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SUPPLEMENTARY

A. Section 2: Smooth Operators – Supplementary Results

A.1. On the Relation between the Natural and Surrogate Risk

We follow up on the discussion in Section 2.2 about the surrogate and natural risk. The surrogate risk itself is not a
quantity we really care about, it is only an upper bound that makes optimisation feasible. In general, we have that
upper bounds similar to the one we derived in Section 2.2 are loose. For the conditional expectation estimates
in Section 3.2, for example, the upper bound corresponds to something like the variance of the underlying
distribution at points x and might be arbitrarily high for all estimates, while the natural risk can be decreased
to zero with a reasonable estimator. Yet, the situation is not as grim as it seems. The reason for this is that
the positions of the minimisers are often closely related, i.e. a minimum of the surrogate risk is in certain cases
also a minimum of the natural risk. More generally, the minima often do not overlap exactly, but due to some
continuity properties they are not located too far apart and we suffer only a minor penalty compared to the true
minimiser by using the surrogate minimiser.

Why this is the case is easy to see for the setting in Section 3.2. If we are in the lucky situation that X(x) can
be represented by a G∗k(x, ·) then this G∗k(x, ·) is the minimiser for both the upper bound and the natural risk
function. Furthermore, the bound becomes tight as the surrogate risk can be minimised to zero. If we can not
represent X(x) exactly then the surrogate risk minimises the difference to X(x) and the natural risk is bounded
by this approximation error.

Usually, we have a variation of the risk functions of Section 2.2 and relating the minimisers becomes more
complicated. The problem of relating the risk functions is an important one and it is useful to have a rather
general way to link these risk functions. One such approach is to use conditional expectations where we condition
wrt. a σ-algebra Σ (Fremlin, 2001)[Chp. 233]. It is well known that such conditional expectations are in a suitable
sense L2 minimisers over all Σ-measurable functions (Fremlin, 2001)[244N]. Our setting is a bit more complicated
then the standard L2 setting, but, intuitively, if we can find a suitable Σ such that the conditional expectation
wrt. Σ is a solution for both the natural and the surrogate risk and if the class of Σ-measurable functions overlaps
with the functions we can represent with G∗k(x, ·) then we know that the minimisers are co-located. We use
this argument in a form adapted to our setting for kernelized approximate Bayesian inference and the simple
conditional expectation E[ · |x] to relate the risk functions.

A.2. Reproducing Kernel

We verify here that Ξ is a valid reproducing kernel. We use the criterion from Carmeli et al. (2006)[Prop.1] to
verify this. The criterion resembles the positive-definiteness of a scalar valued kernel. The criterion is fulfilled,
if Ξ(f, g) ∈ L(HY ) (which is fulfilled as Ξ(f, g) = cB, for a c ∈ R) and for all n ∈ N, {ci}ni=1, ci ∈ R, {fi}ni=1,
fi ∈ HX , and all h ∈ HY it holds that

n∑
i=1

n∑
i=j

cicj〈Ξ(fi, fj)h, h〉l = 〈
n∑
i=1

cifi,A

n∑
i=1

cifi〉k〈Bh, h〉l = ‖
n∑
i=1

A1/2cifi‖2k‖B1/2h‖2l

is greater than zero. This is obviously fulfilled and Ξ has an associated RKHS HΞ.

A.3. Case Study III: Smooth Quotient Operators

Analogously to multiplication one can derive an operator for forming quotients, f/g ≈ Qf , where f ∈ HX and

g(x) 6= 0 for all x. In the unconstrained case we can find a suitable operator X by using eq. 1 with X(x) := k(x,·)
g(x) ,

which is in HX for a given x, is a valid choice. The approximation is hence

Qf =

n∑
i=1

n∑
j=1

f(xj)

g(xj)
Wijk(xi, ·),with W = (K + λI)−1.
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B. Section 2: Smooth Operators – Proofs

Theorem B.1. Each F ∈ HΞ is a bounded linear operator from HX to HY .

Proof. (a) Each operator in L = {
∑n
i=1 Ξ(fi, ·)hi : n ∈ N, fi ∈ HX , hi ∈ HY } linear as

F[af + bg] =

n∑
i=1

〈af + bg,Afi〉kBhi = a

n∑
i=1

〈f,Afi〉kBhi + b

n∑
i=1

〈g,Afi〉kBhi = aFf + bFg.

(b) Also each operator in HΞ = clos L is linear – see, for example, the proof of Prop. 1 in Carmeli et al. (2006)
for the equivalence of the closure of L and HΞ.

PPP Since L is dense we can find for each ε > 0 and F ∈ HΞ an operator Fδ ∈ L such that ‖F− Fδ‖Ξ < δ. We
have for an arbitrary g ∈ HX that

‖Fg − Fδg‖l = ‖(F− Fδ)g‖l ≤ ‖F− Fδ‖Ξ‖Ξ(g, g)‖1/2op = ‖F− Fδ‖Ξ‖A1/2g‖k‖B‖1/2op

≤ ‖F− Fδ‖Ξ‖A1/2‖op‖B‖1/2op ‖g‖k,

where we used Prop 2.1 (f) from Micchelli & Pontil (2005) for the first inequality and the positivity and self-
adjointness of A and B to guarantee the existence of square-roots. As A,B are bounded we can pick for a given
g a δ such that ‖Fg − Fδg‖l < ε.

Now, we can also pick a δ such that ‖F[af + bg] − Fδ[af + bg]‖k, ‖aFf − aFδf‖k and ‖bFg − bFδg‖k are
simultaneously smaller than ε/3.

Hence, for a given ε we have a Fε such that

‖F[af + bg]− aFf − bFg‖k ≤ ‖F[af + bg]− Fδ[af + bg]‖k + ‖aFδf + bFδg − aFf − bFg‖k ≤ ε.

