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Abstract

We study pool-based active learning of half-
spaces. We revisit the aggressive approach
for active learning in the realizable case, and
show that it can be made efficient and prac-
tical, while also having theoretical guaran-
tees under reasonable assumptions. We fur-
ther show, both theoretically and experimen-
tally, that it can be preferable to mellow
approaches. Our efficient aggressive active
learner of half-spaces has formal approxima-
tion guarantees that hold when the pool is
separable with a margin. While our analysis
is focused on the realizable setting, we show
that a simple heuristic allows using the same
algorithm successfully for pools with low er-
ror as well. We further compare the aggres-
sive approach to the mellow approach, and
prove that there are cases in which the ag-
gressive approach results in significantly bet-
ter label complexity compared to the mellow
approach. Experiments demonstrate that
substantial improvements in label complex-
ity can be achieved using the aggressive ap-
proach, in realizable and low-error settings.

1. Introduction

We consider pool-based active learning (McCallum &
Nigam, 1998), in which a learner receives a pool of un-
labeled examples, and can iteratively query a teacher
for the labels of examples from the pool. The goal of
the learner is to return a low-error prediction rule for
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the labels of the examples, using a small number of
queries. The number of queries used by the learner is
termed its label complexity. This setting is most use-
ful when unlabeled data is abundant but labeling is
expensive, a common case in many data-laden appli-
cations. A pool-based algorithm can be used to learn
a classifier in the standard PAC model, while query-
ing fewer labels. This can be done by first drawing a
random unlabeled sample to be used as the pool, then
using pool-based active learning to identify its labels
with few queries, and then using the resulting labeled
sample as input to a regular “passive” PAC-learner.

Most active learning approaches can be loosely de-
scribed as more ‘aggressive’ or more ‘mellow’. A more
aggressive approach is one in which only ‘highly infor-
mative’ queries are requested (Tong & Koller, 2002;
Balcan et al., 2007; Dasgupta et al., 2005), while the
mellow approach, first proposed in the CAL algorithm
(Cohn et al., 1994), is one in which the learner essen-
tially queries all the labels it has not inferred yet.

In recent years a significant advancement has been
made for active learning in the PAC model. In particu-
lar, it has been shown that when the data is realizable
(that is, incurs zero error under some assumed hypoth-
esis class), the mellow approach can guarantee an ex-
ponential improvement in label complexity, compared
to passive learning (Balcan et al., 2006). This expo-
nential improvement depends on the properties of the
distribution, as quantified by the Disagreement Coeffi-
cient proposed by Hanneke (2007). Specifically, when
learning half-spaces in Euclidean space, the disagree-
ment coefficient implies a low label complexity when
the data distribution is uniform or close to uniform.
El-Yaniv & Wiener (2012) have shown guarantees if
the data distribution is a finite mixture of Gaussians.

An advantage of the mellow approach is its ability
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to obtain label complexity improvements in the ag-
nostic setting, which allows an arbitrary and large
labeling error (Balcan et al., 2006; Dasgupta et al.,
2007). Nonetheless, in the realizable case the mellow
approach is not always optimal, even for the uniform
distribution (Balcan et al., 2007). In this work we re-
visit the aggressive approach for the realizable case,
and in particular for active learning of half-spaces in
Euclidean space. We show that it can be made efficient
and practical, while also having theoretical guarantees
under reasonable assumptions. We further show, both
theoretically and experimentally, that it can some-
times be preferable to mellow approaches.

In the first part of this work we construct an efficient
aggressive active learner for half-spaces in Euclidean
space, which is approximately optimal if the pool is
separable with a margin. While our analysis is fo-
cused on the realizable setting, we show that a simple
heuristic allows using the same algorithm successfully
for pools with low error as well. Our algorithm for
halfspaces is based on a greedy query selection ap-
proach as proposed in Tong & Koller (2002); Dasgupta
(2005). We obtain improved target-dependent approx-
imation guarantees for greedy selection in a general
active learning setting. These guarantees allow us to
prove meaningful approximation guarantees for halfs-
paces based on a margin assumption.

In the second part of this work we compare the greedy
approach to the mellow approach. We prove that there
are cases in which this highly aggressive greedy ap-
proach results in significantly better label complexity
compared to the mellow approach. We demonstrate
experimentally that substantial improvements in label
complexity can be achieved compared to mellow ap-
proaches, for both realizable and low-error settings.

