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Abstract

Regularized Multinomial Logistic regression
has emerged as one of the most common
methods for performing data classification
and analysis. With the advent of large-scale
data it is common to find scenarios where the
number of possible multinomial outcomes is
large (in the order of thousands to tens of
thousands) and the dimensionality is high. In
such cases, the computational cost of train-
ing logistic models or even simply iterating
through all the model parameters is pro-
hibitively expensive. In this paper, we pro-
pose a training method for large-scale multi-
nomial logistic models that breaks this bot-
tleneck by enabling parallel optimization of
the likelihood objective. Our experiments on
large-scale datasets showed an order of mag-
nitude reduction in training time.

1. Introduction

Regularized Multinomial Logistic regression (RMLR)
is one of the fundamental tools to model the the prob-
abilities of occurrence among one or more discrete
outcomes or class-labels. It is the choice algorithm
for classification in several fields such as economics
to model customer retention, purchase propensity etc
(Rust & Zahorik, 1993), in biomedical domains to
model probability of a disease occurrence (Kirkwood
et al., 1988), various engineering areas to model ma-
chine failure probability etc.

With the advent of large-scale data, there is growing
interest in enabling such fundamental models such as
RMLR to cope with large-scale factors such as large
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number of class-labels, high dimensionalities of the
input space and large-number of training instances.
Large-scale data is not uncommon; for example, the
Image-net database which is a repository of images
from the web has about 14 million images (instances)
organized into one of 20,000 words (class-labels) from
the word-net hierarchy. Another example is the Tiny-
image collection which is a collection of 80 million
low-scale 32x32 images from the web organized into a
75,000 abstract noun classes in English. In the text do-
main, the Open Directory Project (ODP) has existed
for a long time and has amassed 4.6 million web-pages
into a human-browsable hierarchy of 1 million classes.
Wikipedia, where it is easy to get reasonably high
quality labels for free, has millions of pages labeled
with multiple classes. For example, in the some of the
recently released data collections1 based on wikipedia
and ODP, the number of classes range from tens of
thousands to hundreds of thousands.

In such large-scale scenarios, it could be prohibitively
expensive to train RMLR models. To quantify the
scale of data we are interested in, let us consider a re-
cently released web-scale data collection1. The data is
a subset of webpages from the ODP 2. There are about
100,000 webpages organized into one of 12,000 classes
and each webpage is represented by a sparse vector of
350,00 word-level features. To train a RMLR model,
one would need to learn 12000 × 350000 = 4.2 billion
parameters which close to 17GB of parameters. Even
if we overcome the hurdle of storing such large number
of parameters in memory, it would still take significant
amount of time to even perform a single iteration over
all parameters. It is practically infeasible to learn a
RMLR model with such large number of parameter
on a single computer. The problem could be further
amplified if we have a large number of training in-
stances. However, the primary focus of our paper will

1http://lshtc.iit.demokritos.gr/
2http://dmoz.org
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be on how to scale when the number of classes is large.
More specifically, we will address the issue of how to
cope up with the memory and computational require-
ments of training RMLR model under such large-scale
scenarios.

In this paper, we explore a distributed approach to
train RMLR models. The main chunk of the compu-
tation is accomplished by optimizing sets of parame-
ters parallely across different computing units thereby
gaining two big advantages (a) Faster computation
- we can use the resources from multiple computing
units to solve different parts of the single optimiza-
tion problem (b) Distributed Memory - parameters
can now be spread across multiple computing units
simultaneously. The key idea is to replace the log par-
tition function of the multinomial logit with a paral-
lelizable upper-bound based on the concavity of the
log-function with several variational parameters. The
procedure is an iterative procedure where in one step,
the variational parameters are optimized to give the
best possible upper-bound, and in the other step, the
different sets of parameters are optimized parallely.
Furthermore, we prove that this iterative procedure to
the optimize the upper bounded objective converges
to the same optimal solution as the original RMLR
model. To our knowledge, this is the first work that
shows that RMLR models can be scaled to datasets
with tens of thousands of class-labels and billions of
parameters in a matter of few hours.

