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Abstract

We consider the problem of average re-
ward optimization in domains with partial
observability, within the modeling frame-
work of linear predictive state representations
(PSRs) (Littman et al., 2001). The key to
average-reward computation is to have a well-
defined stationary behavior of a system, so
the required averages can be computed. If,
additionally, the stationary behavior varies
smoothly with changes in policy parameters,
average-reward control through policy search
also becomes a possibility. In this paper, we
show that PSRs have a well-behaved station-
ary distribution, which is a rational function
of policy parameters. Based on this result,
we define a related reward process particu-
larly suitable for average reward optimiza-
tion, and analyze its properties. We show
that in such a predictive state reward pro-
cess, the average reward is a rational function
of the policy parameters, whose complexity
depends on the dimension of the underlying
linear PSR. This result suggests that aver-
age reward-based policy search methods can
be effective when the dimension of the sys-
tem is small, even when the system repre-
sentation in the POMDP framework requires
many hidden states. We provide illustrative
examples of this type.

1. Introduction

Partial observability is prevalent in practical domains,
in which one has to model systems based on noisy
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observations. In domains with partial observabil-
ity and finite action and observation spaces, a pop-
ular framework for modeling and control is that of
finite state partially observable Markov decision pro-
cesses (POMDP) (Kaelbling et al., 1998). POMDPs
generalize the well-known framework of Markov deci-
sion processes (MDPs); hence, they inherit many use-
ful properties from MDPs. In particular, the results
of Schweitzer (1968) imply that the stationary distri-
bution of an ergodic Markov chain is a rational func-
tion of the changes in the transition matrix. Under
mild conditions, this result can be applied immediately
to finite state POMDPs: the stationary distribution
of the Markov chain induced by some finite memory
policy exists and is a rational function of policy pa-
rameters. This is important when one has to estimate
expectations of different quantities (such as returns)
with respect to the policy, since these expectations are
taken with respect to the stationary behavior of the
process. In particular, one can show that the average
reward in finite state POMDPs is a linear function of
the stationary distribution. Thus, knowing that the
stationary distribution is robust to small changes in
the policy implies that the estimates of different quan-
tities based on the stationary distribution are robust
as well.

About a decade ago, a new modeling framework for
finite action and observation spaces was introduced,
named (linear) predictive state representations (PSR)
(Littman et al., 2001; Singh et al., 2004). PSRs alle-
viate model learning challenges encountered in finite
state POMDP models, because their state represen-
tation is grounded in measurable quantities. More
importantly, PSRs are capable of representing some
POMDPs with smaller dimension than the num-
ber of hidden states. Moreover, there are systems
which can be represented by a linear PSR but not a
POMDP (Jaeger, 2000).
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PSRs are formulated in terms of actions and obser-
vations, but rewards do not play as special role in
the original framework, as they do in MDPs and
POMDPs. The planning problem using linear PSRs
has already been tackled by several authors, e.g.
James et al. (2004); Boots et al. (2010); Izadi & Pre-
cup (2003) but little was said about how their specific
assumptions on the reward function affect the com-
bined reward-PSR process. The main motivation for
our work is to provide a theoretical framework for re-
ward processes based on PSRs, and analyze the be-
havior of the average reward in this framework. There
are two practical implications of this idea. First, this
would enable the development of learning and plan-
ning algorithms which are directly based on evaluat-
ing reward averages, rather than learning a full predic-
tive representation first, and then using it to estimate
policy values. In the MDP and POMDP framework,
methods based on value functions and/or policy search
are known to scale better to very large problems than
methods based on a full model estimation. We would
like to bring this advantage to linear PSRs as well.
Second, defining an appropriate reward process based
on PSRs enables an easier theoretical analysis of any
control methods.

