failure probability δ ∈ (0, 1]
and approximation factor ε ∈ (0, 1].

If ` ≥ 3200(βε2)−1k log(4k/(βδ)), then

∥∥A−CW†CT
∥∥

2
≤ ‖A−Ak‖2 + ε2 ‖A−Ak‖? ,∥∥A−CW†CT

∥∥
F
≤ ‖A−Ak‖F
+ (

√
2ε+ ε2) ‖A−Ak‖? , and∥∥A−CW†CT

∥∥
?
≤ (1 + ε2) ‖A−Ak‖?

each hold, individually, with probability at least 1−4δ−
0.4.

Lemma 2 (SRFT sketches). Let S ∈ Rn×` be an
SRFT sketching matrix. Fix a failure probability δ ∈
(0, 1/9] and approximation factor ε ∈ (0, 1].

If k ≥ lnn and ` ≥ 24ε−1[
√
k+
√

8 ln(8n/δ)]2 ln(8k/δ),
then

∥∥A−CW†CT
∥∥

2
≤
(

1 +
6

1−
√
ε

)
‖A−Ak‖2

+
1

(1−
√
ε) ln(8k/δ)

‖A−Ak‖? ,∥∥A−CW†CT
∥∥

F
≤ ‖A−Ak‖F
+ (7
√
ε+ 22ε) ‖A−Ak‖? , and∥∥A−CW†CT

∥∥
?
≤ (1 + 22ε) ‖A−Ak‖?

each hold, individually, with probability at least 1− 2δ.

Lemma 3 (Gaussian sketches). Let S ∈ Rn×` be a
Gaussian sketching matrix. If ` = k + p where p =

kε−2 for ε ∈ (0, 1] and k > 4, then∥∥A−CW†CT
∥∥

2
≤
(
1 + 963ε2

)
‖A−Ak‖2

+ 219
ε2

k
‖A−Ak‖? ,∥∥A−CW†CT

∥∥
F
≤ ‖A−Ak‖F

+ (11ε+ 544ε2)
√
‖A−Ak‖2 ‖A−Ak‖?

+ 91
ε√
k
‖A−Ak‖? + 815ε2

√
ln k

k
‖A−Ak‖2 , and∥∥A−CW†CT

∥∥
?
≤ (1 + 45ε2) ‖A−Ak‖?

+ 874ε2 ln k

k
‖A−Ak‖2

each hold, individually, with probability at least 1 −
2k−1 − 4e−k/ε

2

.

Lemma 4 (Uniform column sampling). Let S ∈ Rn×`
be a sketching matrix corresponding to sampling the
columns of A uniformly at random (with or without
replacement). Let

µ =
n

k
·maxi∈{1,...,n} ‖(U1)i‖22

denote the coherence of the top k-dimensional
eigenspace of A and fix a failure probability δ ∈ (0, 1)
and accuracy factor ε ∈ (0, 1). If ` ≥ 2ε−2µk ln(k/δ),
then∥∥A−CW†CT

∥∥
2
≤
(

1 +
n

(1− ε)`

)
‖A−Ak‖2 ,∥∥A−CW†CT

∥∥
F
≤ ‖A−Ak‖F

+
3

δ2(1− ε)
‖A−Ak‖? , and

∥∥A−CW†CT
∥∥
?
≤
(

1 +
1

δ2(1− ε)

)
‖A−Ak‖?

each hold, individually, with probability at least 1− 4δ.

Remark. The additive scale factors for the spectral
and Frobenius norm bounds are much improved rela-
tive to the prior results of (Drineas & Mahoney, 2005).
To our knowledge, our results supply the first relative-
error trace norm approximation bounds.

As with previous bounds for uniform sampling,
e.g., (Kumar et al., 2012; Gittens, 2011), the re-
sults in Lemma 4 are much weaker than those for
projecton-based and leverage score sampling-based
SPSD sketches, since the sampling complexity depends
on the coherence of the input matrix.
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