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Another example of a controlled system (see Sec. 4.2)

Figure 3. The first two plots describe the behavior of the system which rotates the state by a→ 10◦ and b→ −10◦, with
the reset states aligned in a way that taking the opposite action brings the system to its topmost point. The x and y in
the plots represent possible actions such that x 6= y.
The bottom plot demonstrates how the average reward changes as a function of α and β, where the policies having 2
hidden states (S ∈ {1, 2}) are parametrized as:
Pπ(a|S = 1) = Pπ(b|S = 2) = 1,
Pπ(S = 1|S = 1, a, o1) = Pπ(S = 2|S = 2, a, o1) = α,
Pπ(S = 2|S = 1, a, o2) = Pπ(S = 1|S = 2, a, o2) = α,
Pπ(S = 1|S = 1, b, o1) = Pπ(S = 2|S = 2, b, o1) = β,
Pπ(S = 2|S = 1, b, o2) = Pπ(S = 1|S = 2, b, o2) = β.
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Proof of Lemma 1

1.: EE∞ = E∞E = E∞ is immediate from the definition of E∞. Therefore [ 1
n

∑n−1
t=0 Et]E∞ = E∞ for any n,

implying that also E∞E∞ = E∞.
2.:

(E−E∞)n = (E−EE∞)n = En(I−E∞)n = En

[
n∑
i=0

(−1)i
(
n

i

)
(E∞)i

]

= En

[
I +

(
n∑
i=0

(−1)i
(
n

i

)
− 1

)
E∞

]
= En −E∞,

where some of the equalities follow from property 1, and the last equality holds since the alternating sum of
binomial coefficients equals to 0.
3.: Since (E− I) has rank n− 1, the eigenspace of E corresponding to the eigenvalue 1 is one–dimensional. So
we have a unique ρ such that ρ>E = ρ> and ρ>1 = 1. Also, if Ev = v then v is a constant vector because the
rows of E sum to 1. Hence also, ρ>E∞ = ρ> and E∞1 = 1. Now, from property 1 we have E∞(E − I) = 0,
meaning that the rows of E∞ are multiples of ρ. Also, we have (E − I)E∞ = 0, meaning that the columns of
E∞ are constant vectors. Combining all together we get E∞ = 1ρ>.
4.: Observe that (E−E∞)n is Cesaro summable to 0, i.e.

1

n

n−1∑
t=0

(E−E∞)t =

[
1

n

n−1∑
t=0

Et

]
−E∞

n→∞−→ 0,

due to property 2. So, by Kemeny & Snell (1960) (Thm. 1.11.1) and property 2,

[I− (E−E∞)]−1 = lim
n→∞

1

n

n−1∑
t=0

t∑
k=0

(E−E∞)t = I + lim
n→∞

1

n

n−1∑
t=1

t∑
k=1

(Ek −E∞).

5.: Follows from replacing Z with the right-hand side of Eq. (2).
�

Proof of Theorem 2

The proof is essentially identical to the proof of Theorem 1 in Schweitzer (1968), which is, however, restricted
to Markov chain transition matrices. We have,

I− (E2 −E1)Z1 = (Z−1
1 −E2 + E1)Z1 = (I−E2 + E∞1 )Z1

= (Z−1
2 + E∞1 −E∞2 )Z1 = Z−1

2 (I + E∞1 −E∞2 )Z1,

where all (except for the last) inequalities follow from the definition of Zi. The last equality holds since Z−1
2 E∞1 =

E∞1 and Z−1
2 E∞2 = E∞2 , which in turn is due to Z−1

2 having rows sum to 1, and property 3 in Lemma 1. Now,
observe that (E∞2 − E∞1 )2 = 0, meaning that Theorem 1.11.1 in Kemeny & Snell (1960) can be applied on
(E∞2 −E∞1 ), and we get

[I− (E∞2 −E∞1 )]−1 = I−E∞1 + E∞2 ,

which proves Eq. (3). Finally,

ρ>1 H1→2 = ρ>1 Z−1
1 [I−E∞1 + E∞2 ]Z2 = ρ>1 E∞2 Z2

?
= ρ>2 Z2 = ρ>2 ,

where (?) is due to property 3 in Lemma 1 and ρ>1 1 = 1, while the last equality is due to property 5 in Lemma
1. �
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Proof of Theorem 3