In Section 4, we present a (linear) predictive state re-
ward process (PRP), which is built on top of a (linear)
PSR and provides a suitable framework for average re-
ward optimization. We analyze some of its properties
and discuss its relationship to the POMDP framework.
Our most important result connects the size of the
linear PSR representation underlying the linear PRP
to the complexity of the average reward as a func-
tion of policy parameters. We prove that a compact
PSR representation will induce a reward process with
a simple average reward function. We provide some
examples in which the linear PRP representation is
much smaller than the corresponding POMDP repre-
sentation; hence, using the PRP for policy search, for
example, could potentially be much easier and yield a
solution faster.

The key ingredient in analyzing the PRP is to analyze
the behavior of its stationary distribution as a function
of the policy used, similar to the case of a POMDP.
This stationary distribution is in fact the stationary
distribution of the underlying linear PSR, which has
been shown to exist (Faigle & Schonhuth, 2007) given
a fixed policy. However, its form has not been stated
before. In Section 3, we show that the stationary dis-
tribution induced by a finite memory policy in a linear
PSR is a rational function of the policy parameters, as
long as the process is ergodic, similar to a finite state
POMDP framework. This result is a novel contribu-

tion in itself, and can be useful if a stability / perturba-
tion analysis of a linear PSR is desired. Throughout
the paper, we omit the proofs, for brevity; they are
included in the appendix provided as supplementary
material.

2. Background and notation

We consider systems with control having finite action
and observation/percept spaces, denoted as A and
O respectively, and rewards coming from a bounded
set R ⊂ R. We define a reward process as a tuple
(Ω,F ,T, µ0), where (Ω,F) is a measurable space, µ0

is a probability kernel representing the effect of ac-
tions, and T is a shift operator. In our setting, the
elements of Ω can be viewed as infinite sequences of
action-observation-reward triples, ω ∈ Ω :

ω = 〈a1, o1, r1, a2, o2, r2, ...〉, ai ∈ A, oi ∈ O, ri ∈ R.

In this setting, T is defined by:

T(〈a1, o1, r1, a2, o2, r2, ...〉) = 〈a2, o2, r2, a3, o3, r3...〉,
T−1(ω) = {ω′ | T(ω′) = ω}.

At each time step, the reward process waits for the
agent to take an action and outputs an observation-
reward pair. We are interested in the average reward
setting, where the goal is to find a behavior (or pol-
icy) π maximizing limn→∞

1
n

∑n
t=1Rt where Rt is the

random variable denoting the reward observed at time
t, when following policy π. The average reward set-
ting is in fact preferable to discounted rewards in par-
tially observable systems when the dynamics are not
known1 (Singh et al., 1994). We consider the classical
policy definition, in which the action choice depends
(stochastically) only on actions and observations, but
not rewards: ∀k ∈ N, π : 〈A,O〉k → [0, 1]|A|. Repre-
senting any arbitrary policy of this kind is infeasible,
since it requires infinite memory. Therefore, only poli-
cies having a finite memory representation are con-
sidered. Such policies can be implemented through
(stochastic) finite state controllers, whose parameters
represent the transition probabilities between internal
states of the policy, and the probabilities of actions
conditioned on the policy state. We call this a di-
rect policy parametrization. In particular, if the policy
is memoryless and open-loop (i.e., it chooses actions
with a fixed distribution regardless of the time step
and history), its direct parametrization will simply be
the vector representing the distribution over actions.

1See also Sutton (1998), last bullet, for details; this ad-
dresses the function approximation in MDPs, which is es-
sentially equivalent to POMDPs.
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Fixing a policy π generates a stochastic process whose
elements are action-observation-reward triples. We de-
note the distribution of this process by Pπ or Pθ where
θ is the parametrization of π, and the expectation with
respect to Pπ by Eπ or Eθ. Pπ is asymptotically mean
stationary (AMS) (Gray & Kieffer, 1980) if

∀F ∈ F : P̄π(F ) = lim
n→∞

1

n

n−1∑
i=0

Pπ(T−iF ) exists;