The first greedy query selection algorithm for learning
halfspaces in Euclidean space was proposed by Tong
& Koller (2002). The greedy algorithm is based on the
notion of a version space: the set of all hypotheses in
the hypothesis class that are consistent with the labels
currently known to the learner. In the case of halfs-
paces, each version space is a convex body in Euclidean
space. Each possible query thus splits the current ver-
sion space into two parts: the version space that would
result if the query received a positive label, and the one
resulting from a negative label. Tong and Koller pro-
posed to query the example from the pool that splits
the version space as evenly as possible. To implement
this policy, one would need to calculate the volume of
a convex body in Euclidean space, a problem which is
known to be computationally intractable (Brightwell
& Winkler, 1991). Tong and Koller thus implemented

several heuristics that attempt to follow their proposed
selection principle using an efficient algorithm. For in-
stance, they suggest to choose the example which is
closest to the max-margin solution of the data labeled
so far. However, none of their heuristics provably fol-
low this greedy selection policy.

The label complexity of greedy pool-based active
learning algorithms can be analyzed by comparing it
to the best possible label complexity of any pool-based
active learner on the same pool. The worst-case label
complexity of an active learner is the maximal number
of queries it would make on the given pool, where the
maximum is over all the possible classification rules
that can be consistent with the pool according to the
given hypothesis class. The average-case label com-
plexity of an active learner is the average number of
queries it would make on the given pool, where the
average is taken with respect to some fixed probabil-
ity distribution P over the possible classifiers in the
hypothesis class. For each of these definitions, the op-
timal label complexity is the lowest label complexity
that can be achieved by an active learner on the given
pool. Since implementing the optimal label complexity
is usually computationally intractable, an alternative
is to implement an efficient algorithm, and to guar-
antee a bounded factor of approximation on its label
complexity, compared to the optimal label complexity.

Dasgupta (2005) showed that if a greedy algorithm
splits the probability mass of the version space as
evenly as possible, as defined by the fixed probabil-
ity distribution P over the hypothesis class, then the
approximation factor for its average label complexity,
with respect to the same distribution, is bounded by
O(log(1/pmin)), where pmin is the minimal probability
of any possible labeling of the pool, if the classifier is
drawn according to the fixed distribution. Golovin &
Krause (2010) extended Dasgupta’s result and showed
that a similar bound holds for an approximate greedy
rule. They also showed that the approximation factor
for the worst-case label complexity of an approximate
greedy rule is also bounded by O(log(1/pmin)), thus
extending a result of Arkin et al. (1993). Note that in
the worst-case analysis, the fixed distribution is only
an analysis tool, and does not represent any assump-
tion on the true probability of the possible labelings.

Returning to greedy selection of halfspaces in Eu-
clidean space, we can see that the fixed distribu-
tion over hypotheses that matches the volume-splitting
strategy is the distribution that draws a halfspace uni-
formly from the unit ball. The analysis presented
above thus can result in poor approximation factors,
since if there are instances in the pool that are very
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close to each other, then pmin might be very small.

We first show that mild conditions suffice to guarantee
that pmin is bounded from below. By proving a variant
of a result due to Muroga et al. (1961), we show that
if the examples in the pool are stored using number of
a finite accuracy 1/c, then pmin ≥ (c/d)d

2

, where d is
the dimensionality of the space. It follows that the ap-
proximation factor for the worst-case label complexity
of our algorithm is at most O(d2 log(d/c)).

While this result provides us with a uniform lower
bound on pmin, in many real-world situations the prob-
ability of the target hypothesis (i.e., one that is con-
sistent with the true labeling) could be much larger
than pmin. A noteworthy example is when the tar-
get hypothesis separates the pool with a margin of γ.
In this case, it can be shown that the probability of
the target hypothesis is at least γd, which can be sig-
nificantly larger than pmin. An immediate question is
therefore: can we obtain a target-dependent label com-
plexity approximation factor that would depend on the
probability of the target hypothesis, P (h), instead of
the minimal probability of any labeling?

We prove that such a target dependent bound does
not hold for a general approximate-greedy algorithm.
To overcome this, we introduce an algorithmic change
to the approximate greedy policy, which allows us
to obtain a label complexity approximation factor of
log(1/P (h)). This can be achieved by running the
approximate-greedy procedure, but stopping the pro-
cedure early, before reaching a pure version space that
exactly matches the labeling of the pool. Then, an ap-
proximate majority vote over the version space can be
used to determine the labels of the pool. This result is
general and holds for any hypothesis class and distri-
bution. For halfspaces, it implies an approximation-
factor guarantee of O(d log(1/γ)).