Recall the concept of a system dynamics matrix (SDM) (Singh et al., 2004), also known as prediction matrix
(Faigle & Schonhuth, 2007). This is an infinite dimensional matrix, whose columns correspond to possible
histories (ordered in an increasing length) and rows correspond to possible tests (ordered in an increasing length).
The elements of this matrix represent conditional probabilities of observing each test given each history (for
more details see Singh et al. (2004); Faigle & Schonhuth (2007)). If the SDM has rank k then the system can be
represented by a k-dimensional linear PSR, and the square submatrix of SDM of dimension |A × O|k will be of
rank k (e.g. see James (2005)).
According to Wiewiora (2007), the system resulting from combining a k-dimensional linear PSR with control
and a policy with memory of size l can be represented with a linear PSR without control whose dimension is at
most k × l. We will denote the distribution over future sequences in such a system with Pθ.
Let n be the largest rank of a SDM induced by some policy θ, implying that a minimal dimensional PSR for this

system has rank n (Wiewiora, 2007). Let g
(i)
θ represent the expected state of the system after i time steps, i.e. g

(i)
θ

is an infinite-dimensional vector such that g
(i)
θ (t) =

∑
h∈〈A×O〉i Pθ(t|h)Pθ(h). Since g

(i)
θ are linear combinations

of columns of SDM, we have that Gθ , span{g(0)
θ , g

(1)
θ , ...} is at most n dimensional. Let m ≤ n be the maximum

dimension of Gθ for any θ ∈ Θ. We will use the following results from Faigle & Schonhuth (2007), which consider
a stochastic process represented by an OOM for a fixed θ ∈ Θ:

1. If Gθ is m-dimensional, {g(0)
θ , ..., g

(m−1)
θ } is a basis for Gθ.

2. the state evolution operator can be represented by the matrix Eθ ∈ Rm×m relative to this basis, such that

E>θ =


0 0 ... 0 c

(0)
θ

1 0 ... 0 c
(1)
θ

0 1 ... 0 c
(2)
θ

...
. . .

...
...

0 0 ... 1 c
(m−1)
θ

 ,

where
∑m−1
j=0 c

(j)
θ = 1, and all c

(j)
θ -s are unique. Eθ is the PSR evolution matrix represented under a different

basis since ∀j ∈ N : g
(j)
θ =

∑m−1
i=0 a

(j)
i g

(i)
θ , where a(j) , (a

(j)
0 , ..., a

(j)
m−1) = (1, 0, ..., 0) ·Ej

θ. In other words, it
outputs the next expected state provided the current state.

3. Furthermore, E∞θ , limk→∞
1
k

∑k−1
t=0 Et

θ exists.

The remaining of the proof concerns the construction of c
(i)
θ -s as functions of θ and showing that these are well

defined rational functions of θ for all θ ∈ Θ. Once this is done, Theorem 2 can be applied on two arbitrary
matrices Eθ1∈Θ,Eθ2∈Θ, concluding the proof.

Due to the properties of SDM mentioned above, we can identify infinite-dimensional vectors g
(i)
θ with their finite

dimensional counterparts g
(i)
θ ∈ R|A×O|

n

, where ∀t ∈ {〈A ×O〉i}i=1,...,n : g
(i)
θ (t) = g

(i)
θ (t), such that

dim
[
span{g(0)

θ ,g
(1)
θ , ...}

]
= dim

[
span{g(0)

θ , g
(1)
θ , ...}

]
,

for all θ ∈ Θ. Note that the same matrix Eθ represents the unique1 evolution matrix relative to {g(0)
θ , ...,g

(m−1)
θ }.

Let Gθ ∈ R|A×O|
n×m be defined as

Gθ =
[
g

(0)
θ ,g

(1)
θ , ...,g

(m−1)
θ

]
.

Note that θ is a direct parametrization of a policy, meaning that elements of Gθ are polynomials in θ. Thus,

Proposition 1 is applicable to Gθ, and from there we obtain a well defined orthogonal basis {b(0)
θ , ...,b

(m−1)
θ } for

1As long as {g(0)
θ , ...,g

(m−1)
θ } is linearly independent set of vectors.
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the column space of Gθ, such that these basis vectors are rational functions of θ.

Now we can define c
(i)
θ in the following recursive way:

i = m− 1 : c
(i)
θ =

[
g

(m)
θ

]> [
b

(m−1)
θ

‖b(m−1)
θ ‖22

]
i < m− 1 : c

(i)
θ =

[
g

(m)
θ −

∑i+1
j=m c

(j)
θ g

(j)
θ

]> [
b

(i)
θ

‖b(i)
θ ‖

2
2

] .