Since this holds for every ε > 0 we have that ‖F[af + bg]− aFf − bFg‖k = 0 and F[af + bg] = aFf + bFg, i.e.
F is linear. QQQ

(c) Each F maps into HY . This is implicitly in Th. 2.1 from (Micchelli & Pontil, 2005), but is also easy to
derive: we want to show that Ff ∈ HY . We know this holds for any F′ ∈ L and we can for any F ∈ HΞ find
a sequence {Fn}∞n=1 in L that converges to F, and is hence a Cauchy sequence. Now, as HY is complete it is
sufficient for convergence to show that for a given f ∈ HX , Fnf is a Cauchy sequence. Similarly, like in (b), we
have

‖Fnf − Fmf‖l ≤ ‖Fn − Fm‖Ξ‖Ξ(f, f)‖1/2op .

Since Ξ(f, f) is a bounded operator we have shown that {Fnf}∞n=1 is a Cauchy sequence in HY and has hence
a limit F̃f in HY . We have

‖F̃f − Ff‖l ≤ ‖F̃f − Fnf‖l + ‖Fn − F‖Ξ‖Ξ(f, f)‖1/2op .

Since Fnf converges to F̃f in HY and Fn converges to F in HΞ we have that F̃f = Ff ∈ HY .

(d) Finally, each F is bounded as an operator from HX to HY as

‖Ff‖l ≤ ‖F‖Ξ‖Ξ(f, f)‖1/2op = ‖F‖Ξ‖〈f,Af〉kB‖1/2op ≤ ‖F‖Ξ‖A1/2‖op‖f‖k‖B‖1/2op ≤ C‖f‖k.

Theorem B.2. If for F,G ∈ HΞ and all x ∈ X it holds that Fk(x, ·) = Gk(x, ·) then F = G. Furthermore, if
k(x, ·) is continuous in x then it is sufficient that Fk(x, ·) = Gk(x, ·) on a dense subset of X.

Proof. As F and G are continuous it follows that they are uniquely defined by their values on the dense subset LX
of HX . Now, let f =

∑n
i=1 αik(xi, ·) be an arbitrary element in LX then Ff =

∑n
i=1 αiFk(xi, ·) and Ff = Gf

if Fk(x, ·) = Gk(x, ·) for all x ∈ X. This proves the first statement.

Now, assume that we only know that both operators are equal on a dense set D of X. Take an arbitrary
x ∈ X. There exists a sequence {xj}∞j=1 in D converging to x. We have that Fk(x, ·) = F limn→∞ k(xn, ·) =
limn→∞Fk(xn, ·) = limn→∞Gk(xn, ·) = Gk(x, ·) and both operators are equal on all k(x, ·).
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Theorem B.3. For every F ∈ HΞ there exists an adjoint F∗ in HΞ∗ such that for all f ∈ HX and h ∈ HY

〈Ff, h〉l = 〈f,F∗h〉k.

In particular, we have for Ff =
∑n
i=1 Ξfi [hi](f) =

∑n
i=1〈f,Afi〉kBhi that the adjoint is

(TF)h = F∗h =

n∑
i=1

Ξ∗hi
[fi](h) =

n∑
i=1

〈h,Bhi〉lAfi.

The operator TF = F∗ is an isometric isomorphism from HΞ to HΞ∗ (HΞ
∼= HΞ∗ and ‖F‖Ξ = ‖F∗‖Ξ∗).

Proof. (a) We first derive the explicit expression of F∗ for F ∈ L. This is nearly trivial, we have

〈Ff, h〉l =

n∑
i=1

〈f,Afi〉k〈hi,Bh〉l =

n∑
i=1

〈hi,Bh〉l〈f,Afi〉k = 〈f,
n∑
i=1

〈h,Bhi〉lAfi〉k = 〈f,F∗h〉k.

(b) Next, we verify some properties of (T� L), where (T� L)[
∑n
i=1 Ξfihi] =

∑n
i=1 Ξ∗hi

fi. (i) (T� L) is linear as

(T� L)[aF + bG] = (T� L)[

n∑
i=1

Ξfiahi +

m∑
j=1

Ξgj buj ] =

n∑
i=1

Ξ∗ahi
fi +

m∑
j=1

Ξ∗buj
gj

= a

n∑
i=1

〈·,Bhi〉lAfi + b

m∑
j=1

〈·,Buj〉lAgj = a(T� L)F + b(T� L)G.

where we used that Ξu is a linear operator. (ii) (T� L) is norm preserving, as

‖(T� L)F‖2Ξ∗ =

n∑
i=1

n∑
j=1

〈Ξ∗hi
[fi],Ξ

∗
hj

[fj ]〉Ξ∗ =

n∑
i=1

n∑
j=1

〈fi,Ξ∗(hi, hj)fj〉k

=

n∑
i=1

n∑
j=1

〈hi,Bhj〉l〈fi,Afj〉k =

n∑
i=1

n∑
j=1

〈hi,Ξ(fi, fj)hj〉l = ‖F‖2Ξ.

Furthermore, (T� L) is continuous as ‖(T� L)‖op = supF∈L,‖F‖Ξ=1 ‖(T� L)F‖Ξ∗ = supF∈L,‖F‖Ξ=1 ‖F‖Ξ = 1.

(iii) (T� L) is bijective. Take an arbitrary G ∈ L∗ then G =
∑n
i=1 Ξ∗hi

[fi] for suitable choices of n, fi, hi. We
have that (T� L)[

∑n
i=1 Ξfi [hi]] = G and, hence, (T� L) is surjective. (T� L) is also injective, take F,F′ such

that (T� L)F = (T� L)F′ then, we have

‖F− F′‖Ξ = ‖(T� L)[F− F′]‖Ξ∗ = ‖(T� L)F− (T� L)F′‖Ξ∗ = 0,

as (T� L) is norm preserving and we conclude F = F′.