We use this result to provide an efficient
approximately-optimal active learner for half-
spaces, called ALuMA, which relies on randomized
approximation of the volume of the version space
(Kannan et al., 1997). This allows us to prove a
margin-dependent approximation factor guarantee for
ALuMA. The assumption of separation with a margin
can be relaxed if a lower bound on the total hinge-loss
of the best separator for the pool can be assumed.
We show that under such an assumption a simple
transformation on the data allows running ALuMA
as if the data was separable with a margin. This
results in approximately optimal label complexity
with respect to the new representation.

We also derive lower bounds, showing that the depen-

dence of our label-complexity guarantee on the accu-
racy c, or the margin parameter γ, is indeed neces-
sary and is not an artifact of our analysis. We do not
know if the dependence of our bounds on d is tight.
It should be noted that some of the most popular
learning algorithms (e.g. SVM, Perceptron, and Ad-
aBoost) rely on a large-margin assumption to derive
dimension-independent sample complexity guarantees.
In contrast, here we use the margin for computational
reasons. Our approximation guarantee depends loga-
rithmically on the margin parameter, while the sample
complexities of SVM, Perceptron, and AdaBoost de-
pend polynomially on the margin. Hence, we require
a much smaller margin than these algorithms do. In a
related work, Balcan et al. (2007) proposed an active
learning algorithm with dimension-independent guar-
antees under a margin assumption. These guarantees
hold for a restricted class of data distributions.

In the second part of this work, we compare the greedy
approach to the mellow approach of CAL in the re-
alizable case, both theoretically and experimentally.
Our theoretical results show the following: (1) In the
simple learning setting of thresholds on the line, our
margin-based approach is preferable to the mellow ap-
proach when the true margin of the target hypothesis
is large. (2) There exists a distribution in Euclidean
space such that the mellow approach cannot achieve a
significant improvement in label complexity over pas-
sive learning for halfspaces, while the greedy approach
achieves such an improvement using more unlabeled
examples. (3) There exists a pool in Euclidean space
such that the mellow approach requires exponentially
more labels than the greedy approach.

We further compare the two approaches experimen-
tally, both on separable data and on data with small
error. The empirical evaluation indicates that our
algorithm, which can be implemented in practice,
achieves state-of-the-art results. It further suggests
that aggressive approaches can be significantly better
than mellow approaches in some practical settings.

We show main results for the greedy algorithm in Sec-
tion 2. The ALuMA algorithm is described in Sec-
tion 3. Results and experiments for the aggressive and
the mellow approaches are presented in Section 4. Full
proofs and additional experiments are provided in the
full version of this paper (Gonen et al., 2012).

2. Results for Greedy Active Learning

Let us first introduce some notation. Given a pool
X = {x1, . . . , xm}, where each instance xi is associated
with an unknown label L(i) ∈ {±1}, the goal of the
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learner is to find the values L(1), . . . , L(m) using as few
calls to the oracle L as possible. We assume that L is
determined by a function h taken from a predefined
hypothesis class H. That is, ∃h ∈ H such that for all
i, L(i) = h(xi). We denote this by L W h. An active
learning algorithm A obtains (X,L, T ) as input, where
T is the label budget of A. We denote by N(A, h) the
number of calls to L that A makes before outputting
(L(x1), . . . , L(xm)), under the assumption that LW h.
The worst-case label complexity of A is defined to be

cwc(A)
def
= maxh∈HN(A, h). We denote the optimal

worst-case label complexity for the given pool by OPT.
Formally, we define OPT = minA cwc(A), where the
minimum is taken over all possible active learners for
the given pool.

For a given active learner, we denote by Vt ⊆ H the
version space of an active learner after t queries. For-
mally, suppose that the active learning queried in-
stances i1, . . . , it in the first t iterations needed. Then

Vt = {h ∈ H | ∀j ∈ [t], h(xij ) = L(ij)}.

For a given pool example x ∈ X, denote by V jt,x the
version spaces that would result if the algorithm now
queried x and received label j. Formally,

V jt,x = Vt ∩ {h ∈ H | h(x) = j}.

Given X and H, we define, for each h ∈ H, the equiva-
lence class of h overH, [h] = {h′ ∈ H | ∀x ∈ X, h(x) =
h′(x)}. We consider a probability distribution P over
H such that P ([h]) is defined for all h ∈ H. For brevity,
we denote P (h) = P ([h]). Let pmin = minh∈H P (h).