P̄π is called stationary mean; let Eπ̄ be the expectation
with respect to P̄π. The AMS property is a necessary
and sufficient condition for the running averages of any
bounded quantity to converge; in particular, it guaran-
tees the existence of the average reward. For example,
if the reward process is a finite state Markov decision
process (MDP), the stationary mean is the stationary
distribution of the Markov chain induced by policy π.
Moreover, Pπ is ergodic if

∀G ∈ G : Pπ(G) ∈ {0, 1},

where G ⊂ F is a set of invariant events (T−1G = G).
Thus, if Pπ is AMS and ergodic,

lim
n→∞

1

n

n∑
t=1

Rt = Eπ̄(R) a.s. (Pπ, P̄π),

meaning that the average reward is constant almost
surely (for more details see Gray (2009)). In a finite
state MDP, the ergodicity of the process corresponds
to the Markov chain induced by π being irreducible.

2.1. Predictive State Representations

The idea of a predictive state of a system is rooted
in the following observation: knowing the distribution
of any finite sequence of observations given any se-
quence of actions describes completely and accurately
the future dynamics of that system. In the setting we
consider, the action and observation spaces are finite,
meaning that one can represent the predictive state of
the system with a countably infinite vector enumer-
ating probabilities of finite sequences of observations
given sequences of actions. We will refer to this vector
as the state of the system. In general, it might not be
possible to represent this vector concisely.

In Littman et al. (2001), a new representation for the
action-observation controllable process (defined with-
out rewards) was proposed, called predictive state rep-
resentation (PSR). It captures processes in which pre-
dictions of a finite number of sequences are enough to
compute the prediction of any other sequence. For-
mally, let h, t ∈ 〈A × O〉∗ be sequences of action-
observation pairs of finite length, where h is a his-
tory, i.e., a sequence observed until now, and t is a

sequence that might occur in the future, called test.
Let Q = {q1, ..., qn} be a set of tests, called core tests,
and p(h) , [Ppsr(q1|h), ...,Ppsr(qn|h)]> be the pre-

diction vector where Ppsr(q|h) , µ0(hq)
µ0(h) represents the

probability of observing percepts from q given that the
agent has seen history h and is going to take actions
from q. Then, p(h) is a predictive state representation
of dimension n if and only if

Ppsr(t|h) = ft(p(h)), (1)

for any test t and history h, where ft : [0, 1]n → [0, 1]
is any function independent of history. If ft is linear
for all t, then the representation is called linear PSR,
and

Ppsr(t|h) = m>t p(h),

where the function ft is replaced by a linear projection
mt. It has been shown (Singh et al., 2004; Wiewiora,
2007) that a linear PSR possesses a finite parametriza-
tion of the form

{m∗ ∈ Rn, {Mao ∈ Rn×n}a∈A,o∈O,p0 ∈ Rn},

satisfying the following properties:

1. m>∗ p0 = 1,

2. ∀a ∈ A :
[∑

o∈OMao

]
m∗ = m∗,

3. Ppsr(a1, o1, ..., ak, ok) = m>∗M>
ak,ok

· · ·M>
a1,o1p0,

where p0 is the starting state of the linear PSR. Using
property 3 one can verify that

p(hao) ,
M>

aop(h)

m>∗M>
aop(h)

represents the PSR state after observing ao, given the
previous PSR state p(h). Predictions of future se-
quences can be calculated using the new PSR state
and the rest of the linear PSR parameters only. For
better readability, from now on we drop the prefix “lin-
ear” from linear PSR and explicitly state “non-linear”
when referring to the general PSR framework.

