One-Bit Compressed Sensing: Provable Support and Vector Recovery

A. Proofs of UFF section

In this section we will give proofs for theorems in the
UFF section and introduce a robust version of UFF
when the measurements have adversarial noise.

Proof of Theorem 2. Consider k 4 1 distinct elements
of F: By,Bi, - ,By. Let us define the bad event E
as

E= 1{30§Uf:1 BL}

The cardinality of Ule B; is at most kd. Since the el-
ements of By are chosen independently and uniformly
at random from [m], we have:

(lcd) kd d
PIE] < (my < <WHZ+1> :

The total number of choices for the sets By, By, - - , By
is n(”gl) Using union bound, the probability that
Algorithm 1 does not return a (d, k)-UFF is
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_ n2kekn7klog937klog9§krlog9 < 6.

This finishes the proof. O

Proof of Theorem 3. Let S* = supp(x*). We know
that |S*| < k. Wlog, assume that non-zero ele-
ments are in the first k£ dimensions of x*, i.e., S* =
(1,2, 5]

Proof of S C S*: Consider any £ ¢ S*. As, A is con-
structed from F which is (d, k)-UFF (see Definition 1):
By gBlLJBQU"'Uwa‘.

Therefore, 31 < <m s.t. i/ € By and i’ ¢ B; Vj €
S*. Furthermore, b; = HA{Ej:i’ij 271>0} = 0. There-
fore, min;ep, b; = 0, ie., £ ¢ S (see Step 4 of Algo-

rithm 2), and it follows that S C S*.

Proof of S* C S: Now consider any ¢ € S*. For all i €
Bg, we have: jien; m;>0} > ,Hé{wz>0} =1.
Therefore, min;ep, b; > 0, and by Step 5 of Algo-
rithm 2: £ € S. Hence, S* C S . O]

bi =W

In the presence of arbitrary adversarial noise, the mea-
surements no longer satisfy (3) but are given by

b = Sign (Az* + n) (5)

where n € R™ is a sparse vector of outliers and ||,
is the number of adversarial errors. In the case of
adversarial errors, we use a (d, k, €)-UFF to construct
the measurement matrix as in (2) and the following
algorithm to reconstruct a*.

Algorithm 8 Support recovery algorithm when A is

constructed from a (d, k,€)-UFF

input A: measurement matrix, € : robustness param-
eter, b : measurement vector (b = sign(Az* +n))

1: § — 0

2: for j=1,--- ,ndo

3:  if [supp(b) N B;| > |B2” then
4: S — Su{j}

5. end if

6: end for

output S

Theorem 8 shows that Algorithm 8 recovers =* even
in the presence of at most (% — e) d adversarial errors.

Theorem 8. Suppose * € RZ is a vector of non-
negative elements s.t. |x*|lo < k, A is a sensing
matriz constructed according to (2) and the measure-
ments are according to (5). Suppose further that the
underlying UFF is a (d, k,€)-UFF and there are up to
(% - e) d adversarial errors in the measurement (i.e.,
[nllo < (3 — €) d where n is as in (5)). Then, the set

S returned by Algorithm 8 satisfies: S = supp(x*).

Proof. The proof of this theorem is along lines of
the proof for Theorem 3. Let S* = supp(x*). We
know that |S*| < k. Wlog, assume that non-zero
elements are in the first k£ dimensions of x*, i.e.,
S* :{1325 a|S*|}

We show S = S*, by first proving S C S* and then
S*CS.

Proof of S C S*: Consider any ¢ ¢ S*. Since A is
constructed from F which is (d, k, €)-UFF (see Defini-
tion 3):

’Blﬁ(BlLJBQU-"UB‘S*‘)’ <€|Bl|:6d.

Since there are at most (3 — €) d adversarial errors, we
have

1
|[supp(b) N By| < ed + (2 - e) d
d_ 1B

2 2

So, by Step 4 of Algorithm 8, we have £ ¢ S. Hence,
S C S*.
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Proof of S* C S: Now consider any ¢ € S*. For every
i € By \ supp (1), we have:

bi :J’F{ZJ%BJ, x>0} Z“‘{mg>o} =1

B
So supp(8) 1 > (10— () d = § = 15
and by Step 5 of Algorithm 8: ¢ € S. Hence, S* C

[ wy)

B. Proofs of Expanders section

In this section we will prove Theorem 5 for which we
need the following lemma.

Lemma 2. With the sensing matriz A constructed as
in section 3.2.2 and b = sign(Ax*) where * is a k-
sparse vector, we have |supp(b)| > (1—2¢)d|S™*|, where
S* = supp(a*).

Proof of Lemma 2. Since |S*| < k + 1, we have
N(S*) > (1—¢€)d|S*| by the expansion property. Now,
N(S*) can be partitioned into Ny(S*) and N~1(S*),
where N7(S*) are the vertices in N (S*) with only one
neighbor in S* and N~ 1(S*) are the vertices in N(S*)
with at least two neighbors in S*.

So the number of edges between S* and N(S*) is
4157 > NI (S%)] + 2Nor (7). Also |N(S7)] =
IN1(S*)| + |[Ns1(S*)| > (1 — €)d|S*|. Eliminat-
ing |[Ns1(S*)|, we obtain |[N1(S*)| > (1 — 2¢)d|S™*|.
Also, Ni(S) C supp(b). Hence, [supp(b)| > (1 —
2¢)d|S*|. O

Proof of Theorem 5. We first prove S* C S. Let J €
supp(x*), then |N(j)Usupp(b)| < |[N(S*Uj)| < d|S*|.
Using Lemma 2 with the above inequality we get:
ING) Asupp(b)] > (1 — 26)d]S*] — d(|5*] - 1).