Consider an active learning algorithm A. For any
α ≥ 1, A is α-approximately greedy with respect to
a probability distribution P over H, if at any itera-
tion of the algorithm t, the query x ∈ X chosen by A
satisfies

Eh∼P [V
h(x)
t,x ] ≥ 1

α
max
x∈X

Eh∼P [1− P (V
h(x)
t,x )],

and the algorithm returns a labeling consistent with
VT upon termination. Golovin & Krause (2010)
have shown that any α-approximately greedy algo-
rithm finds the correct labeling after at most O(α ·
OPT log(1/pmin)) queries.

We start by showing that by slightly changing the
policy of an approximately-greedy algorithm, we can
achieve a better approximation factor whenever the
true target hypothesis has a larger probability than
pmin. This can be done by allowing the algorithm to
stop before it reaches a pure version space, and re-
quiring that in this case, it would output the labeling

which is most likely based on the current version space
and the fixed probability distribution P .

We say that A outputs an approximate majority vote
if whenever VT is pure enough, the algorithm outputs
the majority vote on VT . Formally, we define this as
follows.

Definition 1. An algorithm A outputs a β-
approximate majority vote for β ∈ ( 1

2 , 1) if when-
ever there exists a labeling Z : X → {±1} such that
Ph∼P [Z W h | h ∈ VT ] ≥ β, A outputs Z.

In the following theorem we provide the target-
dependent label complexity bound, which holds for
any approximate greedy algorithm that outputs an ap-
proximate majority vote. We give here a sketch of the
proof idea. The full proof is provided in Gonen et al.
(2012).

Theorem 1. Let X = {x1, . . . , xm}. Let H be a hy-
pothesis class, and let P be a distribution over H. Sup-
pose that A is α-approximately greedy with respect to
P . Further suppose that it outputs a β-approximate
majority vote. If A is executed with input (X,L, T )
where LW h ∈ H, then for all

T ≥ α(2 ln(1/P (h)) + ln(
β

1− β
)) ·OPT,

A outputs L(1), . . . , L(m).

Sketch. Fix a pool X. For any algorithm alg, denote
by Vt(alg, h) the version space induced by the first n
labels it queries if the true labeling of the pool is con-
sistent with h. Denote the average version space re-
duction of alg after t queries by

favg(alg, t) = 1− Eh∼P [P (Vt(alg, h))].

Golovin & Krause (2010) prove that since A is α-
approximately greedy, for any pool-based algorithm
alg, and for every k, t ∈ N,

favg(A, t) ≥ favg(alg, k)− exp(−t/αk). (1)

Let opt be an algorithm that achieves OPT. We
show that for any hypothesis h ∈ H and any
active learner alg, favg(opt,OPT) − favg(alg, t) ≥
P (h)(P (Vt(alg, h))−P (h)). Combining this with Equa-
tion (1) we conclude that if A is α-approximately
greedy then

P (h)

P (Vt(A, h))
≥ P (h)2

exp(− t
αOPT ) + P (h)2

.

This means that if P (h) is large enough and we run
an approximate greedy algorithm, then after a suffi-
cient number of iterations, most of the remaining ver-
sion space induces the correct labeling of the sample.
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Specifically, if n ≥ α(2 ln(1/P (h)) + ln( β
1−β )) · OPT,

then P (h)/P (Vt(A, h)) ≥ β. Since A outputs a β-
approximate majority labeling from Vt(A, h), A re-
turns the correct labeling.

When P (h) � pmin, the bound in Theorem 1 is
stronger than the guarantee obtained by Golovin &
Krause (2010). Importantly, such an improved ap-
proximation factor cannot be obtained for a general
approximate-greedy algorithm, even in a very simple
setting. Thus, we can conclude that some algorith-
mic change is necessary. To show this, consider the
setting of thresholds on the line. In this setting, the
domain of examples is [0, 1], and the hypothesis class
Hline includes all the hypotheses which are positive if
the example is larger than some threshold in [0, 1].

Theorem 2. Consider pool-based active learning on
Hline, and assume that P on Hline selects hc by draw-
ing the value c uniformly from [0, 1]. For any α > 1
there exists an α-approximately greedy algorithm A
such that for any m > 0 there exists a pool X ⊆ [0, 1] of
size m, and a threshold c such that P (hc) = 1/2, while
the label-complexity of A for LW hc is m

dlog(m)e ·OPT.

Interestingly, this theorem does not hold for α = 1,
that is for the exact greedy algorithm. This follows
from Theorem 4, which we state and prove in Section 4.