Any finite memory policy π in a PSR induces an
action-observation stochastic process, which can also
be represented by a PSR, possibly of a larger dimen-
sion (Wiewiora, 2007). This process is often called
PSR without control. In PSRs without control, prop-
erty 2 reduces to

[∑
ao∈A×OMao

]
m∗ = m∗, and in

property 3, “Ppsr” is replaced with “Pπ”, where π is
the policy at hand. A PSR without control can be
represented in at least two more frameworks: observ-
able operator models (OOM) (Jaeger, 2000) and trans-
formed PSRs (TPSR) (Boots et al., 2010; Rosencrantz



Average Reward Optimization Objective In Partially Observable Domains

et al., 2004). These frameworks can be seen as differ-
ent parametrizations of the same process, while keep-
ing the same dimension to represent its state (Singh
et al., 2004; Boots et al., 2010; James, 2005). There-
fore, one can use any of these frameworks equivalently
to analyze properties of the system. In particular, our
analysis uses results obtained under the OOM frame-
work (Faigle & Schonhuth, 2007).

Finally, the key property of these frameworks is that
certain systems can be represented more compactly
compared to the classical finite state hidden Markov
model (HMM) representation (Jaeger, 2000). More-
over, some of these systems might not be representable
using finite-state HMMs at all. This is the reason why
we focus on this type of representation.

3. The stationary distribution of a PSR

In this section, we investigate how the stationary dis-
tribution of a PSR behaves as the policy changes,
where by stationary distribution we mean the station-
ary state of the system represented by a PSR. For this
purpose, we focus on the stationary distribution of a
PSR without control induced by some policy, and see
how changes in this policy affect this distribution.
Let ρπ be the stationary distribution of a PSR without
control induced by policy π2. Let ∀t ∈ N : pt be the
expected state of the PSR at time t. Assuming that
p0 = ρπ, we have, by definition:

∀t ∈ N : pt = ρπ.

Now, let

M∗ ,
∑

ao∈A×O
Mao

be the PSR evolution matrix. This is called evolution
matrix due to the following, which can be easily seen
from property 3:

∀t ∈ N : pt = M>
∗ pt−1.

The matrix M∗ will in fact define the stationary dis-
tribution of the PSR. Under the appropriate basis, it
satisfies the conditions of Lemma 1 (Faigle & Schon-
huth, 2007), and it can be seen as a generalized Markov
transition matrix. More precisely, its spectral proper-
ties are the same as those of a usual Markov transition
matrix, and the rows sum to 1, but some of the values
might be negative (see Faigle & Schonhuth (2007) Sec-
tion IV). The following Lemma shows that several im-
portant properties of Markov transition matrices gen-
eralize to evolution matrices as well (represented under
the appropriate basis).

2Note that ρπ represents P̄π, the stationary mean of the
action-observation stochastic process.

Lemma 1. Let E ∈ Rn×n be such that

E∞ , lim
n→∞

1

n

n−1∑
t=0

Et

exists, and the rows of E sum to 1. Also assume that
(E − I) has rank n − 1, where I is an identity matrix
of appropriate size. Then the following holds:

1. EE∞ = E∞E = E∞E∞ = E∞.

2. (E−E∞)n = En −E∞.

3. E∞ = 1ρ>, where 1 is a column vector of ones; ρ
is the unique column vector satisfying ρ>E = ρ>,
ρ>1 = 1.

4. Let Z , [I− (E−E∞)]−1, then Z is well defined
and

Z = I + lim
n→∞

1

n

n−1∑
t=1

t∑
k=1

(Ek −E∞). (2)

5. ρ>Z = ρ>.

The next theorem extends Theorem 1 of Schweitzer
(1968) to the case in which the two matrices at hand
are evolution matrices.

Theorem 2. Let E1,E2 be as in Lemma 1, and let
E∞1 ,E

∞
2 ,ρ1,ρ2,Z1,Z2 be the quantities defined as in

Lemma 1 with respect to E1 and E2 respectively. Then:

H1→2 , [I− (E2 −E1)Z1]−1 (3)

exists and is given by H1→2 = Z−1
1 [I−E∞1 + E∞2 ]Z2.

Moreover,
ρ>1 H1→2 = ρ>2 .