It is easy to verify that indeed we get g
(m)
θ =

∑m−1
i=0 c

(i)
θ g

(i)
θ for θ-s for which c

(i)
θ -s are well defined. We also

know that these coefficients are unique as long as Gθ has full rank. Since these coefficients are rational functions

of θ, by the same argument as in Proposition 1 we get that around any potential singularity point in c
(i)
θ we can

find a sequence of θ-s converging to the singularity point while c
(i)
θ is well defined on this sequence. However, we

know that for all θ-s where c
(i)
θ -s are well defined, they must be bounded. This is due to the fact that E∞θ exists

for all such θ-s, implying that the spectral radius of Eθ is bounded (and equals to 1). Hence, ∀0 ≤ i < m : c
(i)
θ

do not have singularity points, or in other words, are well defined for all θ ∈ Θ.
Finally, we note that every Eθ satisfies rank(Eθ − I) = n− 1 by construction, so the conditions of Theorem 2 for
any pair of these matrices are satisfied. The left eigenvector corresponding to eigenvalue 1 of Eθ identifies the
stationary mean of the stochastic process S induced by policy θ due to the following: this vector represents the
invariant state of the system with respect to column vectors in Gθ, which are by themselves linear combinations
of any fixed column basis of SDM matrix. Recall that due to Theorem 2, the entries of this eigenvector are
rational functions of policy parameters. Therefore, we get that each entry of the stationary distribution of PSR
is also a rational function of policy parameters.
To complete the proof, note that the stationary distribution of PSR that we have obtained coincides with the
empirical distribution of sequences observed from data since the stationary distribution is unique, which it turn
is due to the ergodicity assumption.

�

Proposition 1. Let Gθ ∈ Rm×n,m ≥ n, be a rational matrix–valued function of θ ∈ Θ, such that Gθ is bounded
in θ ∈ Θ, and Θ be a subspace of some finite–dimensional Euclidean space. Assume that Gθ has full rank for

some θ ∈ Θ. Let {g(i)
θ }0≤i<n be the columns of Gθ. Then, {b(0)

θ , ...,b
(n−1)
θ } defined by

i = 0 : b
(i)
θ = g

(i)
θ

i > 0 : b
(i)
θ = g

(i)
θ −

∑i−1
j=0

[g
(i)
θ ]>b

(j)
θ

‖b(j)
θ ‖

2
2

b
(j)
θ

,

is a well defined orthogonal basis for the column space of Gθ for all θ ∈ Θ.

Proof. Since Gθ is rational in θ, {b(i)
θ }0≤i<n are rational functions (element–wise) in θ. For any θ, in particular

where the function is not defined/singular2, we can find a sequence θ1, θ2, ... −→ θ where this function is well

defined. Suppose that such a singularity occurs to some element of b
(i)
θ0

for some θ0 ∈ Θ, and without loss of

generality assume that b
(j)
θ0

are well defined for 0 ≤ j < i. Since ∀j : g
(j)
θ -s are bounded, at least one of the

elements of the following terms (0 ≤ j < i) must approach singularity as θ → θ0:

[g
(i)
θ ]>b

(j)
θ

‖b(j)
θ ‖22

b
(j)
θ −→ ±∞.

But

[g
(i)
θ ]>b

(j)
θ

‖b(j)
θ ‖22

b
(j)
θ =

(
[g

(i)
θ ]>

b
(j)
θ

‖b(j)
θ ‖2

)
b

(j)
θ

‖b(j)
θ ‖2

,

meaning that g
(i)
θ must have a singularity point at θ0 since

b
(j)
θ

‖b(j)
θ ‖2

is bounded around θ0, leading to a contradic-

tion.

2The function f(x) is singular at points {x ∈ X| limx̂→x f(x̂) = ±∞}. For rational functions, these are the roots of
the polynomial in the denominator, which do not coincide with the roots of the polynomial in the numerator.
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Proof of Theorem 4

The proof of this theorem uses two results that are given in Propositions 2 and 3 with their proofs attached.
Proposition 2 provides a clear way of defining parameters of a PSR without control given a PSR (with control)
and the parameters of a finite memory policy. Proposition 3 shows that one can obtain the state of the PSR
(with control) from the state of the PSR without control by applying a linear operator.

First, we start by showing that limk→∞
1
k

∑k−1
t=0 Rt exists almost surely for any policy θ ∈ Θ. Recall that we do

not assume that the process is AMS (otherwise there is nothing to prove), only that the process is ergodic.