So far we have considered a general hypothesis class.
We now discuss the class of halfspaces in Rd,W =
{x 7→ sgn(〈w, x〉) : w ∈ Bd1}, where Bd1 is the unit
ball in Rd. For simplicity, we will slightly overload no-
tation and sometimes use w to denote the halfspace it
determines. We fix the distribution P to be the one
that selects a vector w uniformly from Bd1. The follow-
ing lemma shows that our active learning algorithm for
halfspaces has the desired properties described above
with high probability.

Lemma 1. If ALuMA is executed with confidence δ,
then with probability 1−δ over its internal randomiza-
tion, ALuMA is 4-approximately greedy and outputs a
2/3-approximate majority vote. ALuMA is polynomial
in the pool size, the dimension, and log(1/δ).

Combining the above lemma with Theorem 1 we
immediately obtain that ALuMA’s label complex-
ity is O(log(1/P (h)) · OPT). We can upper-bound
log(1/P (h)) using the familiar notion of margin: For
any hypothesis h ∈ W defined by some w ∈ Rd, let
γ(h) be the maximal margin of the labeling of X by h,
namely γ(h) = maxv:‖v‖=1 mini∈[m] h(xi)〈v, xi〉. We

show that for all h ∈ W, P (h) ≥
(
γ(h)
2

)d
. From this

and Lemma 1, we obtain the following corollary, which

provides a guarantee for ALuMA that depends on the
margin of the target hypothesis.

Corollary 1. Let X = {x1, . . . , xm} ⊆ Bd1, where Bd1
is the unit Euclidean ball of Rd. Let δ ∈ (0, 1) be a
confidence parameter. Suppose that ALuMA is exe-
cuted with input (X,L, T, δ), where L W h ∈ W and
T ≥ 4(2d ln(2/γ(h)) + ln(2)) ·OPT. Then, with proba-
bility of at least 1− δ over ALuMA’s own randomiza-
tion, it outputs L(1), . . . , L(m).

Our result for ALuMA provides a target-dependent ap-
proximation factor guarantee, depending on the mar-
gin of the target hypothesis.1 We can also consider the
minimal possible margin, γ = minh∈W γ(h), and de-
duce from Theorem 1, or from the results of Golovin
& Krause (2010), a uniform approximation factor of
O(d log(1/γ)). How small can γ be? The following
result bounds this minimal margin from below under
the reasonable assumption that the examples are rep-
resented by numbers of a finite accuracy.

Lemma 2. Let c > 0 be such that 1/c is an integer and
suppose that X ⊂ {−1,−1 + c, . . . , 1 − c, 1}d. Then,
minh∈W γ(h) ≥ (c/

√
d)d+2.

The proof is an adaptation of a classic result due to
Muroga et al. (1961). We conclude that under this

assumption for halfspaces, pmin = Ω((c/d)d
2

), and de-
duce an approximation factor of d2 log(d/c) for the
worst-case label complexity of ALuMA. The exponen-
tial dependence of the minimal margin on d here is
necessary; as shown in H̊astad (1994), the minimal
margin can indeed be exponentially small, even if the
points are taken only from {±1}d.

We also derive a lower bound, showing that the depen-
dence of our bounds on γ or on c is necessary. Whether
the dependence on d is also necessary is an open ques-
tion for future work.

Theorem 3. For any γ ∈ (0, 1/8), there exists a pool
X ⊆ B2

1∩{−1, 1 + c, . . . , 1− c, 1}2 for c = Θ(γ), and a
target hypothesis h∗ ∈ W for which γ(h∗) = Ω(γ), such
that there exists an exact greedy algorithm that requires
Ω(ln(1/γ)) = Ω(ln(1/c)) labels in order to output a
correct majority vote, while the optimal algorithm re-
quires only O(log(log(1/γ))) queries.

3. The ALuMA algorithm

We now describe our algorithm, listed below as Alg. 1,
and explain why Lemma 1 holds. We name the algo-

1One may suggest that the approximation factor we
achieve for ALuMA in Lemma 1 is due to its internal ran-
domization. We show in Gonen et al. (2012) that this is
not the case.
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rithm Active Learning under a Margin Assumption or
ALuMA. Its inputs are the unlabeled sample X, the
labeling oracle L, the maximal allowed number of la-
bel queries T , and the desired confidence δ ∈ (0, 1). It
returns the labels of all the examples in X.