2. Related work

To our knowledge, there is no directly related work
that addresses the problem of training RMLR models
for large number of classes. However, we outline some
of the most commonly used methods to train RMLR
models and discuss the limitation of such models in
large-scale settings.

The simplest approach to fit RMLR models are first
order methods such as gradient descent. However,
the problem with gradient methods is that they re-
quire careful tuning of the step-size and are generally
slow to converge. Second order methods such as New-
ton’s method improve over gradient methods in the
sense that the descent direction provides a natural unit
step-length and provide exponential convergence near
the optimal solution. An efficient implementation of
newton’s method known as iterated reweighted least
squares (Holland & Welsch, 1977) is widely used to
fit logistic models. However second order methods fail
to be useful in high dimensional settings as the cal-
culation of descent direction involves a high dimen-
sional matrix inversion (inverse of the Hessian) which

is generally computationally intractable. Quasi new-
ton methods such as BFGS (Shanno, 1985) and its lim-
ited memory variant LBFGS (Liu & Nocedal, 1989) are
second order methods which overcome this problem of
matrix inversion by continually updating an approx-
imate inverse of the Hessian - although at a slower
convergence rate. Recently, multiple studies (Sha &
Pereira, 2003), (Schraudolph et al., 2007), (Daumé III,
2004) have shown that LBFGS methods offer the best
trade-off between convergence and computational re-
quirements and authors have often adopted it as the
standard choice to train logistic models. However, in
the large-scale setting we have at hand, even LBFGS
does not meet the computational challenges. Firstly,
LBFGS is not an inherently parallelizable (across pa-
rameters) algorithm. Secondly, due to the requirement
of repeated line-searches and function value evalua-
tion, the parameters to be learnt typically have to be
stored in memory (reading and writing 17GB of pa-
rameters to disk is expensive). Thirdly, LBFGS re-
quires storing the gradient values from the last few
iterations which further increase the memory require-
ments; for example if the gradient from the last 5 iter-
ations is stored, the memory requirement shoots upto
17× 5 ∼ 85GB making it practically infeasible.

Other ways to train RMLR are using iterative scaling
(Darroch & Ratcliff, 1972), conjugate gradient (Lin
et al., 2008) and dual methods (Yu et al., 2011). To
our knowledge, there has been no work on large-scale
distributed RMLR training using these methods par-
ticularly to the scale we are interested in. Also refer
(Minka, 2003) for an excellent comparison between the
different existing approaches for binary logistic regres-
sion.

Indirectly related to this paper are a few works in
stochastic gradient descent (Zhang, 2004), (Bottou,
2010) and online learning (Bottou, 1998) . Stochastic
and online approaches address scalability issues when
the number of training instances is large. This is very
different from our goal where the focus is large num-
ber of classes rather than large number of training in-
stances. Moreover, unlike stochastic approaches our
aim is not to provide guarantees on expected (expec-
tation w.r.t data) error of the model but training a
RMLR model on a fixed training dataset.

3. Training Large-scale RMLR

Let {xi, ti}i=Ni=1 denote the set of training instances
where each xi ∈ RD and ti ∈ {1, 2, ..K} and K de-
notes the number of class labels. Define the indicator
yik = I(ti = k) which denotes whether the ith training
example belongs to class k or not. Let the probability
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of a given instance x to have a class-label k be modelled
as,

P (y = k|x) =
exp(w>k x)
K∑
k′=1

exp(w>k′x)

where W = {w1, w2, ..wK} denote the set of parame-
ters. The training objective of RMLR can be written
as,

OPT1

min
W

GD(W )

GD(W ) =
λ

2

K∑
k=1

‖wk‖2 −
K∑
k=1

N∑
i=1

yikw
>
k xi+

N∑
i=1

log(

K∑
k′=1

exp(w>k′xi))

The most natural way to parallelize is to optimize each
class-level parameter wk in parallel. However this is
not directly possible due to the presence of the log
partition function which couples all the class-level pa-
rameters together inside a log-sum-exp function. This
makes the objective non decomposable across the wk’s.
This leads to the question - can we replace the log-
partition function by a parallelizable function ? Sec-
ondly, can this parallelizable function also be an upper-
bound to the log-partition function as this would guar-
antee that true-minimum is at most as high as the
minimum of the upper bounded objective. And fi-
nally, the introduction of this parallelizable function
must not make the problem harder to solve (like for
example make it non-differentiable or multiple local
minima etc).

