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A. Proofs

Proof of Lemma 1

The partial derivative of Equation 4 for an instance i
is given by

∂

∂x̄i
θ̂d(w, X̄, cd) = 2cd,i

(
x̄T
i w − zi

)
w + 2 (x̄i − xi) .

Due to the convexity of θ̂d we can compute the min-
imum by equating it to zero and solving for x̄i using
the Sherman-Morrison formula. This results in

x̄∗i = xi −
(
c−1
d,i + ‖w‖22

)−1 (
xT
i w − zi

)
w.

The claim follows, since the optimal transformations
are independent from each other.

Proof of Lemma 2

The partial derivate of Equation 3 is given by

∂

∂w

∫
θ̂l(w, φ(cd), cl)dq(cd)

=
∂

∂w

∫
diag (cl)(φ(cd)w − y)T(φ(cd)w − y)dq(cd)

+
∂

∂w
‖w‖22

= 2

(∫
φ(cd)

Tdiag (cl)φ(cd)dq(cd)

)
w−

2

(∫
φ(cd)dq(cd)

)T

diag (cl)y + 2w.

Setting this gradient equal to zero and solving it for w
yields

w∗[φ] =

(
Im +

∫
φ(cd)

Tdiag (cl)φ(cd)dq(cd)

)−1

(∫
φ(cd)dq(cd)

)T

diag (cl)y.

The matrix φ(cd)
Tdiag (cl)φ(cd) and hence the expec-

tation
∫
φ(cd)

Tdiag (cl)φ(cd)dq(cd) is positive semi-
definite for any adversary’s strategy φ(cd). Thus,
all eigenvalues λi ≥ 0 are non-negative. The cor-
responding eigenvectors are additionally eigenvectors
of Im +

∫
φ(cd)

Tdiag (cl)φ(cd)dq(cd) with eigenvalues
1 + λi > 0. Thus, the inverse matrix exists indepen-
dently of the choice of φ. This proves the claim.

Proof of Lemma 3

We define the action spaces of G′ as the closure of the
convex hull of optimal responses

Φ′ = cl({φ ∈ Φ | φ = τφ∗[w1] + (1− τ)φ∗[w2],

τ ∈ [0, 1] ,w1,w2 ∈ W})
W ′ = cl({w ∈ W | w = τw∗[φ1] + (1− τ)w∗[φ2],

τ ∈ [0, 1] , φ1, φ2 ∈ Φ}),

where cl (M) denotes the closure of set M . Since a
Bayesian equilibrium is a pair of optimal responses (see
Definition 1), each equilibrium in the original game G
is a member of the restricted spaceW ′×Φ′. Since both
games have identical loss functions and costs distribu-
tions each equilibrium point in G′ is an equilibrium
point G and vice versa.

It remains to be shown that the spaces Φ′ and W ′ of
optimal responses are bounded. We start by show-
ing that any optimal response of the data generator is
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bounded. Using the triangle inequality, the spectral
norm of an optimal response to a model parameter w
(see Lemma 1) can be upper-bounded by

‖φ∗[w](cd)‖2 ≤

‖X‖2 +

∥∥∥∥(diag (cd)
−1

+ ‖w‖22 In

)−1

zwT

∥∥∥∥
2

+∥∥∥∥(diag (cd)
−1

+ ‖w‖22 In

)−1

XwwT

∥∥∥∥
2

. (14)

The third summand of the right-hand side in Inequal-
ity 14 can be upper bounded as follows.∥∥∥∥(diag (cd)

−1
+ ‖w‖22 In

)−1

XwwT

∥∥∥∥
2

≤
∥∥∥∥(diag (cd)

−1
+ ‖w‖22 In

)−1
∥∥∥∥

2

‖X‖2
∥∥wwT

∥∥
2

(15)

=
1

‖w‖22 + mini
1
cd,i

‖X‖2 ‖w‖
2
2 (16)

< ‖X‖2 . (17)

Equation 15 follows by the sub-multiplicativity of
the spectral norm. The spectral norm of a symmetric
positive definite matrix is given by its largest eigen-
value, that is, the maximal diagonal entry of the pos-
itive diagonal matrix (see Equation 16). Equation 17
holds, since cd > 0.