Recall that we take P to be uniform over W, the class
of homogeneous half-spaces in Rd. In each iteration
we wish to choose, among the instances in the pool,
the instance whose label would lead to the maximal
expected reduction in the version space. Denote by It
the set of indices corresponding to the elements in the
pool whose label was not queried yet (I0 = [m]). This
is equivalent to finding, in round t,

k = argmax
i∈It

P (V 1
t,xi

) · P (V −1t,xi
). (2)

In order to be able to solve Equation (2), we need
to calculate the volumes of the sets V 1

t,x and V −1t,x for
every element x in the pool. Both of these sets are
convex sets obtained by intersecting the unit ball with
halfspaces. The problem of calculating the volume of
such convex sets in Rd is #P-hard if d is not fixed
(Brightwell & Winkler, 1991). Moreover, determinis-
tically approximating the volume is NP-hard in the
general case (Matoušek, 2002). Luckily, it is possi-
ble to approximate this volume using randomization.
Specifically, in Kannan et al. (1997) a randomized al-
gorithm with the following guarantees is provided:

Lemma 3. Let K ⊆ Rd be a convex body with an
efficient separation oracle. There exists a randomized
algorithm, such that given ε, δ > 0, with probability at
least 1− δ the algorithm returns a number Γ ≥ 0 such
that (1− ε)Γ < P (K) < (1 + ε)Γ. The running time of
the algorithm is polynomial in d, 1/ε, ln(1/δ).

We denote an execution of this algorithm on a con-
vex body K by Γ← VolEst(K, ε, δ). The algorithm is
polynomial in d, 1/ε, ln(1/δ). ALuMA uses this algo-
rithm to estimate P (V 1

t,x) and P (V −1t,x ) with sufficient
accuracy. We denote these approximations by v̂x,1 and
v̂x,−1 respectively. Using Lemma 3 we show that w.p.
at least 1− δ/2, ALuMA is 4-approximately greedy.

After T iterations, ALuMA needs to output the major-
ity vote of a version space V that has a high enough
purity level. To do this, we would like to uniformly
draw several hypotheses from V and label X accord-
ing to a majority vote over these hypotheses. This
can be approximated using the hit-and-run algorithm
(Lovász, 1999), which efficiently draws a random sam-
ple from a convex body K ⊆ Rd, according to a distri-
bution which is λ-close in total variation distance to
the uniform distribution over K, in time Õ(d3/λ2). In
the final step of ALuMA, we produce a majority vote

Algorithm 1 The ALuMA algorithm

1: Input: X = {x1, . . . , xm}, L : [m] → {−1, 1}, T ,
δ

2: I1 ← [m], V1 ← Bd1
3: for t = 1 to T do
4: ∀i ∈ It, j ∈ {±1}, v̂xi,j ← VolEst(V jt,xi

, 13 ,
δ

4mT )
5: Select it ∈ argmaxi∈It(v̂xi,1 · v̂xi,−1)
6: It+1 ← It \ {it}
7: Request y = L(it)
8: Vt+1 ← Vt ∩ {w : y〈w, xit〉 > 0}
9: end for

10: M ← d72 ln(2/δ)e.
11: Draw w1, . . . , wM

1
12 -uniformly from VT+1.

12: For each xi return yi = sgn
(∑M

j=1 sgn(〈wj , xi〉)
)

.

classification from a distribution which is 1
12 -close to

uniform. This allows proving that ALuMA outputs a
2/3-approximate majority vote w.p. at least 1− δ/2.

3.1. Non-Separable Data and Kernels

If the data pool X is not separable, but a small up-
per bound on the total hinge-loss of the best separator
can be assumed, then ALuMA can be applied after
a preprocessing step. This preprocessing step maps
the points in X to a set of points in a higher dimen-
sion, which are separable using the original labels of X.
The dimensionality depends on the margin and on the
bound on the total hinge-loss of the original represen-
tation. The preprocessing step can be enhanced also to
support kernel representations, so that the original X
can be represented by a kernel matrix as well. Apply-
ing ALuMA after this preprocessing steps results in
an approximately optimal label complexity, however
OPT here is measured with respect to the new repre-
sentation. See the full details in Gonen et al. (2012).
We demonstrate that in practice, this procedure pro-
vides good results on real data sets. Investigating the
relationship between OPT in the new representation
and OPT in the original representation is an impor-
tant question for future work.

