
One-Bit Compressed Sensing: Provable Support and Vector Recovery

A. Proofs of UFF section

In this section we will give proofs for theorems in the
UFF section and introduce a robust version of UFF
when the measurements have adversarial noise.

Proof of Theorem 2. Consider k + 1 distinct elements
of F : B0, B1, · · · , Bk. Let us define the bad event E
as

E = 1{B0⊆
S

k
i=1

Bi}.

The cardinality of
⋃k

i=1 Bi is at most kd. Since the el-
ements of B0 are chosen independently and uniformly
at random from [m], we have:

P [E] ≤

(
kd
d

)
(
m
d

) ≤
(

kd

m− d + 1

)d

.

The total number of choices for the sets B0, B1, · · · , Bk

is n
(
n−1

k

)
. Using union bound, the probability that

Algorithm 1 does not return a (d, k)-UFF is

P [Err] ≤ n

(
n− 1

k

)(
kd

m− d + 1

)d

≤ n

(
e(n− 1)

k

)k (
kd

m− d + 1

)d

≤ n2kek

(
1

9

)k log( 3n
δ )

= n2kekn−k log 93−k log 9δk log 9 < δ.

This finishes the proof.

Proof of Theorem 3. Let S∗ = supp(x∗). We know
that |S∗| ≤ k. Wlog, assume that non-zero ele-
ments are in the first k dimensions of x∗, i.e., S∗ =
{1, 2, · · · , |S∗|}.

Proof of Ŝ ⊆ S∗: Consider any ℓ /∈ S∗. As, A is con-
structed from F which is (d, k)-UFF (see Definition 1):

Bl * B1 ∪B2 ∪ · · · ∪B|S∗|.

Therefore, ∃1 ≤ i′ ≤ m s.t. i′ ∈ Bℓ and i′ /∈ Bj ∀j ∈
S∗. Furthermore, bi′ = 1{P

j:i′∈Bj
x∗

j >0} = 0. There-

fore, mini∈Bℓ
bi = 0, i.e., ℓ /∈ Ŝ (see Step 4 of Algo-

rithm 2), and it follows that Ŝ ⊆ S∗.

Proof of S∗ ⊆ Ŝ: Now consider any ℓ ∈ S∗. For all i ∈
Bℓ, we have: bi = 1{P

j:i∈Bj
x∗

j >0} ≥ 1{x∗

ℓ
>0} = 1.

Therefore, mini∈Bℓ
bi > 0, and by Step 5 of Algo-

rithm 2: ℓ ∈ Ŝ. Hence, S∗ ⊆ Ŝ .

In the presence of arbitrary adversarial noise, the mea-
surements no longer satisfy (3) but are given by

b = Sign (Ax∗ + η) (5)

where η ∈ Rm is a sparse vector of outliers and ‖η‖0
is the number of adversarial errors. In the case of
adversarial errors, we use a (d, k, ǫ)-UFF to construct
the measurement matrix as in (2) and the following
algorithm to reconstruct x∗.

Algorithm 8 Support recovery algorithm when A is
constructed from a (d, k, ǫ)-UFF

input A : measurement matrix, ǫ : robustness param-
eter, b : measurement vector (b = sign(Ax∗ + η))

1: Ŝ ← ∅
2: for j = 1, · · · , n do

3: if |supp(b) ∩Bj | >
|Bj |
2 then

4: Ŝ ← Ŝ ∪ {j}
5: end if

6: end for

output Ŝ

Theorem 8 shows that Algorithm 8 recovers x∗ even
in the presence of at most

(
1
2 − ǫ

)
d adversarial errors.

Theorem 8. Suppose x∗ ∈ Rn
≥0 is a vector of non-

negative elements s.t. ‖x∗‖0 ≤ k, A is a sensing
matrix constructed according to (2) and the measure-
ments are according to (5). Suppose further that the
underlying UFF is a (d, k, ǫ)-UFF and there are up to(

1
2 − ǫ

)
d adversarial errors in the measurement (i.e.,

‖η‖0 ≤
(

1
2 − ǫ

)
d where η is as in (5)). Then, the set

Ŝ returned by Algorithm 8 satisfies: Ŝ = supp(x∗).

Proof. The proof of this theorem is along lines of
the proof for Theorem 3. Let S∗ = supp(x∗). We
know that |S∗| ≤ k. Wlog, assume that non-zero
elements are in the first k dimensions of x∗, i.e.,
S∗ = {1, 2, · · · , |S∗|}.

We show Ŝ = S∗, by first proving Ŝ ⊆ S∗ and then
S∗ ⊆ Ŝ.
Proof of Ŝ ⊆ S∗: Consider any ℓ /∈ S∗. Since A is
constructed from F which is (d, k, ǫ)-UFF (see Defini-
tion 3):

∣∣Bl ∩
(
B1 ∪B2 ∪ · · · ∪B|S∗|

)∣∣ < ǫ |Bl| = ǫd.