Analogously, the second summand (see Inequality 14)
can be bounded using the sub-multiplicativity of the
spectral norm (Inequality 18) and evaluating the
largest eigenvalue of the diagonal matrix, which we
split up into two factors (see Equation 19). In In-
equality 20 we can bound each dominator by one of
the positive summands.∥∥∥∥(diag (cd)

−1
+ ‖w‖22 In

)−1

zwT

∥∥∥∥
2

≤
∥∥∥∥(diag (cd)

−1
+ ‖w‖22 In

)−1
∥∥∥∥

2

‖z‖2 ‖w‖2 (18)

=
‖z‖2√

‖w‖22 + mini
1
cd,i

‖w‖2√
‖w‖22 + mini

1
cd,i

(19)

<
‖z‖2√

mini
1
cd,i

‖w‖2
‖w‖2

(20)

= ‖z‖2 max
i

√
cd,i (21)

Finally, using Bound 17 and 21 the function space Φ

is bounded by∫
‖φ[w](cd)‖2dq(cd) <∫

2 ‖X‖2 + ‖z‖2 max
i

√
cd,idq(cd)

since
∫

maxi
√
cd,idq(cd) <

∑n
i

∫
(1 + cd,i)dq(cd) <

n+
∑n
i

∫
cd,idq(cd) <∞ exist.

We now show that if the data generator’s action
space is convex and compact the space of optimal
responses W ′ of the learner is compact and convex
as well. Let φ(cd) be a data generator’s strategy
given costs cd. Then, the learner’s optimal response
given by Lemma 2 can be bounded using the sub-
multiplicativity of the l2-norm

‖w∗[φ]‖2

≤

∥∥∥∥∥
(

Im +

∫
φ(cd)

Tdiag (cl)φ(cd)dq(cd)

)−1
∥∥∥∥∥

2∥∥∥∥(∫ φ(cd)dq(cd)

)∥∥∥∥
2

‖diag (cl)y‖2

≤ sup
φ′∈Φ

{∫
‖φ′(cd)‖2dq(cd)

}
‖diag (cl)y‖2 . (22)

For any arbitrary symmetric, positive definite matrix
the squared spectral norm equals its largest eigenvalue.
Since

∫
φ(cd)

Tdiag (cl)φ(cd)dq(cd) is positive semi-
definite, all eigenvalues λi ≥ 0 are non-negative. The
corresponding eigenvectors are additionally eigenvec-
tors of Im +

∫
φ(cd)

Tdiag (cl)φ(cd)dq(cd) with eigen-
values 1 + λi ≥ 1. Thus, the inverse matrix exists
and its norm can be upper bounded by one (see In-
equality 22). Then, the claim follows since the data
generator’s action space is bounded.

Proof of Theorem 3

Let a = (a1, . . . , an)T be an arbitrary vector. Then,
following Taylor’s Theorem the data generator’s opti-
mal response can be written as

φ∗[w](cd) = φt;a[w](cd) +Rt;a(cd),

=

t∑
r=0

diag (cd − a)
r
Cr(a) +Rt;a(cd),

with Cauchy remainder

Rt;a(cd) = (t+ 1)diag (cd − ξ)
t
diag (cd − a)Ct+1(ξ),

for some ξ = (ξ1, . . . , ξn)T with ξi ∈ [cd,i, ai] or ξi ∈
[ai, cd,i], respectively. It remains to show that a can be
chosen, such that Rt;a(cd) converges to the null ma-
trix, or equivalently, that lim

t→∞
‖Rt;a(cd)‖2 = 0 holds.
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Figure 3. Evaluation against an adversary that follows a Bayesian equilibrium strategy for varying cost parameters. Error
bars show standard errors.