Let Rk = 1
k

∑k−1
t=0 Rt,

f(·) ,
{

limk→∞Rk if the limit exists
Rmin − 1 otherwise

,

fk(·) ,
{
Rk if f(·) ≥ Rmin
Rmin − 1 otherwise

,

where Rmin is the lowest achievable reward (recall that the reward is bounded). From the definition we have
that

{fk}
k→∞−→ f

pointwise everywhere. Since {fk} are uniformly bounded,

lim
k→∞

Eθ(fk) = Eθ(f).

Finally, note that the set {f(·) = y} is invariant for any y because f is invariant: f(Tx) = f(x). By the definition
of ergodicity, such a set has either probability 1 or 0. Further we show that limk→∞ Eθ(Rk) is well defined, which
ensures that

• Eθ(f) = Eθ(limk→∞Rk) ≥ Rmin 3 ,

• f = Eθ(f) almost surely.

Let {wθ,∗,Wθ,ao,pθ,0} be the minimal PSR without control for some policy θ, and let Wθ,∗ ,
∑
ao Wθ,ao be

the PSR evolution matrix. Due to the properties of this matrix discussed earlier we have that

W∞
θ , lim

k→∞

1

k

k−1∑
t=0

Wt
θ,∗ exists.

3Let B indicate the set for which limk→∞Rk exists. Then limk→∞ Eθ(Rk) = limk→∞
[∫
B
RkdPθ +

∫
B̄
RkdPθ

]
=

limk→∞
∫
B
RkdPθ + limk→∞

∫
B̄
RkdPθ = limk→∞ Eθ(Rk|B)Pθ(B) + limk→∞

∫
B̄
RkdPθ. Since both the left hand side

limit and the first right hand side limit are well defined, then the second right hand side limit must exist as well, implying
that Pθ(B̄) = 0.
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Therefore,

lim
k→∞

Eθ

(
1

k

k−1∑
t=0

Rt

)
= lim
k→∞

1

k

k−1∑
t=0

Eθ(Rt) = lim
k→∞

1

k

k−1∑
t=1

Eθ(Rt) (1)

= lim
k→∞

1

k

k−1∑
t=1

∑
h̄(t)

E(Rt|h̄(t))Pθ(h̄
(t)) (2)

= lim
k→∞

1

k

k−1∑
t=1

∑
h̄(t−1),a,o

r>a p(h̄(t−1), a, o)Pθ(h̄
(t−1), a, o) (3)

=
∑
a

lim
k→∞

1

k

k−1∑
t=1

∑
h̄(t−1),o

r>a Vθpθ(h̄
(t−1), a, o)Pθ(h̄

(t−1), a, o) (4)

=
∑
a

r>a Vθ

 lim
k→∞

1

k

k−1∑
t=1

∑
h̄(t−1),o

pθ(h̄
(t−1), a, o)Pθ(h̄

(t−1), a, o)


=
∑
a

r>a Vθ

[
lim
k→∞

1

k

k−1∑
t=1

(p>θ,0W
t
θ,∗Wθ,a∗)

>

]
(5)

=
∑
a

r>a Vθ

(
p>θ,0

[
lim
k→∞

1

k

k−1∑
t=1

Wt
θ,∗

]
Wθ,a∗

)>
=
∑
a

r>a Vθ

(
p>θ,0W

∞
θ Wθ,a∗

)>
=
∑
a

r>a Vθ(ρ
>
θ Wθ,a∗)

> (6)

=
∑
a

r>a Vθ

W>
θ,a∗ρθ

w>θ,∗W
>
θ,a∗ρθ

·w>θ,∗W>
θ,a∗ρθ

=
∑
a

r>a Vθρθ(a) · P̄θ(a) (7)

=
∑
a

r>a Vθρθ(a) · θ>a ρPolθ =
∑
a

r>a ρ
PRP
θ (a) · θ>a ρPolθ (8)

where (3) follows from the definition of the linear PRP; (4) and (8) are due to Proposition 3 with Vθ being the
linear operator transforming the state of the PSR without control to the state of the PSR (with control); (5) is
by definition of a linear PSR; (6) is due to the properties of the PSR evolution matrix Wθ,∗, where ρθ is the
stationary distribution of the PSR without control induced by policy θ; and ρθ(a) in (7) and (8) represents the
state of the PSR without control obtained by starting from ρθ and taking action a, while P̄θ(a) is the average
probability of taking action a.
Finally, note that ρθ and ρθ(a) are rational functions of θ ∈ Θ by Theorem 3. Hence both ρPolθ and ρPRPθ (a) are
rational functions of θ as well since they can be immediately obtained from ρθ and ρθ(a) through summation
and division (i.e., observe that the PSR state ρPRPθ is a vector of conditional predictions while the PSR without
control state ρθ is a vector of joint predictions).