To this end, we explore 3 different bounds for the log
partition function and their applicability to the prob-
lem at hand.

3.1. Piece-wise Bounds

One of the properties of convex functions is that they
can be approximated by piece-wise linear functions to
any degree of precision just by increasing the number
of pieces. This property can be used to upper and
lower-bound the log-sum-exp function (Hsiung et al.,
2008). The idea is to find a set of variational parame-
ters a, b, c, d such that

max
j
{a>j γ + bj} ≤ log

(
K∑
k=1

exp(γk)

)
≤ max

j′
{c>j′γ + dj′}

a, c ∈ RK b, d ∈ R

A similar idea was also used in (Marlin et al., 2011)
to approximate a binary logistic function but with a

quadratic function instead of linear functions. How-
ever there a few problems associated with such piece-
wise bounds. Firstly, finding the variational param-
eters a, b, c, d is not easy. Till date a constructive
solution for arbitrary precision for the log-sum-exp
function has been established only for K = 2 (Hsi-
ung et al., 2008). Without a constructive solution one
needs to resort to derivative free optimization meth-
ods like Nelder Mead method etc to fix the value of
the variational parameters. More over the number of
such variational parameters also grows linearly with
the number of classes K, therefore for datasets with a
large number of classes, finding the variational param-
eters through derivative free methods would be even
harder. Secondly, even if one were to find such param-
eters, the objective function is still not parallelizable
across the class-level parameters. Thirdly, using this
bound would introduce non-differentiability in the ob-
jective i.e. the log-sum-exp function would be replaced
by a max over linear functions, thereby rendering the
objective non-differentiable. Due to the above issues,
piece-wise linear bounds do not help us achieve dis-
tributed training of large-scale RMLR models.

3.2. Log-concavity bound

This is a well known bound that exploits the first order
concavity property of the log-function. It has been
used in many works including (Blei & Lafferty, 2006),
(Bouchard, 2007). The bound is as follows,

log(γ) ≤ aγ − log(a)− 1 ∀γ, a > 0 (1)

where a is a variational parameter. Minimizing the
RHS over a gives a = 1

γ
and makes the bound tight. To

incorporate this into the objective, we introduce vari-
ational parameters ai for each training instance i. We
have the log-partition function for instance i bounded
as,

log

(
K∑
k=1

exp(w>k xi)

)
≤ ai

K∑
k=1

exp(w>k xi)− log(ai)− 1

Firstly, note that incorporating this into the objective
makes the objective parallelizable across wk’s. That is,
for a given fixed value of the variational parameter ai,
the optimization over W splits into a sum of K differ-
ent objectives. Specifically, the class-level parameter
for class k i.e. wk can be optimized as

arg min
wk

λ

2
‖wk‖2 −

N∑
i=1

yikw
>
k xi +

N∑
i=1

ai exp(w>k xi) (2)

Secondly, note that finding the variational parameter
is an easy problem, because optimizing over ai in (1)
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has a closed form solution. Thirdly note that the com-
bined objective (as given below), is still differentiable.

OPT 2

min
A>0,W

FD(W,A)

FD(W,A) = λ
2

K∑
k=1

‖wk‖2 +
N∑
i=1

[
−

K∑
k=1

yikw
>
k xi

+ai
K∑
k=1

exp(w>k xi)− log(ai)− 1

]
The only down-side of this bound is that the convexity
of the original objective is now lost due to the pres-
ence of a product of linear and exponential function
i.e. ai exp(w>k xi). This introduces the possibility of
potentially multiple local minima in the objective and
hence the upper-bound could be potentially loose.