The limit of the Cauchy remainder can be expressed
as

lim
t→∞

‖Rt;a(cd)‖2

= lim
t→∞

∥∥∥(t+ 1)diag (cd − ξ)
t
diag (cd − a)Ct+1(ξ)

∥∥∥
2

∝ lim
t→∞

∥∥∥(t+ 1)diag (cd − ξ)
t
diag (cd − a)(

In + diag
(
‖w‖22 a

))−(t+2)

‖w‖2t2

∥∥∥∥
2

(23)

= lim
t→∞

max
i

∣∣∣(t+ 1) (cd,i − ξi)t (cd,i − ai)(
1 + ‖w‖22 ai

)−t−2

‖w‖2t2

∣∣∣∣ . (24)

In Equation 23 we dismiss the two terms (−1)t+1

and (Xw − z) wT from Ct+1(ξ) (see Equation 10).
This leads to a diagonal matrix whose spectral norm
is given by the maximal absolute diagonal entry of the
matrix (see Equation 24). If ‖w‖ = 0 the claim holds.
So let ‖w‖ > 0. Then, Equation 24 can be factorized
as

lim
t→∞

‖Rt;a(cd)‖2 ∝

lim
t→∞

max
i

∣∣∣∣∣(t+ 1)

(
cd,i − ξi
‖w‖−2

2 + ai

)t
(

1 + ‖w‖22 ai
)−2

(cd,i − ai)

∣∣∣∣∣. (25)

A sufficient condition for the geometric sequence and
thus for Equation 25 to tend to zero is that∣∣∣∣∣ cd,i − ξi

‖w‖−2
2 + ξi

∣∣∣∣∣ ≤ k < 1 (26)

holds for all i and a fixed k. In the following we show
by case differentiation according to cd,i that Condi-
tion 26 is fulfilled for ai = 1

2 sup {‖cd‖∞|q(cd) > 0},
where ‖c‖∞ = maxi(|ci|) is the maximum norm.
Let ai ≤ cd,i. Since ξi ∈ [ai, cd,i] it follows that ai ≤
ξi ≤ cd,i ≤ 2ai and, thus, the quotient can be upper-
bounded by∣∣∣∣∣ ξi − cd,i
‖w‖−2

2 + ξi

∣∣∣∣∣ ≤ cd,i − ξi
‖w‖−2

2 + ai
≤ 2ai − ai
‖w‖−2

2 + ai
= k.

Since ‖w‖2 > 0, it holds that k < 1. Now assume
that ai > cd,i. Since the data generator’s costs are
bounded from below by zero, it follows that 0 ≤ cd,i ≤
ξi ≤ ai. Hence, the quotient can be upper-bounded by∣∣∣∣∣ ξi − cd,i
‖w‖−2

2 + ξi

∣∣∣∣∣ ≤ ξi

‖w‖−2
2 + ξi

≤ ai

‖w‖−2
2 + ai

= k.

This proves the claim.

B. Comprehensive Empirical Results

In Section 6 we studied the behavior of the Bayesian
regression model in the context of email spam fil-
tering. We compared the Bayesian game regression
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model (denoted Bayes) to the Nash game regression
model (denoted Nash), the robust ridge regression (de-
noted Minimax ), and a regular ridge regression (de-
noted Ridge).

Depiction of Theorem 2

In Theorem 2 we derived sufficient conditions for
unique equilibrium points. The uniqueness depends
on both players’ costs cd and cl. Figure 6 (left) de-
picts the optimal responses of the learner (horizontal
axis) and the data generator (vertical axis) for dif-
ferent costs cl = cd in a one-dimensional regression
game where X = 1, y = 1, and z = 1 without
uncertainty. Their intersections constitute the equi-
librium of the corresponding game. If the costs be-
come too large, such that Condition 5 is violated for
any (w, φ) ∈ [0, 1] × [0, 1], the game G is no longer
locally convex (indicated by the dashed black line).