Since there are at most
(

1
2 − ǫ

)
d adversarial errors, we

have

|supp(b) ∩Bℓ| < ǫd +

(
1

2
− ǫ

)
d

=
d

2
=
|Bℓ|

2

So, by Step 4 of Algorithm 8, we have ℓ /∈ Ŝ. Hence,
Ŝ ⊆ S∗.
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Proof of S∗ ⊆ Ŝ: Now consider any ℓ ∈ S∗. For every
i ∈ Bℓ \ supp (η), we have:

bi = 1{P

j:i∈Bj
x∗

j >0} ≥ 1{x∗

ℓ
>0} = 1.

So, |supp(b) ∩Bℓ| > (1− ǫ) d −
(

1
2 − ǫ

)
d = d

2 = |Bℓ|
2

and by Step 5 of Algorithm 8: ℓ ∈ Ŝ. Hence, S∗ ⊆ Ŝ
.

B. Proofs of Expanders section

In this section we will prove Theorem 5 for which we
need the following lemma.

Lemma 2. With the sensing matrix A constructed as
in section 3.2.2 and b = sign(Ax∗) where x∗ is a k-
sparse vector, we have |supp(b)| > (1−2ǫ)d|S∗|, where
S∗ = supp(x∗).

Proof of Lemma 2. Since |S∗| < k + 1, we have
N(S∗) > (1−ǫ)d|S∗| by the expansion property. Now,
N(S∗) can be partitioned into N1(S

∗) and N>1(S
∗),

where N1(S
∗) are the vertices in N(S∗) with only one

neighbor in S∗ and N>1(S
∗) are the vertices in N(S∗)

with at least two neighbors in S∗.

So the number of edges between S∗ and N(S∗) is
d|S∗| ≥ |N1(S

∗)| + 2|N>1(S
∗)|. Also |N(S∗)| =

|N1(S
∗)| + |N>1(S

∗)| > (1 − ǫ)d|S∗|. Eliminat-
ing |N>1(S

∗)|, we obtain |N1(S
∗)| > (1 − 2ǫ)d|S∗|.

Also, N1(S) ⊆ supp(b). Hence, |supp(b)| > (1 −
2ǫ)d|S∗|.

Proof of Theorem 5. We first prove S∗ ⊆ Ŝ. Let j ∈
supp(x∗), then |N(j)∪supp(b)| ≤ |N(S∗∪j)| ≤ d|S∗|.
Using Lemma 2 with the above inequality we get:
|N(j) ∩ supp(b)| > (1− 2ǫ)d|S∗| − d(|S∗| − 1).
As ǫ < 1

8k
, |N(j) ∩ supp(b)| > 3d

4 . Hence, Step 4 of

Algorithm 3 will add j to Ŝ and hence, S∗ ⊆ Ŝ.

We now prove Ŝ ⊆ S∗. Let j /∈ S∗, then |S∗ ∪ {j}| ≤
k + 1. Using expansion property,

(1− ǫ)d(|S∗|+ 1) < |N(S∗ ∪ {j})|

≤ |N(S∗)|+ |N(j)| − |N(j) ∩N(S∗)|

≤ d|S∗|+ d− |N(j) ∩N(S∗)|

⇒ |N(j) ∩N(S∗)| < ǫd(|S∗|+ 1) ≤ ǫd(k + 1) <
d

4
.

As supp(b) ⊆ N(S∗), |N(j) ∩ supp(b)| < d
4 . Hence,

Step 4 of Algorithm 3 will not add j to Ŝ. Hence,
Ŝ ⊆ S∗.

C. Proof of the Divide and Conquer
approach

Proof of Theorem 6. Let r = log k, z = Px∗ and zℓ =
z((ℓ− 1)m

k
, · · · , ℓm

k
− 1) i.e. the ℓth block of z. Now,

Pr[||zℓ||0 > r] ≤

(
k

r

)
1

kr
≤

(e

r

)r

where the second inequality follows from Stirling’s ap-
proximation. By union bound, we have

Pr[∃ℓ : ||zℓ||0 > r] ≤ k
(e

r

)r

= e−Ω(log k).

So ‖zℓ‖0, ∀ℓ is at most O (log k) with probability at
least 1− e−Ω(log k). Theorem now follows using Theo-
rem 3.

D. GraDeS

This section is almost entirely from (Garg & Khan-
dekar, 2009), presented here for the sake of complete-
ness. Before we present the GraDeS algorithm, we
have the following definition:

Definition 5. Let Hk : Rn → Rn be a function that
sets all but the k largest coordinates in absolute value
to zero. More precisely, for x ∈ Rn, let π be a per-
mutation of [n] such that

∣∣xπ(1)

∣∣ ≥
∣∣xπ(2)

∣∣ ≥ · · · ≥∣∣xπ(n)

∣∣. Then the vector Hk(x) is a vector x̂ where
x̂π(i) = xπ(i) for i ≤ k and x̂π(i) = 0 for i ≥ k + 1.

Algorithm 9 GraDeS (Garg & Khandekar, 2009)

input ẑ, A1, γ and ǫ
1: Initialize x̂ ← 0
2: while ‖ẑ −A1x̂‖

2
> ǫ do

3: x̂ ← Hk

(
x̂ + 1

γ
AT

1 (ẑ −A1x̂)
)

4: end while

output x̂

The following theorem which shows the correctness
of Algorithm 9 is a restatement of Theorem 2.3 from
(Garg & Khandekar, 2009).