As € < g, [N(j) N supp(b)| > 34 Hence, Step 4 of
Algorithm 3 will add j to S and hence, S* C S.

We now prove S C S*. Let j ¢ S*, then |S* U {j}| <
k + 1. Using expansion property,
(1 =e)d([S™|+1) <[N(S"U{j})|
S IN(SH)[+ NG = ING) VNS
< d[ST[+d —[N(5) N N(ST)]

= ING) N N(SY)| < ed(S"] +1) < ed(k+1) < fzi.
As supp(b) C N(S*), [N(j) Nsupp(b)| < 4. Hence,

Step 4 of Algorithm 3 will not add j to S. Hence,
S C S, O

C. Proof of the Divide and Conquer
approach

Proof of Theorem 6. Let r =logk, z = Px* and z, =

Z((0—1)2, .- 07 —1) ie. the (" block of z. Now,

Prf||z]], > 7] < (’f)kl ()

where the second inequality follows from Stirling’s ap-

proximation. By union bound, we have
T
Pr(30: [|ze]], > 1] < k (f) = ¢~ logh),
T

So [|z¢]lo, V¢ is at most O (log k) with probability at

least 1 — e~2(°gk)  Theorem now follows using Theo-
rem 3. 0
D. GraDeS

This section is almost entirely from (Garg & Khan-
dekar, 2009), presented here for the sake of complete-
ness. Before we present the GraDeS algorithm, we
have the following definition:

Definition 5. Let Hy : R® — R” be a function that
sets all but the k largest coordinates in absolute value
to zero. More precisely, for x € R™, let m be a per-
mutation of [n] such that ‘xﬁ(l)’ > ‘mﬂ(2)| > 0>

|mﬂ(n)|. Then the vector Hy(x) is a vector T where
Tr(i) = Ty fori <k and Triy =0 fori >k + 1.

Algorithm 9 GraDeS (Garg & Khandekar, 2009)
input z, A;,v and €

1: Initialize Z < 0

2: while |2 — A, Z|° > € do

3. 7 H, (as +1AT (2 Alas))

4: end while
output =

The following theorem which shows the correctness
of Algorithm 9 is a restatement of Theorem 2.3 from
(Garg & Khandekar, 2009).

Theorem 9. Suppose x* is a k-sparse vector satisfy-
ing z = Aix* + e for an error vector e € R™ and the
isometry constant of the matriz Ay satisfies dop < %
There exists a constant D > 0 that depends only on
dok, such that Algorithm 9 with v = 1+ dok, computes
a k-sparse vector T € R™ satisfying |x* — Z|| < D|e||

n at most
1 ~12
o <|z||2>
log (422} \lel

1
6’

iterations. Moreover, for o < we can choose the

constant D to be 6.
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E. Recovery using Gaussian
Measurements

Here we state a theorem from (Jacques et al., 2011)
which guarantees that all unit vectors which agree with
the 1-bit measurements obtained from a random Gaus-
sian matrix must be very close to each other.

Theorem 10 (Theorem 2 of (Jacques et al., 2011)).
Let A € R™*™ be a matrix generated as A ~
N™*1(0 1), Fiz 0 <n <1 ande> 0. If the number
of measurements(m) satisfy:

1
m > §klog(@),
€ €n

then with probability 1 — n, for all k-sparse vectors x
and y:

i Y
lzlly [yl

sign(Ax) = sign(Ay) = ‘

2

F. Proof of the Two-stage algorithm
(Algorithm 6)

Here we prove Theorem 7 which is a proof of correct-
ness of Two-stage algorithm (Algorithm 6).

Proof of Theorem 7. We prove the theorem by ana-
lyzing both the stages of our algorithm.

Stage 1: Let z* = Ajz*. As b = sign(Asz"),
(aél), b;), Vi are linearly separable and hence using lin-
ear programming, we can find a vector Z consistent
with the measurements b i.e. b = sign(A22z). Using
Theorem 10,

Stage 2: In stage 2 of Algorithm 6, we run GradeS
with inputs %— and A;. Now, using (6):

BB

* ~

z z

I12* (],

1211

< €. (6)

2

o *

z A Zr +
= = A1 n,
I1Z12 [ Arz* |2

where ||n]l2 < e. Also, since A; satisfies RIP with
dor < 1/6, using the recovery result of GradeS (Theo-
rem 9, Appendix D), the recovered vector & satisfies:

w*

[[Arz* |2

< Ge.

2

That is,
~ 112 ||m*|\§ T x* 2
—2 < 36
1#l2 ¥ Tz ~ 2w, =30
Il A le e

[z*]]2 [Z]2]|A1z* |2
ST % A *
Ly BT g Il
12|22 |2 [EIPYE P

Using the fact that ¢t + 1/t > 2 and using RIP,

ST %
T x 1
22— < 36e%(1+ dop) .
|22l |2 (4P
Also, ||Z]]2 > ||MTH2||2—66 > ﬁ—ﬁe. So we have
x* & | 14 o,
’ ERRE A e ¢
2 (1+52k _6)
x* T
= ’ T < 20€
=l ll2ll21],
for e < %. O]

G. Lower Bound on Reconstruction
Error

The following is a lower bound on the reconstruc-
tion error of any approximate recovery algorithm from
(Jacques et al., 2011).

Theorem 11 (Theorem 1 of (Jacques et al., 2011)).
Let ||z*||, < K, ||x*||, = 1,b = sign(Ax*), A € R™*"
and let & = A(b A k) be the unit vector recon-
structed by some recovery algorithm A" based on
b, A k. Then the worst case reconstruction error
Sup, 1@ — @[], >

em”’