(c) As L is dense and (T� L) a bounded linear operator from L to HΞ∗ there exists a unique continuous extension
T : HΞ 7→ HΞ∗ of (T� L) (Werner, 2002)[Satz II.1.5]. Furthermore, ‖T‖op = ‖(T� L)‖op = 1.

We verify again a couple of properties. (i) T is injective. PPP Assume that for F,G ∈ HΞ it holds that F 6= G
and TF = TG. As F 6= G we have that ‖F−G‖Ξ∗ > ε for an ε > 0. Now, as T is continuous it is also uniformly
continuous and there exists for arbitrary η > 0 a δ > 0 such that for all H it holds that ‖TH − THη‖Ξ∗ < η,
whenever ‖H−Hη‖Ξ < δ. In the following we use η = ε/6 and we denote the associated δ with δε/6.

For F′,G′ ∈ L we have that

‖TF′ − TG′‖Ξ∗ = ‖F′ −G′‖Ξ = ‖F′ − F + F−G + G−G′‖Ξ ≥ |‖F−G‖Ξ − ‖F′ − F + G−G′‖Ξ|.

As L is dense, we can pick F′ and G′ such that ‖F′ −F‖Ξ, ‖G−G′‖Ξ < min{ε/6, δε/6}. Hence, ‖F′ −F + G−
G′‖Ξ ≤ ‖F′ − F‖Ξ + ‖G−G′‖Ξ < ε/3 and, consequently, that ‖TF′ − TG′‖Ξ∗ > 2/3ε.



Smooth Operators

Furthermore, ‖TF− TF′‖Ξ∗ , ‖TG′ − TG‖Ξ∗ < ε/6 and we have

‖TF− TG‖Ξ∗ ≥ |‖TF− TF′‖Ξ∗ − ‖TF′ − TG′‖Ξ∗ + ‖TG′ − TG‖Ξ∗ | > 1/3 > 0

and F 6= G. QQQ

(ii) T is surjective, and hence bijective. PPP Consider an arbitrary G ∈ HΞ∗ and chose a sequence {Gn}∞n=1 in
L∗ converging to G. Now, we have exactly one Fn ∈ L such that TFn = Gn. As {Gn}∞n=1 is a Cauchy-sequence,
it follows that {Fn}∞n=1 is also a Cauchy-sequence:

‖Fn − Fm‖Ξ = ‖TFn − TFm‖Ξ∗ = ‖Gn −Gm‖Ξ∗

and because of the completeness of HΞ the sequence {Fn}∞n=1 has a limit F.

Because of the continuity of T it follows that

G = lim
n→∞

TFn = TF

and T is surjective. QQQ

(iii) T has a continuous inverse T−1. That follows from an application of the open mapping theorem, e.g.
Kor.IV.3.4 in Werner (2002).

(iv) T is norm preserving. For an arbitrary F ∈ HΞ pick a sequence {Fn}∞n=1 in L that converges to it. Then

‖TF‖Ξ∗ = ‖ lim
n→∞

TFn‖Ξ∗ = lim
n→∞

‖TFn‖Ξ∗ = lim
n→∞

‖Fn‖Ξ = ‖F‖Ξ

as T is continuous and preserves the norm for elements in L.

(v) That T maps to the adjoint can be seen in a similar way. For an arbitrary F ∈ HΞ pick a sequence {Fn}∞n=1

in L that converges to it. Then

〈Ff, h〉k = lim
n→∞

〈Fnf, h〉k = lim
n→∞

〈f,TFnh〉l = 〈f,TFh〉l

as T is continuous and maps to the adjoint for elements in L.

Theorem B.4. The set of self-adjoint operators in HΞ is a closed linear subspace.

Proof. The set is a linear subspace as for two self-adjoint operators F,G, scalar a, b and arbitrary f, g ∈ HX it
holds that

〈(aF + bG)f, g〉k = a〈Ff, g〉k + b〈Gf, g〉k = 〈f, (aF + bG)g〉k.

The subspace is closed. To see this let F be a limit of a sequence {Fn}∞n=1 of self-adjoint operators. For a given
f, g ∈ HX we have that

|〈Ff, g〉k − 〈Fnf, g〉k| ≤ ‖(F− Fn)f‖k‖g‖k ≤ ‖F− Fn‖Ξ‖Ξ(f, f)‖1/2op ‖g‖k

and, as the operator Ξ(f, f) is bounded there exists for any upper bound ε > 0 of the right side a N such that
for all n ≥ N we have that |〈Ff, g〉k − 〈Fnf, g〉k| < ε.

Using this we have that for arbitrary f, g

〈Ff, g〉k = lim
n→∞

〈Fnf, g〉k = lim
n→∞

〈f,Fng〉k = 〈f,Fg〉k

and F is also self-adjoint.
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C. Section 3: RKHS Integration Theory: Basic Transformations – Supplementary
Results

C.1. Change of Measure

C.1.1. Absolute Continuity

We discuss now a way to test for a lack of absolute continuity and how to split the problem into the part of Q
that is singular wrt. P and the absolute continuous part.

If Q 6� P then there is a set on which P is zero while Q is not and there exists a strictly positive measurable
function f – for example, the characteristic function for that set – for which EQf > 0, while EPf = 0. Now,
we have only control over RKHS functions and not arbitrary measurable functions, but we might consider the
point-evaluators k(x, ·) as a form of δ-function at x and test for EQk(x, ·) > 0, while EPk(x, ·) = 0. If we

consider the empirical version m̂Q =
∑n
i=1 k(yi, ·) then ÊQk(x, ·) = 〈m̂Q, k(x, ·)〉k =

∑n
i=1 k(yi, x) > 0 implies

k(x, ·) 6⊥ {k(yi, ·)}ni=1. So we might restrict our test for abs. continuity to the elements {k(yi, ·)}ni=1 of which m̂Q
is formed. If there is a k(yi, ·) which is perpendicular to every k(xj , ·), where m̂P =

∑m
j=1 k(xj , ·) then we have

a strong indicator that the empirical measures are not absolute continuous.