However, we show that it is still possible to reach the
optimal solution of the OPT 1 through OPT 2 by
showing the following,

1. There is exactly one stationary point of the com-
bined objective FD(W,A).

2. This single stationary point of FD(W,A) is a fea-
sible solution to OPT 2 and coincides with the
optimal solution of OPT 1.

3. A block co-ordinate descent procedure that con-
verges to the stationary point of FD(W,A) i.e op-
timal solution of OPT 1.

Let us consider one of the (possibly many) stationary
points of FD(W,A): W*,A∗. Stationarity implies that
the gradient is zero at this point,

∂FD
∂ai
|W∗,A∗ = 0⇒

A. a*i = 1
K∑

k=1
exp(w∗

k
>xi)

(3)

B. λ
K∑
k=1

w∗k −
N∑
i=1

K∑
k=1

yikx+
N∑
i=1

exp(w∗ti
>xi)

K∑
k′=1

exp(w∗
k′
>xi)

xi = 0 (4)

From equation (3), it follows that the stationary point
A∗ is a feasible solution to the optimization problem
OPT 2. Secondly, from equation (4) it can be seen
that the stationary point W* also satisfies the first or-
der stationarity conditions of GD(W ). But GD(W ) is
strictly convex objective and therefore has exactly one
unique stationary point which is a minimum and is the
optimal solution of OPT1. Therefore, all the station-
ary points of FD(W,A) have the same W∗. And given
that A is also uniquely defined by W, there is exactly
one stationary point of FD(W,A), which coincides with
optimal solution to OPT 2.

Algorithm 1 Block coordinate descent algorithm

Initialize : t← 0,A0 ← 1
K
,W0 ← 0.

Result : Wt

While : Not converged
In parallel : Wt+1 ← arg minW FD(W,At)

At+1 ← arg minA FD(Wt+1, A)

t← t+ 1

So far we have established that although FD(W,A)

is non-convex, it has a single unique stationary point.
Next we outline a block co-ordinate descent algorithm
that iteratively optimizes W and A and show that
this block co-ordinate descent converges to a station-
ary point of FD(W,A).

3.2.1. Convergence

Let us define the following functions,

FWt(A) = FD(Wt, A)

FAt(W ) = FD(W,At)

Now, it can be seen that the sequence of iterates
{Wt,At} are generated as follows,

W0 = 0, A0 =
1

K

Wt+1 = arg min
W

FAt(W )

At+1 = arg min
A
FWt+1(A) i.e. at+1

i = 1
K∑

k=1
exp(wt+1

k

>
xi)

(5)

Note that FAt(W ) is strongly convex with parameter
λ. Therefore by strong convexity we have,

FAt(Wt)− FAt(Wt+1) ≥ λ

2
||Wt −Wt+1||2 (6)

Also, since At+1 minimizes, FWt+1(A), we have,

FWt+1(At)− FWt+1(At+1) ≥ 0 (7)

Adding (6) and (7), and using the fact that
FAt(Wt+1) = FWt+1(At), and summing over T iter-
ations,

FD(W0,A0)− FD(Wt+1,At+1) ≥ λ

2

T∑
t=1

||Wt −Wt+1||2

Since FD is bounded from below i.e FD > 0, we have
the the L.H.S is bounded. Therefore,

lim
t→∞

λ
2

T∑
t=1

||Wt −Wt+1||2 <∞⇒Wt →W
′



Distributed training of large-scale logistic models

Since (5) is a continuous function, it preserves limits,

therefore At → A
′
. Hence the sequence of iterates

generated by the block coordinate descent algorithm
converges.

3.2.2. Convergence to Optimal solution

Let us consider the gradient of FAt+1(W ) at Wt+1

∂F
At+1 (W )

∂W
= λ

K∑
k=1

wk −
N∑
i=1

K∑
k=1

yikxi+
N∑
i=1

at+1
i exp(wk

>xi)xi

Using the fact that
∂FAt

∂W

∣∣∣
Wt+1

= 0, we have that

∥∥∥∂FAt+1(.)

