APPENDIX - SUPPLEMENTARY
 MATERIAL

A. Proofs

Proof of Properties 3.2c (Max-subadditivity).
Consider the linear combination of two stationary processes x_{t} and y_{t},

$$
z_{t}=\alpha x_{t}+\beta y_{t}
$$

It holds $\mathbb{V} z_{t}=\alpha^{2} \sigma_{x}^{2}+\beta^{2} \sigma_{y}^{2}+2 \alpha \beta \operatorname{cov}\left(x_{t}, y_{t}\right)$. If x_{t} and y_{s} are uncorrelated for all $s \neq t$ then $\mathbb{V} z_{t}=\alpha^{2}+\beta^{2}$ (if x_{t} and y_{t} are both unit-variance processes). To have a unit-variance sum we need $\beta=\sqrt{1-\alpha^{2}}$:

The spectrum of z_{t} equals (if they are uncorrelated)

$$
\begin{equation*}
S_{z}(\lambda)=\alpha^{2} S_{x}(\lambda)+\beta^{2} S_{y}(\lambda) \leq \alpha S_{x}(\lambda)+\beta S_{y}(\lambda) \tag{29}
\end{equation*}
$$

It therefore holds

$$
\begin{aligned}
\Omega\left(z_{t}\right) & =\Omega\left(\alpha x_{t}+\beta y_{t}\right) \\
& =1-H\left(\alpha^{2} S_{x}(\lambda)+\beta^{2} S_{y}(\lambda)\right) \\
& \leq 1-\left(\alpha^{2} H\left(S_{x}(\lambda)\right)+\beta^{2} H\left(S_{y}(\lambda)\right)\right)
\end{aligned}
$$

where the last inequality follows by (29). Plugging in $\beta=\sqrt{1-\alpha^{2}}$ gives

$$
\begin{aligned}
& \alpha^{2}-\alpha^{2} H\left(S_{x}(\lambda)\right)+\left(1-\alpha^{2}\right)-\left(1-\alpha^{2}\right) H\left(S_{y}(\lambda)\right) \\
& =\alpha^{2}\left(1-H\left(S_{x}(\lambda)\right)\right)+\left(1-\alpha^{2}\right)\left(1-H\left(S_{y}(\lambda)\right)\right) \\
& =\alpha^{2} \Omega\left(x_{t}\right)+\left(1-\alpha^{2}\right) \Omega\left(y_{t}\right) \\
& \leq \max \left(\Omega\left(x_{t}\right), \Omega\left(y_{t}\right)\right)
\end{aligned}
$$

which completes the proof.

Proof of Proposition 4.1. For every w,

$$
\begin{aligned}
\mathbf{w}^{\top} \overline{\widehat{S}_{U}^{(i)}} \mathbf{w} & =-\frac{1}{T} \sum_{j=0}^{T-1} \mathbf{w}^{\top}\left[\widehat{S}_{U}\left(\omega_{j}\right) \cdot \ell\left(\mathbf{w}_{i} ; \omega_{j}\right)\right] \mathbf{w} \\
& =\frac{1}{T} \sum_{j=0}^{T-1} \underbrace{-\ell\left(\mathbf{w}_{i} ; \omega_{j}\right)}_{\geq 0} \cdot \underbrace{\mathbf{w}^{\top} \widehat{S}_{U}\left(\omega_{j}\right) \mathbf{w}}_{\geq 0} \geq 0
\end{aligned}
$$