�

Proposition 2. Let {m∗, {Mao}ao∈A×O,p0,Q = {q1, ..., qn}} be a n-dimensional linear PSR (with control) and
{c0, {To}o∈O, {Aa}a∈A} be the representation of a stochastic finite state policy π of size l. Let

s0 , p0 ⊗ c0 ∈ Rnl,

b∗ ,m∗ ⊗ 1 ∈ Rnl,
∀ao ∈ A×O : Bao ,Mao ⊗AaTo ∈ Rnl×nl,

where ⊗ represents the Kronecker product. Then, the triple {b∗, {Bao}ao∈A×O, s0} satisfies the properties of a
PSR without control induced by the policy π. In particular,

Pπ(a1o1, ..., akok) = s>0 Ba1o1 · · ·Bakokb∗.
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Proof.
For clarity, here is the description of the meaning of the stochastic finite state policy parameters:

◦ c0 - the initial distribution over the states of the policy

◦ Aa - the diagonal matrix with [Aa]ii being equal to probability of taking action a in state i

◦ To - the transition matrix defining the state dynamics of the policy corresponding to observing percept o

Let Cao , AaTo. Recall that for any history h,

Pπ(o1:k|h,a1:k) = p(h)>Ma1o1 · · ·Makokm∗ = p(h)>Mao1:k
m∗,

Pπ(a1:k|h,o1:k−1) = c(h)>Aa1To1 · · ·Aak1 , c(h)>Cao1:k−1
Aak1,

where 1 is a column vector of ones of an appropriate size. Observe that

Pπ(ao) = Pπ(a)Pπ(o|a) = c>0 Cao1 · p>0 Maom∗.

By induction (similarly to Wiewiora (2005)) we get,

Pπ(ao1:k, ak+1, ok+1) = Pπ(ao1:k)× Pπ(ak+1|ao1:k)× Pπ(ok+1|ao1:k, ak+1)

= c>0 Cao1:k
1 · p>0 Mao1:k

m∗

× c(ao1:k)>Aak+1
1× p(ao1:k)>Mak+1ok+1

m∗

= c>0 Cao1:k
1 · p>0 Mao1:k

m∗

× c>0 Cao1:k

c>0 Cao1:k
1

Aak+1
1× p>0 Mao1:k

p>0 Mao1:k
m∗

Mak+1ok+1
m∗

= c>0 Cao1:k
Aak+1

Tok+1
1 · p>0 Mao1:k+1

m∗

= p>0 Mao1:k+1
m∗ · c>0 Cao1:k+1

1,

where we used the fact that Cao1:k
1 = Cao1:k−1

Aak1 since every To is a transition matrix.
Now, the first property holds since

s>0 b∗ = [p0 ⊗ c0]>[m∗ ⊗ 1] = p>0 m∗ · c>0 1 = 1.

The second property also holds because[∑
ao

Bao

]
b∗ =

[∑
ao

Mao ⊗Cao

]
[m∗ ⊗ 1] =

∑
ao

[Maom∗ ⊗Cao1]

=
∑
ao

[Maom∗ ⊗Aa1] =
∑
a

[(∑
o

Mao

)
m∗ ⊗Aa1

]

=
∑
a

[m∗ ⊗Aa1] = m∗ ⊗

[∑
a

Aa

]
1 = m∗ ⊗ 1 = b∗.

Finally, the last property is due to

Pπ(ao1:k) = p>0 Mao1:k
m∗ · c>0 Cao1:k

1 = [p0 ⊗ c0]>[Mao1:k
⊗Cao1:k

][m∗ ⊗ 1]

= s>0 Bao1:k
b∗.

Proposition 3. Let the action-observation stochastic process be generated from a linear n-dimensional PSR
(with control), p, and a stochastic finite state controller of size m parametrized by θ ∈ Θ. Let pθ be a minimal
linear PSR without control representing this process. Then, the state of PSR (with control), p, can be obtained
from the state of PSR without control pθ by applying a linear operator.
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Proof. We will refer to p as both the PSR (with control) and the state of this PSR (which one is meant should
be clear from the context). Equivalently, we will refer to pθ as both the PSR without control and the state of
this PSR.