∂W
|Wt+1

∥∥∥ =
∥∥∥ N∑
i=1

(at+1
i − ati) exp(wt+1

k

>
xi)xi

∥∥∥
≤

N∑
i=1

‖ati − at+1
i ‖ exp(wt+1

k

>
xi)‖xi‖ (8)

Since exp(x) is a continuous function preserving limits,
and W,A→W

′
,A
′
the RHS of the above goes to zero.

Also, from the definition of At+1

∥∥∥∂FD(Wt+1, A)

∂A

∣∣∣
At+1

∥∥∥ = 0 (9)

Combining eq (8), eq (9) and taking limits we have
that, ∥∥∥∂FD(W,A)

∂W,A

∣∣∣
Wt+1,At+1

∥∥∥→ 0 as t→∞

From above, we have that as t→∞, the partial gradi-
ents tend to zero therefore the sequence converges to
the stationary point of FD(W,A) which is the optimal
solution of OPT 1, that is, W

′
= W∗.

3.3. Double majorization bound

This bound was proposed in (Bouchard, 2007) to en-
able variational inference for logit models with Gaus-
sian priors. The bound is given by,

log

(
K∑
i=1

exp(w>k xi)

)
≤ ai +

K∑
k=1

log(1 + ew
>
k xi−ai)

where the variational parameters ai ∈ R.

Firstly, note that the bound is parallelizable as it splits
as sum of functions of class-wise parameters wk and
each wk can be optimized as,

arg min
wk

λ

2
‖wk‖2 −

N∑
i=1

yikw
>
k xi +

N∑
i=1

log(1 + ew
>
k xi−ai)

(10)

1 135 9 17 21 25 29 33 37 41 45 49 53 57 61 65 69 73 77 81 85 89
0.0E+00

5.0E+03

1.0E+04

1.5E+04

2.0E+04

2.5E+04

3.0E+04

Efficiency of Bound

Log-sum-exp

Upper-bound

Iteration

Fu
n
ct
io
n
-v
al
u
e

Figure 1. The figure shows the difference between the true
minimum attained by the function and the upper bound
using double majorization.

Secondly, it is differentiable and thirdly and impor-
tantly the upper bound is still convex. Although this
bound seems to possess much better properties than
the log-concavity bound, the only problem is that the
bound is not tight enough. In our initial experiments
we found that the gap between the log-sum-exp func-
tion and this upper bound is large. Figure 1 shows
the gap between the true objective and the upper-
bounded objective. The graph was generated by train-
ing two RMLR on the 20 news group dataset using the
LBFGS optimization algorithm (Liu & Nocedal, 1989)
and plotting the function-value after each iteration.
The blue line shows the function-value using log-sum-
exp and the red line shows the function-value by using
the upper-bound. Since the gap is relatively large, we
do not recommend using this bound.

3.4. Applicability of ADMM

Alternating direction method of multipliers (ADMM)
is a relatively new technique that enables simple con-
vex optimization problems to be easily parallelized.
The key idea in ADMM is to introduce redundant lin-
ear constraints into the problem such that the opti-
mization of the objective can be parallelized. In (Boyd
et al., 2011), the authors show how ADMM can en-
able distributed computing for many machine learning
models by either splitting across examples or splitting
across parameters. Since we are particulary interested
in parallelizing across class-parameters, we will look
into the ADMM formulation for splitting across fea-
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Table 1. Dataset Statistics

Dataset # instances #Leaf-labels #Features #Parameters Train Parameter
Size (approx) Size (approx)

CLEF 10,000 63 80 5,040 3MB 40KB
NEWS20 11,260 20 53,975 1,079,500 11MB 4MB
LSHTC-small 4,463 1,139 51,033 227,760,279 5MB 911MB
LSHTC-large 93,805 12,294 347,256 4,269,165,264 129MB 17GB

tures. For a problem of the form

min
V

K∑
k=1

fk(vk) + g(

K∑
k=1

vk)

the corresponding ADMM formulation is given by,

min
V,Z

K∑
k=1

fk(vk) + g(

K∑
k=1

zk)

subject to vk − zk = 0, k = 1, ..K.