There are two effects here which might lead us to a wrong conclusion: (1) k(yi, ·) might take positive and

negative values which cancel exactly when averaged over the empirical version of P; (2) ÊQk(yi, ·) might be 0

despite k(yi, ·) being an element of the sum defining ÊQ. So if the k(yi, ·) is a strictly positive function and

ÊQk(yi, ·) 6= 0 then we know that for the empirical versions Q̂ 6� P̂ holds.

We can split the sample into two parts, the k(yi, ·)’s which we just discussed. These reflect the singular part of

Q̂ wrt. to P̂. We can use the remaining samples to define Q̂a, i.e. the absolute continuous part and estimate
R for Q̂a and P. One important point is that we do not have guarantees that Q̂a is in a measure theoretic
sense absolute continuous as we test only with kernel functions if we can break absolute continuity and not with
arbitrary measurable functions, i.e. the above statement is only a necessary condition for absolute continuity
and not a sufficient one.

An interesting question is whether this can be turned into a proper test by increasing either the size of the
RKHS, for example, by using a universal RKHS, or by making use of a bandwidth parameter which will decrease
to 0 in the sample size.

C.2. Product Integral – Fubini

Integrals or expectations over product spaces X × Y are common in many applications. There are two settings
that appear to be of broader interest: The case where we associate with X the RKHS HX and with Y the RKHS
HY . Now, for f ∈ HX , h ∈ HY we like to take expectations over f × h with respect to a measure PX×Y on the
product space. This case can be addressed with the help of the product RKHS HX ⊗HY that is introduced in
Aronszajn (1950)[Sec. 8]. The RKHS HX ⊗HY has the reproducing kernel

p(x1, y1, x2, y2) = k(x1, x2)l(y1, y2). (8)

We denote the RKHS with HX×Y := HX ⊗HY .

We have that f×h ∈ HX×Y and expectations can be calculated in the usual way by replacing mX with a suitable
mX×Y ∈ HX×Y , i.e. if HX×Y ⊂ L2(X × Y,PX×Y ) and the corresponding expectation operator is bounded on
HX×Y then the Riesz theorem guarantees us that such an element exists with which

EX×Y f × h = 〈mX×Y , f × h〉X×Y .

It is often useful to reduce the product integral to two integrals with the help of the Fubini theorem. That is
that, under suitable assumptions, EX×Y g(x, y) = EXEY g(x, y).

For expectations over g ∈ HX ⊗HY we can do something similar. In case that g(x, y) = f(x)h(y) for suitable
f ∈ HX , h ∈ HY , f, g, h are integrable and we have suitable representer mX×Y ,mX ,mY then the Fubini theorem
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guarantees us that

〈mX×Y , g〉X×Y = EX×Y g(x, y) = EX×Y f(x)h(y)

= EXfEY h = 〈mX , f〉k〈mY , h〉l.

Note, that not every g ∈ HX ⊗ HY needs to be of this particular form as HX ⊗ HY is the completion of the
direct product between HX and HY .

The second case of interest is when you have a kernel on the product space X × Y that does not arise from
kernels on X and Y , i.e. the kernel p(x1, y1, x2, y2) has not the form from eq. 8. This approach is also useful to
deal with the limit points in HX ⊗HY .

Expectations over elements g from the corresponding RKHS HX×Y can be taken like in the first case. The
more interesting problem is to have a form of the Fubini theorem to turn the product integral into two separate
integrals that can be efficiently evaluated using the RKHS framework. To do so we can use a kernel k on the space
X to define an RKHS HX and we try to approximate the inner integral, i.e. to find an operator E : HX×Y → HX
such that

(Eg)(x) ≈ EY g(x, y).

The free variables are here x and g. Taking the supremum over the unit ball in HX×Y and the average over X
wrt. PX we get

sup
‖g‖X×Y ≤1

EX(EY g(x, y)− (Eg)(x))2

sup
‖g‖X×Y ≤1

EX(EY 〈g, p(x, y, ·, ·)−E∗k(x, ·)〉X×Y )2

≤ EX×Y ‖p(x, y, ·, ·)−E∗k(x, ·)‖X×Y .

Using the usual regularised empirical version and W from eq. 2 we get the estimate

Eg =

n∑
i,j=1

g(xj , yj)Wijk(xi, ·).

C.3. Conditional Expectation

The adjoint of the estimate we derived for the conditional expectation in eq. 5 is

E∗f =

n∑
i,j=1

〈f, k(xi, ·)〉kWij l(yj , ·),

with W defined in eq. 2. If we use f = k(x, ·) we get

E∗k(x, ·) =

n∑
i,j=1

k(xi, x)Wij l(yj , ·),

which is exactly the estimate µ(x) from Grünewälder et al. (2012a)[p. 4] with the vector-valued kernel Γ(x, x′) =
k(x, x′)I. Furthermore, we have that E[h] = 〈h, µ(·)〉l and because E maps to HX we know that 〈h, µ(·)〉l ∈ HX .

This is also straight forward from a direct evaluation of µ(x) as

〈h, µ(x)〉l =

n∑
i,j=1

k(xi, x)Wijh(yj) =

n∑
i=1

βik(xi, x),

with βi =
∑n
j=1 Wijh(yj).