4. Other Approaches: A Theoretical
and Empirical Comparison

We now compare the effectiveness of the approach of
ALuMA to other active learning strategies. ALuMA
can be characterized by two properties: (1) its “ob-
jective” is to reduce the volume of the version space;
(2) at each iteration, it aggressively selects an exam-
ple from the pool so as to (approximately) minimize its
objective as much as possible (in a greedy sense). We



Efficient Active Learning of Halfspaces: an Aggressive Approach

discuss the implications of these properties by com-
paring to other strategies. Property (1) is contrasted
with strategies that focus on increasing the number of
examples whose label is known. Property (2) is con-
trasted with strategies which are “mellow”, in that
their criterion for querying examples is softer.

Much research has been devoted to the challenge of ob-
taining a substantial guaranteed improvement of label
complexity over regular “passive” learning for halfs-
paces in Rd. Examples (for the realizable case) in-
clude QBC (Seung et al., 1992; Freund et al., 1997),
CAL (Cohn et al., 1994), and Active Perceptron (Das-
gupta et al., 2005). These algorithms are not “pool-
based” but rather use “selective-sampling”: they sam-
ple one example at each iteration, and immediately
decide whether to ask for its label. Out of these algo-
rithms, CAL is the most mellow, since it queries any
example whose label is yet undetermined by the ver-
sion space. Its “objective” can be described as reduc-
ing the number of examples which are labeled incor-
rectly, since it has been shown to do so in many cases
(Hanneke, 2007; 2011; Friedman, 2009). QBC and the
Active Perceptron are less mellow. Their “objective”
is similar to that of ALuMA since they decide on ex-
amples to query based on geometric considerations.
In Section 4.1 we discuss the theoretical advantages
and disadvantages of different strategies, by consider-
ing some interesting cases from a theoretical perspec-
tive. In Section 4.2 we report an empirical comparison
of several algorithms and discuss our conclusions.

4.1. Theoretical Comparison

The label complexity of the algorithms mentioned
above is usually analyzed in the PAC setting, thus we
translate our guarantees into the PAC setting as well
for the sake of comparison. We define the (ε,m,D)-
label complexity of an active learning algorithm to be
the number of label queries that are required in or-
der to guarantee that given a sample of m unlabeled
examples drawn from D, the error of the learned clas-
sifier will be at most ε (with probability of at least
1 − δ over the choice of sample). A pool-based active
learner can be used to learn a classifier in the PAC
model by sampling a pool of m unlabeled examples
from D, applying the pool-based active learner to this
pool, and running a passive learner on the labeled pool
to obtain a classifier. For the class of halfspaces, if we
sample an unlabeled pool of m = Ω̃(d/ε) examples, the
learned classifier will have an error of at most ε (with
high probability).

To demonstrate the effect of property (1) presented
above, consider again the case of thresholds on the

line defined in Section 2. Compare two greedy pool-
based active learners for Hline : The first follows a bi-
nary search procedure, greedily selecting the example
that increases the number of known labels the most.
This requires dlog(m)e queries to identify the correct
labeling of the pool. The second algorithm queries
the example that splits the version space as evenly
as possible. Theorem 1 implies a label complexity
of O(log(m) log(1/γ(h))) for such an algorithm, since
OPTmax = O(log(m)). However, a better result holds:

Theorem 4. In the problem of thresholds on the line,
for any pool with labeling L, the exact greedy algorithm,
and any approximate greedy algorithm that outputs a
majority vote, require at most O(log(1/γ(h))) labels.

Comparing the dlog(m)e guarantee of the first algo-
rithm to the log(1/γ(h)) guarantee of the second, we
reach the (unsurprising) conclusion, that the first al-
gorithm is preferable when the true labeling has a
small margin, while the second is preferable when the
true labeling has a large margin. This simple exam-
ple accentuates the implications of selecting the vol-
ume of the version space as an objective. A sim-
ilar implication can be derived in the PAC setting,
when comparing CAL to ALuMA, with m = Θ̃(1/ε).
When d = 1, CAL achieves a label-complexity of
O(log(1/ε)) = O(log(m)), similarly to the binary
search strategy. Thus when ε is large compared to
γ(h), CAL is better than being greedy on the volume,
and the opposite holds when the condition is reversed.
QBC will behave similarly to ALuMA in this setting.