Here vk are the parameters in the original problem
and the zk are the additional parameters introduced to
enable distributed computing. f and g are both convex
functions. The optimization problem is first solved by
optimizing for each of the vk in parallel. In the second
step, to solve for z, instead of solving the problem as
an optimization problem over k variables, we reduce
it to an optimization problem over a single variable
z̄ by re-writing g as g(Kz̄). This neat trick enables
efficient parallelization (refer (Boyd et al., 2011) pgs
56-57, 67-68)

However, this technique does not given any benefit
when applied to RMLR model. For simplicity, con-
sider a RMLR formulation with just one example x

and λ = 0. The optimization problem for RMLR is
given by

min
W

−
K∑
k=1

ykw
>
k xi + log

(
K∑
k=1

exp(w>k x)

)

To formulate the corresponding ADMM problem, it is
clear that vk needs to be set to class-level parameter
wk and fK(wk) = −ykw>k xi and g refers to the log-sum-
exp function. Next we introduce redundant variables
zk such that zk = w>k xi for k = 1, ..K (note that the re-
dundant constraints in ADMM should be linear). Now
applying the ADMM formulation for N examples, we
need to introduce N × K redundant variables i.e. zik
variables which represent the prediction of training in-
stance i w.r.t class k. This is given by,

min
W

−
K∑
k=1

(
N∑
i=1

ykw
>
k xi

)
+

N∑
i=1

log-sum-exp(zi)

subject to w>k xi − zik = 0, i = 1, ..N k = 1, ..K.

For solving, in each iteration, we need to solve K op-
timization problems of D (dimension) variables (i.e.
for each wk) and N optimization of K variables each
(i.e. for each {zik}Kk=1). There are several problems
in this approach w.r.t RMLR objective. Firstly, the
above requires much more computation than the log-
concavity bound which requires solving only K opti-
mization problems of D (dimension) variables (i.e. for
each wk) in each iteration. Secondly, the introduction
of Z variable increases memory by O(NK) as opposed
to O(N) variational parameters using the log-concavity
bound . Lastly, as noted in (Boyd et al., 2011) (pg 17),
ADMM exhibits very slow convergence properties. As
we will see in the next section, it takes orders of mag-
nitudes more computation (even after parallelization)
to reach the same accuracy as log-concavity bound or
LBFGS.

4. Experiments

Throughout our experiments, we consider 4 different
datasets with increasing number of parameters to learn
- CLEF 3, NEWS-20 4, LSHTC-small, LSHTC-large 5.
An outline of the various characteristics of the dataset
is given in Table 1.

We compare the following methods for distributed
training of RMLR models,

1. ADMM: The alternating direction method of
multipliers discussed in section 3.4. We tried
multiple values of the ρ parameter (Boyd et al.,
2011) and chose the one that offered the fastest
convergence.

2. LC: The log-concavity bound in section 3.2.

3. LBFGS: The standard quasi-newton methods
widely used to train logistic models (Liu & No-
cedal, 1989). All the parameters of the model are
optimized simultaneously. We use the previous 5
gradients to update the approximate hessian ma-
trix. Furthermore, in order to make LBFGS as

3http://kt.ijs.si/DragiKocev/PhD/resources/doku.php?
id=hmc classification

4http://people.csail.mit.edu/jrennie/20Newsgroups/
5http://lshtc.iit.demokritos.gr/
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Figure 2. The difference from the true optimum as a func-
tion of number of iterations

competitive as possible, the dot-product of an in-
stance xi with the class parameters wk are com-
puted in parallel (i.e. enables parallel computa-
tion of gradient).