More generally, one might consider the set L = {
∑n
i=1 k(xi, ·)hi : n ∈ N, xi ∈ X,hi ∈ HY } which is dense in the

vector-valued RKHS HΓ. Because, elements µ ∈ L are finite sums we have that

〈h, µ(x)〉l =

n∑
i=1

k(xi, ·)〈h, hi〉l =

n∑
i=1

αik(xi, ·) ∈ HX
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where αi = 〈h, hi〉l.

The more difficult question is if for the limit of functions in L, i.e. functions µ ∈ HΓ, it holds that 〈h, µ(·)〉l ∈
HY for every h ∈ HY . One might try to show for a Cauchy-sequence {µn}∞n=1 converging to µ in HΓ that
{〈h, µn(·)〉l}∞n=1 is a Cauchy-sequence in HX , i.e. that

‖〈h, µn(·)〉l − 〈h, µm(·)〉l‖k = ‖〈h, µn(·)− µm(·)〉l‖k

is below a given ε after some finite number N . It is not directly obvious how to approach this. One might
consider the Cauchy-Schwarz inequality, which tells us that |〈h, µn(·) − µm(·)〉l| ≤ ‖h‖l‖µn(·) − µm(·)‖l. Then
one might show that ‖µn(·)−µm(·)‖l is in HX and try to prove that the norm of the upper bound is higher than
the norm of the original sequence – this is not directly obvious as norms can measure different properties. In the
operator approach these problems do not arise as by construction it is guaranteed that Eh ∈ HX independent
of E being a finite sum or a limit point in HΞ.

D. Section 4: RKHS Integration Theory: Composite Transformations – Proofs

D.1. Sum Rule – Change of Measure on Y

Theorem D.1. We assume that the integrability assumptions from suppl. F hold, that QX � PX and the
corresponding Radon-Nikodým derivative r is a.e. upper bounded by b we have with c = ‖A1/2‖2op‖B‖op that

Em[mY ] ≤ bEc[E] + c‖E‖2Ξ Em[mX ].

Proof. Under our assumptions EQX
has a representer mQX

∈ HX due to the Riesz-theorem as each f ∈ HX is

integrable and EQX
is bounded as EQX

f ≤ ‖f‖k
√
k(x, x). Using the transformation in eq. 6, we get

Em[mY ] = sup
‖h‖l≤1

(EQY
h− 〈mY , h〉l)2 = sup

‖h‖l≤1

(EQX
EP[h|x]− 〈mX ,Eh〉k)2

= sup
‖h‖l≤1

(EQX
EP[h|x]− EQX

E[h] + EQX
E[h]− 〈mX ,Eh〉k)2

≤ sup
‖h‖l≤1

EQX
(EP[h|x]−E[h])2 + sup

‖h‖l≤1

(〈mQX
−mX ,E[h]〉k)2.

The first term can be transformed in case Q is absolute continuous wrt. P. Assuming the corresponding Radon-
Nikodým derivative r(x) is a.e. upper bounded by b, we get:

sup
‖h‖l≤1

EQX
(EP[h|x]−E[h])2 = sup

‖h‖l≤1

EPX
r(x)(EP[h|x]−E[h])2 ≤ b sup

‖h‖l≤1

EPX
(EP[h|x]−E[h])2 ≤ bEc[E]. (9)

Using Micchelli & Pontil (2005)[Prop. 2.1 (f)], the second term can be bounded by

sup
‖h‖l≤1

(〈mQX
−mX ,E[h]〉k)2 ≤ sup

‖h‖l≤1

〈mQX
−mX ,

E[h]

‖Eh‖k
〉2k‖Eh‖2k

≤ sup
‖f‖k≤1

〈mQX
−mX , f〉2k‖E‖2Ξ sup

‖h‖l≤1

‖Ξ(h, h)‖op ≤ Em[mX ]‖E‖2Ξ‖A1/2‖2op sup
‖h‖l≤1

‖h‖2l ‖B‖op

= c‖E‖2ΞEm[mX ],

with c = ‖A1/2‖2op‖B‖op.

In total, we get the upper bound

Em[mY ] ≤ bEc[E] + c‖E‖2Ξ Em[mX ].
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D.2. Kernel Bayes’ Rule – Change of Measure on X|y

In the following we assume that d = supx∈X k(x, x) < ∞, c = supy∈Y l(y, y) < ∞. For the theorem we use
subscripts at the risk functions to denote the measure with which they are evaluated, i.e. Ec,Q for the conditional
expectation risk evaluated wrt. Q. The kernel function is here Ξ(h, h′) := 〈h,Ah′〉lB.

Theorem D.2. We assume that the integrability assumptions from suppl. F hold, that QX � PX and that the
corresponding Radon-Nikodým derivative is a.e. upper bounded by b. Furthermore, we assume that there exists
a constant q > 0 such that Ey′∼PY

l(y, y′) ≥ q for all y ∈ Y and that the approximation error of mY is such that
|Ey′∼PY

l(y, y′)− 〈mY , l(y, ·)〉l| ≤ |Ey′∼PY
l(y, y′)|/2. We have that

Ec,Q[G] ≤ d2Ea,Q[l] + EK,Q[G] +
4cd

q2

(
c2

q2

(
bEc,P[E] + ‖A1/2‖2op‖B‖op‖E‖2ΞEm,Q[mX ]

)
+ bEc,P[E]

)
,

in other words there exists a positive constant C such that

Ec,Q[G] ≤ EK,Q[G] + C
(
Ea,Q[l] + ‖E‖2ΞEm,Q[mX ] + Ec,P[E]

)
.

Proof. In the following, we use the short form EY ′ for Ey′∼PY
.