Theorem 2 lies in the heart of our work, since it estab-
lishes an exact relationship between the eigenvectors
corresponding to eigenvalue 1 of two evolution matri-
ces. Similarly to the theory of Markov chains, these
eigenvectors represent the stationary distributions of
the corresponding PSRs. Specifically, let E1,Z1 and
ρ1 be fixed, while E2 varies. Theorem 2 shows that ρ2

is a rational function of the entries in E2. This is due
to the fact that the matrix inverse can be calculated
analytically through Cramer’s rule.

The next theorem is the main result of this section.

Theorem 3. Let an action-observation controllable
process S be representable by a finite dimensional lin-
ear PSR, and let θ ∈ Θ be a direct parametrization
of a stochastic finite memory policy. If the stochastic
process generated from S induced by any policy θ ∈ Θ
is ergodic, then the stationary state of S is a rational
function of θ.
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The proof (included in the supplementary material)
shows how to construct the parametrized evolution
matrix in an appropriate basis, given a PSR without
control parametrized by a policy. The construction
guarantees that the entries of the evolution matrix are
rational functions of the policy parameters. We show
that this construction is well defined, and then invoke
Theorem 2 to complete the proof.

As mentioned, Theorem 3 requires the ergodicity con-
dition for any policy under consideration. A violation
of this condition implies the existence of a policy for
which the initial state of the system affects its asymp-
totic behavior. In the theory of Markov chains, for
example, this translates into the irreducibility condi-
tion on the chains induced by any policy from the set
of policies considered. In particular, the irreducibility
condition(s) is either satisfied for all strictly stochas-
tic policies or not satisfied for any policy. Hence, this
assumption is considered standard in the policy search
literature (Baxter & Bartlett, 2001; Peters & Schaal,
2008).

4. Predictive-state reward processes

In this section we define a (not necessarily linear) PSR-
based reward process. The goal is to construct a re-
ward process that inherits some of the useful proper-
ties of the PSR framework on one hand, while being
general enough and suitable for average reward opti-
mization on the other hand. In particular, we let the
reward be continuous. Although we keep the defini-
tion quite general, we are interested in systems that
are based on the linear PSR framework, and only this
setting is treated afterwards.

Let h(t) represent the sequence of action-observation-
reward triplets of length t, and h̄(t) represent the cor-
responding sequence of action-observation pairs only.

Definition 1. A predictive–state reward process
(PRP) is a reward process whose action-observation
component can be represented by a (possibly non-
linear) PSR with some state vector s ∈ Rn, and whose
reward Rt at time t satisfies ∀t ∈ N:

E[Rt|h(t−1), at, ot] = E[R|s(h̄(t)), at] , fR,at [s(h̄(t))],

where s(h̄(t)) is the PSR state after observing h̄(t), and
{fR,a}a∈A are functions independent of h̄(t).
A linear PRP is a PRP whose action-observation com-
ponent can be represented by a linear PSR, and in
which fR,at are linear functions:

∀at ∈ A : fR,at [s(h̄(t))] = r>ats(h̄(t)),

where ∀a ∈ A : ra ∈ Rn. The dimension of the PRP
is defined to be the dimension of the underlying PSR.

Note that Definition 1 in fact formalizes a setting un-
der which most of the planning problem in linear PSRs
has been tackled. For example, in Boots et al. (2010)
the reward function is obtained by applying a linear
regression from PSR states to the observed rewards.
James et al. (2004) assumes that the rewards are dis-
crete and incorporates them directly into the observa-
tion vector. Izadi & Precup (2003) defines the reward
signal itself to be a linear function of the state of a
linear PSR. Thus, current PSR–based planning algo-
rithms either implicitly assume that the underlying re-
ward process is a linear PRP, or have more restrictive
explicit assumptions.