To demonstrate the effect of property (2) described
above—being aggressive versus being mellow—we con-
sider an example adapted from Dasgupta (2006). In
this example the distribution is supported by two cir-
cles in R3, one around the origin and one slightly above
it. Dasgupta has demonstrated via this example that
active learning can gain in label complexity from hav-
ing significantly more unlabeled data. The following
theorem shows that the aggressive strategy employed
by ALuMA indeed achieves an exponential improve-
ment when there are more unlabeled samples. In many
applications, unlabeled examples are virtually free to
sample, thus it can be worthwhile to allow the ac-
tive learner to sample more examples than the passive
sample complexity and use an aggressive strategy. In
contrast, the mellow strategy of CAL does not signif-
icantly improve over passive learning in this case. We
note that these results hold for any selective-sampling
method that guarantees an error rate similar to pas-
sive ERM given the same sample size. This falls in line
with the observation of Balcan et al. (2007), that in
some cases a more aggressive approach is preferable.
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Theorem 5. For all small enough ε ∈ (0, 1) there is
a distribution Dε of points in R3, such that

1. For m = O(1/ε), the (ε,m,Dε)-label complexity
of any active learner is Ω(1/ε).

2. For m = Ω(log2(1/ε)/ε2), the (ε,m,Dε)-label
complexity of ALuMA is O(log2(1/ε)).

3. For any value of m, the (ε,m,Dε)-label complexity
of CAL is Ω(1/ε).

This theorem demonstrates a case where more un-
labeled examples can help ALuMA use less labels,
whereas they do not help CAL. In fact, in some cases
the label complexity of CAL can be significantly worse
than that of the optimal algorithm, even without more
unlabeled examples that the optimal algorithm can ex-
ploit. An example is provided in Gonen et al. (2012).

4.2. Empirical Comparison

We now report an empirical comparison between ag-
gressive and mellow algorithms. Our goal is twofold:
First, to evaluate ALuMA in practice, and second, to
compare the performance of aggressive strategies and
mellow strategies. The aggressive strategy is repre-
sented by ALuMA and by Tong & Koller (2002). The
mellow strategy is represented by CAL. QBC repre-
sents a middle-ground between aggressive and mellow.
We also compare to a passive ERM algorithm—one
that uses random labeled examples.

Our implementation of ALuMA uses hit-and-run sam-
ples instead of full-blown volume estimation. See Go-
nen et al. (2012) for full details. QBC was also im-
plemented using hit-and-run (Gilad-Bachrach et al.,
2005). CAL and QBC were provided with a random
ordering of the pool. The algorithm TK is the first
heuristic proposed in Tong & Koller (2002), in which at
each iteration the example closest to the max-margin
solution of the labeled examples is selected. Since the
active learners operate by reducing the training error,
the graphs below compare the achieved training errors.

In all algorithms, we classify the training examples us-
ing the version space defined by the queried labels.
The theory for CAL and ERM allows selecting an ar-
bitrary predictor from the version space. In QBC, the
predictor should be drawn uniformly at random from
the version space. We found that all the algorithms
perform significantly better if the majority vote classi-
fication proposed for ALuMA is used for them. There-
fore, we used this methodology in for all algorithms.

First, we conducted a synthetic experiment on a sam-
ple from the uniform distribution on a sphere. Fig-

Figure 1. Uniform distribution (d = 100).

ure 1 depicts the training error as a function of the la-
bel budget when learning a random halfspace over the
uniform distribution in R100. ALuMA and TK out-
perform CAL and QBC here. In Gonen et al. (2012),
we show the behavior in R10 as well. The difference
between the performance of the different algorithms is
less marked in the lower dimension, suggesting that
the difference might grow with the dimension. These
results indicate that ALuMA might have a better guar-
antee than the general relative analysis in the case of
the uniform distribution. Achieving such an analysis
is an open question which is left for future work.

We next tested MNIST,2 which depicts gray-scale im-
ages of digits in dimension 784. Figure 2(left) shows
the training error as a function of the label budget
for learning to distinguish between the digits 3 and
5. Strikingly, CAL provides no improvement over pas-
sive ERM in the first 1000 examples, ALuMA and TK
reach zero training error. We tested also PCMAC,3

after a random projection from the original dimension
of 7511 to dimension 300. The results are shown in
Figure 2(right). Again, CAL does not improve over
passive ERM unlike the aggressive approaches.

Figure 2. MNIST (3 vs. 5) (left) and PCMAC (right)

In the experiments reported so far, TK and ALuMA
perform about the same, showing that the TK heuris-
tic is very successful. However, there are cases where
TK performs much worse than ALuMA. We report a
relevant synthetic experiment in Gonen et al. (2012).
We also present experiments on non-separable data
sets, showing that when the error is low and an up-
per bound on the hinge-loss can be assumed, ALuMA
can improve performance over mellow approaches.

2http://yann.lecun.com/exdb/mnist/
3http://vikas.sindhwani.org/datasets/lskm/matlab/
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