(a) We follow the chain of arguments from Section 4.2. We use here the measure Q. A change of measure is
needed at the end to bound the error of E. We have that

Ec,Q[G] = sup
‖f‖k≤1

EY (E[f |y]−G[f ](y))2

≤ sup
‖f‖k≤1

EY
(
E[f |y]− EY ′

l(y, y′)

EY ′ l(y, y′)
E[f |y′]

)2

+ sup
‖f‖k≤1

EY
(
EY ′

l(y, y′)

EY ′ l(y, y′)
E[f |y′]−G[f ](y)

)2

= d2Ea,Q[l] + sup
‖f‖k≤1

EY
(

1

EY ′ l(y, y′)
EXfEY ′ [l(y, y′)|x]−G[f ](y)

)2

= d2Ea,Q[l] + sup
‖f‖k≤1

EY
(

1

EY ′ l(y, y′)
EXfEY ′ [l(y, y′)|x]− 1

〈mY , l(y, ·)〉l
EXfE[l(y, ·)](x)

)2

+ sup
‖f‖k≤1

EY
(

1

〈mY , l(y, ·)〉l
EXfE[l(y, ·)](x)−G[f ](y)

)2

= d2Ea,Q[l] + sup
‖f‖k≤1

EY
(

1

EY ′ l(y, y′)
EXfEY ′ [l(y, y′)|x]− 1

〈mY , l(y, ·)〉l
EXfE[l(y, ·)](x)

)2

+ EK,Q[G].

We address the approximation error in (b), we verify in (c) that the integral transformation in the third line is
valid and we bound the error of the middle term of the last line in (d),(e) and (f). Finally, the error for E can
be bound in terms of the error Ec,P[E] wrt. the measure P from which we can sample. This is the part where the
change of measure is used and the bound on the Radon-Nikodým derivative is needed. We derived the necessary
bound already in eq. 9: Ec,Q[E] ≤ bEc,P[E].

(b) We have that

sup
‖f‖k≤1

EY
(
E[f |y]− EY ′

l(y, y′)

EY ′ l(y, y′)
E[f |y′]

)2

≤ d2 sup
‖h‖L1(QY )≤1

EY
(
h(y)− EY ′

l(y, y′)

EY ′ l(y, y′)
h(y′)

)2

= d2Ea,Q[l].

To see this we first observe that the conditional expectation E[f |y] is integrable wrt. QY and

‖E[f |y]‖L1(QY ) ≤ EQY
E[|f ||y] ≤ sup

x∈X
|f(x)| ≤ sup

x∈X
‖f‖k

√
k(x, x) ≤ d‖f‖k.

Hence, if we take the supremum over all QY integrable functions h with norm ‖h‖L1(QY ) ≤ d, we also include
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every E[f |y] with ‖f‖k = 1. Finally, we can pull the scaling outside through

sup
‖h‖L1(QY )≤d

EY
(
h(y)− EY ′

l(y, y′)

EY ′ l(y, y′)
h(y′)

)2

= sup
‖h

d ‖L1(QY )≤1

EY
(
h(y)− EY ′

l(y, y′)

EY ′ l(y, y′)
h(y′)

)2

= sup
‖h‖L1(QY )≤1

d2EY
(
h(y)− EY ′

l(y, y′)

EY ′ l(y, y′)
h(y′)

)2

.

(c) The integral transformation EY ′ l(y, y′)E[f |y′] = EXfEY ′ [l(y, y′)|x] is easy to verify. We have that l(y, ·) ∈
HY and by assumption is QY -integrable. Similarly, f ∈ HX is QX -integrable and, using (Fremlin, 2001)[253D],
we have that l(y, ·) ⊗ f is QX×Y -integrable. Now, EX×Y ′ l(y, ·) ⊗ f = EX×Y ′E[l(y, ·) ⊗ f |x] = EXfE[l(y, ·)|x].
With the same argument we have EX×Y ′ l(y, ·)⊗ f = EY ′ l(y, ·)E[f |y′].

(d) We have that
(EXf(x)E[l(y, ·)|x]− EXf(x)E[l(y, ·)](x))2 ≤ cd‖f‖2kEc,Q[E].

This is essentially due to the Jensen inequality and the fact that f2(x) = |〈f, k(x, ·)〉k|2 ≤ ‖f‖2kk(x, x) = d‖f‖2k:

(EXf(x)E[l(y, ·)|x]− EXf(x)E[l(y, ·)](x))2 ≤ EXf2(x)(E[l(y, ·)|x]−E[l(y, ·)](x))2

≤ d‖f‖2kEX(E[l(y, ·)|x]−E[l(y, ·)](x))2 ≤ d‖f‖2kl(y, y)Ec,Q[E].

(e) Building up on (d) we get the bound(
1

EY ′ l(y, ·)
EXf(x)E[l(y, ·)|x]− 1

〈mY , l(y, ·)〉l
EXf(x)E[l(y, ·)](x)

)2

≤ 4cd‖f‖2k
|EY l(y, ·)|2

(
c2

|EY ′ l(y, ·)|2
Em,Q[mY ] + bEc,Q[E]

)
.

PPP We first address the quotients. Let us denote for this part e := EY ′ l(y, y′) and o = 〈mY , l(y, ·)〉l. We have
that ∣∣∣∣1e − 1

o

∣∣∣∣ =
|e− o|
|eo|

=
|e− o|

|e||e− (e− o)|
≤ |e− o|
|e| | |e| − |e− o| |

and |e− o|2 = |EY ′ l(y, ·)− 〈mY , l(y, ·)〉l|2 = ‖l(y, ·)‖2l |EY ′
l(y,·)
‖l(y,·)‖l − 〈mY ,

l(y,·)
‖l(y,·)‖l 〉l|

2 ≤ cEm,Q[mY ]. Furthermore,

using the assumption that |e− o| ≤ |e|/2 we get that∣∣∣∣1e − 1

o

∣∣∣∣2 ≤ |e− o|2

|e|2 | |e| − |e− o| |2
≤ 4|e− o|2

|e|4
≤ 4cEm,Q[mY ]

|EY ′ l(y, y′)|4
.