Theorem 9. Suppose x∗ is a k-sparse vector satisfy-
ing ẑ = A1x

∗+ e for an error vector e ∈ Rm′

and the
isometry constant of the matrix A1 satisfies δ2k < 1

3 .
There exists a constant D > 0 that depends only on
δ2k, such that Algorithm 9 with γ = 1 + δ2k, computes
a k-sparse vector x̂ ∈ Rn satisfying ‖x∗ − x̂‖ ≤ D ‖e‖
in at most 


1

log
(

1−δ2k

4δ2k

) · log

(
‖ẑ‖2

‖e‖2

)



iterations. Moreover, for δ2k < 1
6 , we can choose the

constant D to be 6.
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E. Recovery using Gaussian
Measurements

Here we state a theorem from (Jacques et al., 2011)
which guarantees that all unit vectors which agree with
the 1-bit measurements obtained from a random Gaus-
sian matrix must be very close to each other.

Theorem 10 (Theorem 2 of (Jacques et al., 2011)).
Let A ∈ Rm×n be a matrix generated as A ∼
Nm×n(0, 1). Fix 0 < η ≤ 1 and ǫ > 0. If the number
of measurements(m) satisfy:

m >
8

ǫ
k log(

16n

ǫη
),

then with probability 1− η, for all k-sparse vectors x

and y:

sign(Ax) = sign(Ay) ⇒

∣∣∣∣

∣∣∣∣
x

||x||2
−

y

||y||2

∣∣∣∣

∣∣∣∣
2

≤ ǫ.

F. Proof of the Two-stage algorithm
(Algorithm 6)

Here we prove Theorem 7 which is a proof of correct-
ness of Two-stage algorithm (Algorithm 6).

Proof of Theorem 7. We prove the theorem by ana-
lyzing both the stages of our algorithm.

Stage 1: Let z∗ = A1x
∗. As b = sign(A2z

∗),

(a
(i)
2 , bi),∀i are linearly separable and hence using lin-

ear programming, we can find a vector ẑ consistent
with the measurements b i.e. b = sign(A2ẑ). Using
Theorem 10,

∣∣∣∣

∣∣∣∣
z∗

||z∗||2
−

ẑ

||ẑ||2

∣∣∣∣

∣∣∣∣
2

< ǫ. (6)

Stage 2: In stage 2 of Algorithm 6, we run GradeS
with inputs bz

‖bz‖2
and A1. Now, using (6):

ẑ

‖ẑ‖2
= A1

x∗

‖A1x∗‖2
+ η,

where ‖η‖2 ≤ ǫ. Also, since A1 satisfies RIP with
δ2k < 1/6, using the recovery result of GradeS (Theo-
rem 9, Appendix D), the recovered vector x̂ satisfies:

∣∣∣∣

∣∣∣∣x̂−
x∗

‖A1x∗‖2

∣∣∣∣

∣∣∣∣
2

≤ 6ǫ.

That is,

‖x̂‖22 +
‖x∗‖22
‖A1x∗‖22

− 2
x̂T x∗

‖A1x∗‖2
≤ 36ǫ2,

‖x̂‖2‖A1x
∗‖2

‖x∗‖2
+

‖x∗‖2
‖x̂‖2‖A1x∗‖2

− 2
x̂T x∗

‖x̂‖2‖x∗‖2
≤ 36ǫ2

‖A1x
∗‖2

‖x̂‖2‖x∗‖2
.

Using the fact that t + 1/t ≥ 2 and using RIP,

2− 2
x̂T x∗

‖x̂‖2‖x∗‖2
≤ 36ǫ2(1 + δ2k)

1

‖x̂‖2
.

Also, ‖x̂‖2 ≥ ‖
x

∗

‖A1x
∗‖2
‖2−6ǫ ≥ 1

1+δ2k
−6ǫ. So we have

∣∣∣∣

∣∣∣∣
x∗

‖x∗‖2
−

x̂

‖x̂‖2

∣∣∣∣

∣∣∣∣
2

2

< 36



 1 + δ2k(
1

1+δ2k
− ǫ

)



 ǫ2

⇒

∣∣∣∣

∣∣∣∣
x∗

‖x∗‖2
−

x̂

‖x̂‖2

∣∣∣∣

∣∣∣∣
2

< 20ǫ

for ǫ < 1
4 .

G. Lower Bound on Reconstruction
Error

The following is a lower bound on the reconstruc-
tion error of any approximate recovery algorithm from
(Jacques et al., 2011).

Theorem 11 (Theorem 1 of (Jacques et al., 2011)).
Let ||x∗||0 ≤ k, ||x∗||2 = 1, b = sign(Ax∗), A ∈ Rm×n

and let x̂ = ∆1bit(b, A, k) be the unit vector recon-
structed by some recovery algorithm ∆1bit based on
b, A, k. Then the worst case reconstruction error
sup

x
∗ ||x̂− x∗||2 ≥

k
em

.