The rest of this section is devoted to the analysis of
the behavior of the average reward as a function of a
policy in systems represented by a linear PRP. Two
questions arise in this context. First, it is not clear
whether the average reward is well defined for any fi-
nite memory policy. It has been shown that systems
represented by a linear PSR are AMS for any finite
memory policy (Grinberg & Precup, 2012). This fact
guarantees that averages of different observable quan-
tities from action–observation pairs are well defined,
but not necessarily the average reward itself. Second,
when/if the average reward is well defined, we want to
characterize its behavior as a function of the policy pa-
rameters. Both questions are addressed in Theorem 4.
We show that under mild conditions the average re-
ward exists and is linear in a quantity derived from
the stationary distribution of the underlying PSR.

Theorem 4. Let a n-dimensional linear PRP be er-
godic for a collection of stochastic finite state policies
of size m given by direct parametrization θ ∈ Θ. Let
ρθ be the stationary state of the reward process with-
out control induced by policy θ. Denote by ρPRPθ ∈ Rn
and ρPolθ ∈ Rm the stationary states of the PRP and
the policy correspondingly, obtained from ρθ. Also, let
∀a ∈ A : ρPRPθ (a) ∈ Rn be the PRP state obtained
from starting the PRP at state ρPRPθ and taking ac-
tion a. Then, the average reward is a rational function
of the policy parameters, defined by:

lim
k→∞

1

k

k−1∑
t=0

Rt =
∑
a∈A

r>a ρ
PRP
θ (a) · θ>a ρPolθ a.s.,

where the rewards are collected by following policy θ,
and ∀a ∈ A : θa represents the vector of probabilities
of taking action a in each state of the policy.

The form of the average reward in a linear PRP is not
surprising, since the average reward takes the same
form in the MDP/POMDP setting. However, this re-
sult is important not only due to the generalization
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of the average reward behavior from POMDPs to lin-
ear PRPs, but because of its implications on the com-
plexity of the average reward function. The following
corollary connects the complexity of the average re-
ward function to the dimensionality of the PSR repre-
sentation and the number of hidden states in the cor-
responding POMDP representation. Since the average
reward is a rational function of policy parameters in
both cases, we measure the complexity of this func-
tion in terms of the degree of the multivariate polyno-
mials appearing in either numerator or denominator,
whichever is larger.

Corollary 5. Consider a system that can be rep-
resented by both POMDP with m hidden states and
n-dimensional linear PRP. Let k be the size of the
stochastic finite state controllers under consideration.
The degree of the average reward function, when an-
alyzed using the linear PRP representation is O(kn),
which can be (significantly) smaller compared to the
function of degree O(km) obtained in the POMDP
framework.

In the following subsections, we address two points
that were not yet discussed in enough detail. First, we
discuss the representational power of a linear PRP,
compared to that of a POMDP. Second, we pro-
vide several synthetic examples of linear PRPs whose
dimension is smaller than that of a corresponding
POMDP. These examples highlight the benefits of the
linear PRP framework.

4.1. Representation power of a linear PRP

As outlined above, existing planning algorithms in
PSRs fall under the linear PRP representation as-
sumptions. However, certain reward processes can be
represented with a POMDP but not with a linear PRP.
Although this might seem as a disadvantage, we argue
that such systems are ill–modeled from the perspective
of reinforcement learning.

The discrepancy arises from the fact that although the
belief state of a POMDP is always sufficient to pre-
dict the expected reward, the predictive state for the
future action–observation sequences is not necessarily
sufficient. For example, one can think of a POMDP
with aliased hidden states that only differ in terms of
their reward function. However, this setting under-
mines the classical approach of constructing policies
solely based on actions and observations, since it is
clear that knowing the reward signal allows making
better predictions of future rewards in this case. If the
model of the system is not known a priori, it is even
less clear how to learn such a model. To the best of
our knowledge, current state-of-the-art model learn-

ing techniques estimate the reward function after the
action–observation process has been modeled. Even
when the model is known, peculiar behavior might take
place if the policy ignores the reward signal, e.g., the
average reward can depend on the initial hidden state
of the POMDP, despite the hidden dynamics being
policy independent (Yu & Bertsekas, 2008). Hence, in
reinforcement learning, it is reasonable to assume that
the observations provide enough information about the
reward, as is the case in the linear PRP setting.