Next we combine this with (c). We use that |o| = |o− e− (−e)| ≥ | |o− e| − |e| | ≥ |e|2 under our assumption and
that |l(y, y′)| ≤ c. The bound is now(

1

e
EXf(x)E[l(y, ·)|x]− 1

o
EXf(x)E[l(y, ·)](x)

)2

≤ (EXf(x)E[l(y, ·)|x])2

(
1

e
− 1

o

)2

+
1

o2
(EXf(x)E[l(y, ·)|x]− EXf(x)E[l(y, ·)](x))

2

≤ ‖f‖2kdc2
(

1

e
− 1

o

)2

+
4

|e|2
(EXf(x)E[l(y, ·)|x]− EXf(x)E[l(y, ·)](x))

2

≤ 4dc3

|EY ′ l(y, y′)|4
‖f‖2kEm,Q[mY ] +

4cd

|EY ′ l(y, y′)|2
‖f‖2kEc,Q[E]

≤ 4dc3

|EY ′ l(y, y′)|4
‖f‖2kEm,Q[mY ] +

4bcd

|EY ′ l(y, y′)|2
‖f‖2kEc,P[E]. QQQ
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(f) The final step is to use the sum rule theorem to bound the error Em,Q[my] and to take the supremum over
f and integrate wrt. EY . Under our assumption that EY ′ l(y, y′) > q this turns into

sup
‖f‖k≤1

EY
(

1

EY ′ l(y, y′)
EXf(x)E[l(y, ·)|x]− 1

〈mY , l(y, ·)〉l
EXf(x)E[l(y, ·)](x)

)2

≤ 4dc3

q4
Em,Q[mY ] +

4bcd

q2
Ec,P[E]

≤ 4dc3

q4

(
bEc[E] + ‖A1/2‖2op‖B‖op‖E‖2ΞEm,Q[mX ]

)
+

4bcd

q2
Ec,P[E].

E. Convergence Rates for the approximate sum rule

We use Theorem 4.1 and we bound the involved risk term for the conditional expectation in the following
subsections. We follow here the approach in Grünewälder et al. (2012a). This approach is based on vector-
valued convergence rates from Caponnetto & De Vito (2007). One of the restrictions of these rates is that they
need a finite dimensional space at one point. The next section contains assumptions which are needed to be able
to apply the convergence results from Caponnetto & De Vito (2007).

Before we proceed we need to discuss convergence rates for the standard mean estimate Em[mX ]. Convergence
rates are known for the convergence of the mean element in the RKHS norm. This implies convergence of the
estimate in our risk function Em, but is actually a lot stronger than what we need. The convergence rates are
under suitable assumptions in the order of O(n−α) with 0 < α ≤ 1/2 (see Fukumizu et al. (2011) and references
therein). We have rates of the order n−1 for the conditional expectation estimates for our risk function, and one
might hypothesize that these rates are also achievable for Em, as conditional expectation estimation is a more
difficult task and as our risk function is weaker than the RKHS norm. We do not derive new rates for the mean
estimates, but leave it as a parameter in the theorem with an α ∈]0, 1]. In particular, we assume that for a given
measure QX and for any ε > 0 there exists a constant C such that

lim sup
n→∞

Qn[Em[mn
X ] > Cn−α] < ε, (10)

holds for any iid sample {xi}ni=1. We use here the notation mn
X to denote the n-sample mean estimate and Qn

to denote the product measure for n copies of QX .

E.1. Assumptions

We assume that the spacesHX andHY are finite dimensional. The assumption forHY is implied by the approach
in Caponnetto & De Vito (2007) as there the output space of the regression problem must be finite dimensional.
For simplicity we also assume that HX is finite dimensional, however, this assumption can be dropped with some
extra effort.

We also assume that the kernel is measurable, that is that for arbitrary h, h′ ∈ HY that the mapping: (f, g) 7→
〈h,Ξ(f, g)h′〉Y is measurable. Furthermore, we assume that ‖l(y, ·)‖2l is measurable wrt. y and in general that
the integrability assumptions from F hold.

We need specific assumptions for the conditional expectation estimation problem. For this we assume that a
minimiser of the regression problem exists, that is, that there exists a Es ∈ HΞ such that Es[Es] = infE∈HΞ

Es[E].

E.2. Rates for the Conditional Expectation

In this section we derive risk bounds and convergence rates for the natural risk function

Ec[E] = sup
‖h‖l≤1

EX(E[h|x]−E[h](x))2.

The approach we take is to derive convergence rates for the surrogate risk function

Es[E] = EX×Y ‖l(y, ·)−E∗k(x, ·)‖2l ,

which can be done by a direct application of vector-valued regression rates and to link the two cost functions.
We start by linking the two cost functions in the next.
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E.2.1. Relating the Risk Functions

We reproduce now Theorem A.2 and A.3 from Grünewälder et al. (2012a) for our setting. The derivation is –
modulo minor adaptations – like in Grünewälder et al. (2012a) and we include the proofs mainly for completeness.
Also note that the approach is based on a conditional expectation argument as discussed is Supp. A.1.

Lemma E.1. We assume that the integrability assumptions from suppl. F hold. If there exists E∗ ∈ HΞ such
that for any h ∈ HY : E[h|x] = E∗[h](x) PX-a.s., then for any E ∈ HΞ:

(i) EX×Y E∗[l(y, ·)](x) = EX‖E∗∗k(x, ·)‖2l ,
(ii) EX×Y E[l(y, ·)](x) = EX〈E∗∗k(x, ·),E∗k(x, ·)〉l.