First, let {b∗,Bao, s0} be defined as in Proposition 2 from p and the parameters of the policy θ represented as
{c0, {To}o∈O, {Aa}a∈A} . Let U = I⊗ 1> ∈ Rn×nm, where I is the n-dimensional identity matrix. Let

s(h) , p(h)⊗ c(h)

be the state of this “PSR-like” construct after observing history h. Then,

Us(h) = [I⊗ 1>]s(h) = [I⊗ 1>][p(h)⊗ c(h)] = p(h)⊗ [1>c(h)] = p(h).

Therefore we can recover the state of the environment p from the state of our construct by applying a linear
operator. What is missing yet, is the connection between this construct and the PSR without control pθ.
Recall that p is a vector of predictions of some sequences of observations given some sequences of actions. So it is
clear that we can compute p from the joint distribution over action–observation pairs provided by the state of pθ,
which in general is a rational function of pθ. Let Vθ(·) : pθ → p be such a mapping. Let the dimension of pθ be k,
and Wθ bemn×k matrix whose columns are coefficients of k core tests with respect to the construct {b∗,Bao, s0}:
s(h)>Wθ = pθ(h)> for any h. Now, we have that for any h: Us(h) = p(h) = V (s(h)>Wθ) = V (pθ(h)). From
here the conclusion follows.
We can represent the operator Vθ with matrix Vθ ∈ Rn×k. Vθ can be obtained by solving the following system
of equations: Vθ = PP−1

θ , where Pθ ∈ Rk×k represents a collection (matrix) of k linearly independent states
(those corresponding to core histories) and P ∈ Rn×k represents a collection of environment states corresponding
to the same histories.

Proof of Corollary 5

In both representations the average reward function is linear in the stationary distribution as a function of the
policy parameters, hence the complexity of the stationary distribution gives the upper bound on the complexity
of the average reward. Let k be the size of the stochastic finite state controllers we consider. We analyze the
complexity with respect to the POMDP representation first.
Observe that the HMM representing the combined system and the policy will have km hidden states. Since the
Markov chain defined over the hidden states induced by any of the policies of interest is irreducible due to the
ergodicity assumption, the corresponding transition matrix satisfies the conditions of Theorem 1 from Schweitzer
(1968), which is a special case of Theorem 2. Each entry of this transition matrix is a polynomial of a fixed
degree in the parameters of the policy. So are the entries of H−1

1→2 in Theorem 2 when we fix E1,Z1,ρ1 and let
E2 be our parametrized transition matrix. One can analytically invert H−1

1→2 using Cramer’s rule and observe
that each entry of H1→2 is a rational function whose degree is O(km). Therefore, by Theorem 2 the degree of
the stationary belief state ρ2 is also O(km).
Now we consider the reward process being represented by a linear PRP. Observe that the linear PSR without
control representing the action–observation stochastic process induced by the policy above is at most kn dimen-
sional. Each entry of the SDM describing this action–observation stochastic process is a rational function with
the leading degree equal to the length of the history plus test. Therefore, the column vectors stored in Gθ in
the proof of Theorem 3 are of degree at most kn. The elements of the basis constructed from the columns of Gθ

are also of degree at most O(kn) (see Proposition 1), as well as the entries of the bottom row of the evolution
matrix Eθ constructed in Theorem 3. Similarly to a POMDP case, we need to apply Theorem 2 for some fixed
E1,Z1,ρ1, where E2 , Eθ is the function of the policy parameters. Observe that from Theorem 2 we also have

H1→2 = Z−1
1 (Z−1

1 + E1 −E2)−1,

where the resulting matrix Z−1
1 + E1 − E2 has fixed entries in all the rows except for the bottom one, which is

a rational function of degree at most O(kn). Again, using Cramer’s rule one can invert the matrix analytically,
which results in H1→2 having entries being rational functions of degree at most O(kn). Then, by Theorem 2 the
degree of the stationary distribution of the PSR without control, ρθ , ρ2, is also at most O(kn). Finally, one
can verify that the quantities ρPRPθ (a) and ρPolθ appearing in Theorem 4 will also have the leading degree of the
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same order.
To conclude the proof, recall that the number of dimensions required to represent the same system in a linear
PSR framework (n) is at most equal to the number of hidden states in the corresponding POMDP (m), and can
be, at times significantly, smaller (Jaeger, 2000; Littman et al., 2001).

�
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