4.2. Linear PRP examples

We now present a few synthetic examples of dynamical
systems with control that can be represented exactly
by a PRP significantly more compactly, compared to
the most compact representation of the system in the
POMDP framework. The examples are based on the
probability clock example without control from Jaeger
(2000), described in the OOM framework. Although
these are synthetic examples, such “clocks” are in fact
common in nature, e.g. in bistable biological systems
(Chaves et al., 2008). The shared property among our
examples is the fact that at least one of the PSR ma-
trices is a rotation matrix. The angle of the rotation
will, in fact, determine the minimum number of states
that the POMDP needs to represent the system. We
first describe the probability clock example, since all
the following systems are based on the same concept.

Consider a system with two observations O = {o1, o2},
and 3-dimensional state. The initial state is a vector
s0 = (0.75, 0, 0.25)>, and the following two matrices
represent the change of state corresponding to each of
the observations:

Mo1 = 0.5 ·

 1 0 0
0 cos(α) sin(α)
0 − sin(α) cos(α)

 ,

Mo2 = s0 ·

 1− 0.5
1− 0.5[cos(α)− sin(α)]
1− 0.5[cos(α) + sin(α)]

> .
Mo1 performs the rotation of the state by an angle α
around the first axis, and Mo2 resets the state back to
s0. The predictions of the system are given by :

P(o(1)o(2), ..., o(k)) = 1>Mo(k) · · ·Mo(1)s0.

The name of this example is due to the interesting
behavior of the one step prediction of o1: if we observe
only sequences of o1-s this prediction oscillates (the
pattern is as in Fig. 1). The minimum number of
states required for an HMM to represent this system
exactly is the minimum k such that k ·α is a multiple of
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2π (Jaeger, 2000). Hence, depending on α, one might
require an arbitrarily large number of states in the
corresponding HMM for an exact representation; an
infinite number of states is needed if α is an irrational
degree.

We now present several systems with control and re-
ward functions that generalize the idea of the prob-
ability clock example to POMDPs. All the exam-
ples consider two-action (A = {a, b}) two-observation
(O = {o1, o2}) systems, such that policies with small
memory perform (at times significantly) better than
constant policies. The first and perhaps the most in-
teresting scenario is a simple extension of the three
dimensional probability clock. Let

Ma,o1 , Mo1 , Ma,o2 , Mo2 ,

Mb,o1 , Mb,o2 , 0.5 · I,

where I is an identity matrix of appropriate dimension.
Hence, taking action a will result in the same behavior
as that of the probability clock example. Taking action
b, though, will result in an i.i.d sequence of coins flips
- observations o1, o2 - but will not change the state.
We equip this system with a reward signal and let
its expectation be equal to P(o1|s, a), where s is the
current system’s state. This specification satisfies the
requirement of a linear PRP, since the expected reward
is a linear function of the system’s state. The optimal
behavior is to take action a until the system reaches
the state with largest P(o1|s, a), then choose action b
thereafter.

The above example should be interpreted as the sys-
tem that can operate under different modes. Action b
runs the system in a given mode while action a changes
the mode of the system in a stochastic fashion. Clearly,
one can generalize this example to the setting in which
the system’s operation itself requires several hidden
states to represent, more actions are involved, etc. Op-
erating the system in different modes does not affect
the dynamics between these states, but potentially af-
fects the reward obtained from each state-action pair.
Following the same reasoning as above, it is clear that
such a system might require significantly more hidden
states than number of dimensions, if represented in
the POMDP framework. We note that the lac operon
(see e.g. Chaves et al. (2008)), as well as other genetic
networks related to metabolizing different types of nu-
trients, exhibit this type of “multiple mode” operation,
with rewards dependent on the mode.