Playing against a Bayesian adversary

In a first experiment, we evaluated how the methods
perform against an adversary that chooses a strategy
according to a Bayesian equilibrium. We choose q(cd,i)
as a gamma distribution and varied its mean µ and the
variance σ2. We set the Nash model’s conjecture for
all values of cd,i to the mean µ; this is optimal if the
data generator’s costs are drawn from a single-point
distribution q(cd,i) = δ(cd,i = µ). Figure 3 shows the
root mean squared error (RMSE) for Bayes, Nash,
and Ridge as a function of µ and σ2 (left). Fig-
ure 3 (right) shows a sectional view along µ (top) and
along σ2 (bottom). We observe that all methods co-
incide if the data generator’s costs vanish. The ad-
vantage of Bayes over Nash grows with the variance
of q.

Playing against actual adversaries

In a second experiment, we evaluate all methods over
time into the future. Here, the models play against
actual spammers. Additionally, in order to artificially
create a mismatch to our modeling assumptions, we
also evaluate the models on test data from the past.
The training sample of 200 instances are drawn from
month k. To evaluate into the future, the regulariza-
tion parameters of all learners (for Bayes, we use a
single cost parameter for all instances) are tuned on
1,000 instances from month k + 1; for evaluation into
the past, tuning data are drawn from month k − 1.
Test data are then drawn from months k + 2 to k + 1
and from months k − 2 to k − 6, respectively. This
process is repeated and RMSE measurements are av-
eraged over ten resampling iterations of the training

set and, in an outer loop, over four training months k
(March to June 2008). The data generator’s costs pa-
rameters are set to µ = 0.01 and σ2 = 0.01 for Bayes
and to µ = 0.01 for Nash.

Figure 4 (left) shows the RMSE over time for fixed
mean µ = 0.01 and variance σ2 = 0.01. Figure 4 (cen-
ter) depicts the RMSE for a fixed point in the past over
a range of different values for µ. Figure 4 (right) shows
the training times of the Bayesian equilibrium model
and reference models for varying number of attributes.

Additionally we study the shift in spam mails in re-
ality and compare it with the computed equilibrium
point. For depiction we choose the two most discrim-
inant principal components with respect to spam and
non-spam. We train separate Nash models on March
2007 (see section 6), April 2007, May 2007 and June
2007. Again we use 200 instances and the data gen-
erator’s costs are set to µ = 0.01. The learner’s costs
are tuned on the subsequent month. Given the Nash
model we are able to extract the optimal transformed
data from training month according to Lemma 1. Fig-
ure 5 depicts a training samples (blue), test samples
from the six subsequent months (green/yellow) and
the computed equilibrium data (red) for three differ-
ent training months (April - June 2007); a fourth is
shown in Figure 1. If changes of spam mails are con-
tinuous they can be well predicted (see e.g. upper right
corner). If instead the changes are more volatile (see
e.g. lower right corner) the Nash model is not able to
predict the appearance of new spam mails.

Approximation of adversary’s responses

Finally, we study the impact of the degree t of the Tay-
lor approximation on the accuracy and execution time
of Bayes. Figure 6 (center) shows the RMSE evaluated
over time for t = 1, 2, 3 (see Equation 11). Figure 6
(right, top) shows the execution time depending on the
number of training emails for a fixed number of at-
tributes (m = 10). Figure 6 (right, bottom) shows the
execution time depending on the number of attributes
for a fixed number of training mails (n = 200).
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Figure 4. Evaluation of regression models with fixed expected costs into the past and future (left) and varying expected
costs into the past (center). Execution Time (right). Error bars show standard errors.
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Figure 5. Shift in spam mails over time for three different training months. Training data is shown in blue; the imaginary
Equilibrium data are shown in red.
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