4. DM: The Double Majorization in section 3.3.

For each inner problem in LC (2), DM (10) and
ADMM we use LBFGS for optimization (other solvers
can also be used, but LBFGS was chosen to maintain
comparability). All methods were tested on a 48 core
AMD Opteron Processor with 32GB RAM. For the
largest LSHTC dataset, a map-reduce based Hadoop
20.2 cluster with 64 worker nodes with 8 cores and
16GB RAM (cluster has 220 mappers and 196 reduc-
ers) was used. Only the LC method could be scaled
on this dataset. In each iteration of LC, the class pa-
rameters are parallely optimized in the map-phase and
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Figure 3. The difference from the true optimum as a func-
tion of time in seconds.

the variational parameters are updated in the reduce
phase. Note that Hadoop in not a requirement, we
chose to use it because the cluster could only be inter-
faced through Hadoop. In fact, other alternatives such
as Peregrine 6, Haloop 7 , Twister 8 or non-hadoop al-
ternatives such as MPI might be better choices as they
can be customized for iterative parallelizable compu-
tations. The λ parameter for the datasets was selected
using cross-validation using a one-versus rest logistic
regression; for NEWS20 and CLEF, λ = 1, for LSHTC-
small, λ = .001 and LSHTC, λ = .01.

Figures 2 show the difference from the optimal solu-
tion as the number of iteration increases for the first

6http://peregrine mapreduce.bitbucket.org/
7http//code.google.com/p/haloop/
8http://www.iterativemapreduce.org/



Distributed training of large-scale logistic models

three smaller datasets. In all the graphs, we see a
common pattern : LBFGS takes the fewest number
of iterations to converge to the optimal solution, fol-
lowed by LC, ADMM and DM. This is not surprising
because quasi-newton methods like LBFGS store some
approximation of the Hessian which helps to achieve
faster convergence than other methods. LC although
being a block co-ordinate descent method seems to of-
fer a much better convergence compared to ADMM
or DM. ADMM as noted by the authors exhibits very
slow convergence (Boyd et al., 2011) (pgs 6-7) to ac-
curate solutions. DM does not even reach the optimal
solution since the DM bound (3.3) is not tight.

Figures 3 show the difference from the optimal solu-
tion as a function of time taken. In this case, there is
considerable shift in results. Among the four methods,
only two of them seem to show reasonable convergence
with time - LBFGS and LC. Comparing the 2 meth-
ods on the smallest dataset NEWS20, there does not
seem to much difference between the them. But as
the number of classes gets larger like the CLEF and
LSHTC-small datasets, LC seems to perform signifi-
cantly faster than LBFGS (and the other methods).
Although LBFGS takes fewer iterations, each itera-
tion is very computationally intensive and takes a long
time, therefore each step of LBFGS is time consuming.
This in contrast to LC where the cost per iteration is
very cheap.

In fact on the largest LSHTC dataset, it is not even
possible to run LBFGS due to the extreme memory
requirements (17GB of parameters + 85GB of past
gradient values need to be stored simultaneously in
main memory). However, LC overcomes this diffi-
culty by iteratively solving multiple subproblems and
distributing the parameters across several computing
units. Figure 4 shows the progress of LC on LSHTC
as the number of iterations/time progresses. Most it-
erations of LC takes less than 6 minutes: around 3-
4 minutes for optimizing the class-parameters and 2
minutes to update the variational parameters. This
includes the time taken to start the hadoop job and
transfer the parameters etc. Note that it is possible to
train RMLR using ADMM or DM on this dataset, but
we did not pursue this since neither of them showed
reasonable convergence on the other datasets.

5. Conclusion and Future work

In this paper, we have explored multiple ways to
train large-scale RMLR models using different ways of
upper-bounding the log partition function. Our anal-
ysis and experiments have established that ADMM of-
fers very slow convergence rate, DM has a loose upper-
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Figure 4. The progress of LC on the LSHTC dataset.

bound, LBFGS is too computationally and memory-
intensive and LC being the most effective method. Un-
like other methods, LC is able to successfully leverage
distributed computing to achieve close to an order of
magnitude reduction in training time.

This work can be extended in many ways. In fact,
after the publication of this work, we realized that
there is a fully convex relaxation of the LC method
that sidesteps the nonconvexity issues in OPT 2. This
would enable a more thorough analysis of several as-
pects of the optimization such as the iteration com-
plexity, the dependence on the strong convexity pa-
rameter λ, the effect of the correlation between the
class-level parameters wk etc. We plan to include these
in an extended version of this work.
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