The rest of the examples illustrate the flexibility of the
probability clock with respect to the choice of param-
eters. The reward function is the same for all cases:

1 for observation o1 and 0 for o2; hence, the objec-
tive is to maximize the average probability of o1 per
step. As before, we let o1 be the observation that ro-
tates the state and o2 be the reset. Figure 1 illustrates
a system in which both actions behave as probability
clocks starting from the same state, but having dif-
ferent rotation angles. The policy that chooses either
action a or b at all times obtains an average reward
of ≈ 0.69, while the policy that takes action a three
times given that no reset occurred, and then b until
the next reset, obtains an average reward of ≈ 0.72.
Figure 2 illustrates an example in which two actions
can have different resetting states, rotation angles and
magnitudes of the cycles. A constant policy choos-
ing one action at all times will obtain average reward
less than 0.36. Yet, the policy that “climbs the hill”
using action b and, once reset, chooses action a until
the next reset, achieves an average reward of ≈ 0.66.
Such a policy requires only two internal states. The
behavior of the average reward as a function of some
of the two-state policy parameters is also presented
in Figure 2. Another example of a system whose ac-
tions rotate the state in opposite directions and have
slightly different resetting states can be found in the
supplementary material depicted in Figure 3. A con-
stant policy choosing one action at all times will obtain
average reward ≈ 0.43, while the policy that changes
its action right after observing a reset achieves average
reward of ≈ 0.66. As in the previous example, such a
policy requires only two internal states, with average
reward behaving smoothly as shown in Figure 3.

All these examples are meant to give a sense of a
type of systems that can benefit from the linear PRP
representation. Although these systems require a
much larger number of hidden states to be represented
in the POMDP framework, they only require a 3-
dimensional linear PRP representation. This guaran-
tees that the average reward is a simple function of a
policy with small memory, suggesting that appropriate
policy search techniques can be very efficient.

5. Conclusion and future work

We proposed a formal definition for the reward pro-
cess based on the linear PSR framework, and analyzed
some of its properties. We proved that the average re-
ward is a rational function of the policy parameters,
and its complexity depends on the dimension of the
underlying linear PSR. This suggests that systems rep-
resented by a small linear PRP should be amenable to
effective policy search techniques. For example, one
can use gradient-based policy search methods such as
GPOMDP (Baxter & Bartlett, 2001) to efficiently find
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Figure 1. A system which rotates the state by a different
angle for each action: a→ 45◦, b→ 18◦.

a policy with an acceptable performance. However,
previous policy search methods do not seem to exploit
the shape of the average reward function derived in
this paper. As a result, this is a particularly interesting
avenue for global policy search methods since proper-
ties like smoothness of the function are typically easy
to exploit using this type of search. Moreover, the
knowledge about the possible dimensionality of the
system can boost the policy search even more. The
development of suitable approaches and their analysis
remains the main direction for future work.
Another direction currently under investigation is the
analysis of the behavior of the average reward func-
tion for policies dependent on the predictive sufficient
statistic of the process, i.e. the underlying state of
the linear PSR (Aberdeen et al., 2007). This analysis
could further shed light on how the error in an approx-
imated PSR state affects the policy performance.
Finally, the established result on the stationary distri-
bution of a linear PSR can also be useful in the future
development of stability guarantees for linear PSRs.

Figure 2. The first two plots describe the behavior of the
system: 1) it rotates the state by a different angle for each
action: a → 18◦, b → 2◦; 2) the resetting state for action
a corresponds to a basin of the cycle, while the resetting
state for action b corresponds to a near top of the cycle;
3) the magnitudes of the periods are different between the
actions.
The bottom plot demonstrates how the average reward
changes as a function of α and β, where the policies having
2 hidden states (S ∈ {1, 2}) are parametrized as:
Pπ(a|S = 1) = Pπ(b|S = 2) = 1,
Pπ(S = 2|S = 1, a) = Pπ(S = 1|S = 2, a) = α,
Pπ(S = 1|S = 1, b) = Pπ(S = 2|S = 2, b) = β.
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