Proof. (i) follows from (ii) by setting E := E∗. Using the assumption (ii) can be derived:

EX〈E∗∗k(x, ·),E∗k(x, ·)〉l = EX〈k(x, ·),E∗E∗k(x, ·)〉l = EXE∗[E
∗k(x, ·)](x)

= EXEY [E∗[k(x, ·)](y)|x] = EX×Y 〈l(y, ·),E∗k(x, ·)〉l = EX×Y E[l(y, ·)](x).

Theorem E.1. If there exists a E∗ ∈ HΞ such that for any h ∈ HY it holds that E[h|x] = E∗[h](x) PX-a.s. then
E∗ is a solution of argminE∈HΞ

Ec[E] and argminE∈HΞ
Es[E]. Furthermore, any solution E◦ of either of the two

risk functions fulfills
E∗k(x, ·) = E◦k(x, ·) PX-a.s.

In particular, if k is continuous and for any open set B 6= ∅ it holds that PXB > 0 then the minimisers of the
two risk functions are equal to E∗.

Proof. We start by showing that the right side is minimised by E∗ using the above lemma. Let E be any element
in HΞ then we have

EX×Y ‖l(y, ·)−E∗k(x, ·)‖2l − EX×Y ‖l(y, ·)−E∗∗k(x, ·)‖2l
= EX‖E∗k(x, ·)‖2l − 2EX×Y E[l(y, ·)](x) + 2EX×Y E∗[l(y, ·)](x)− EX‖E∗∗k(x, ·)‖2l
= EX‖E∗k(x, ·)‖2l − 2EX〈E∗∗k(x, ·),E∗k(x, ·)〉l + EX‖E∗∗k(x, ·)‖2l = EX‖E∗k(x, ·)−E∗∗k(x, ·)‖2l ≥ 0.

Hence, E∗ is a minimiser of the surrogate risk functional. The minimiser is furthermore PX -a.s. unique: Assume
there is a second minimiser E◦ then above calculation shows that

0 = EX×Y ‖l(y, ·)−E∗◦k(x, ·)‖2l − EX×Y ‖l(y, ·)−E∗∗k(x, ·)‖2l = EX‖E∗∗k(x, ·)−E∗◦k(x, ·)‖2l .

Thus, ‖E∗∗k(x, ·)−E∗◦k(x, ·)‖l = 0 PX -a.s. (Fremlin, 2000)[122Rc], i.e. a measurable set M with PXM = 1 exists
such that ‖E∗∗k(x, ·)−E∗◦k(x, ·)‖l = 0 holds for all x ∈M . As ‖ · ‖l is a norm we have that E∗∗k(x, ·) = E∗◦k(x, ·)
PX -a.s. Now, let k be continuous, let PXB > 0 for any open set B 6= ∅ then and assume that there exists a
point x such that E∗∗k(x, ·) 6= E∗◦k(x, ·). Now, as E∗,E◦ and k are continuous there exists an open set B around
x such that E∗∗k(x′, ·) 6= E∗◦k(x′, ·) for all x′ ∈ B and, as PB > 0, E∗∗k(x, ·) = E∗◦k(x, ·) does not hold PX -a.s.
with contradiction to the above. Now, Theorem 2.2 tells us that E∗∗ = E∗◦ and because the adjoint identifies the
operators uniquely we have E∗ = E◦.

Now, for the minimisers of the natural risk function we first observe that for every h ∈ HY , EX(E[h|x] −
E∗[h](x))2 = 0 by assumption and E∗ is a minimiser. Uniqueness can be seen in the following way: Assume
there is a second minimiser E◦ then for all h ∈ HY we have

EX(〈h,E∗◦k(x, ·)−E∗∗k(x, ·)〉l)2 ≤ EX(〈h,E∗◦k(x, ·)〉l − E[h|x])2 + EX(E[h|x]− 〈h,E∗∗k(x, ·)〉l)2 = 0.

Hence, 〈h,E∗◦k(x, ·) − E∗∗k(x, ·)〉l = 0 PX -a.s. (Fremlin, 2000)[122Rc], i.e. a measurable set M with PXM = 1
exists such that 〈h,E∗◦k(x, ·) − E∗∗k(x, ·)〉l = 0 holds for all x ∈ M . Assume that there exists a x′ ∈ M such
that E∗◦k(x′, ·) 6= E∗∗k(x′, ·) then pick h := E∗◦k(x′, ·)− E∗∗k(x′, ·) and we have 0 = 〈h,E∗◦k(x′, ·)− E∗∗k(x′, ·)〉l =
‖E∗◦k(x′, ·) − E∗∗k(x′, ·)‖l > 0 as ‖ · ‖l is a norm. By contradiction we get , E∗◦k(x, ·) = E∗∗k(x, ·) PX -a.s. With
the same argument as in case one we can follow equivalence of the operators.
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The next theorem is the main theorem. It allows us to use convergence rates of the surrogate risk to infer
convergence rates for the natural risk. Furthermore, it weakens the assumptions. The price we have to pay for
this is an approximation error term.

Theorem E.2. Let C = ‖A1/2‖op‖B‖1/2op supx∈X
√
k(x, x) and assume that there exists an η > 0 and E∗ ∈ HΞ

such that sup‖E‖Ξ≤1 EX [E[E∗k(x, ·)|x]− 〈E∗k(x, ·),E∗∗k(x, ·)〉l]2 = η < ∞. Furthermore, let Es be a minimiser
of the surrogate risk and let E◦ be an arbitrary element in HΞ. With Es[E◦] ≤ Es[Es] + δ we have

(i) Ec[Es] ≤
(√
Ec[E∗] + η1/4

√
8C(‖E∗‖Ξ + ‖Es‖Ξ)

)2

,

(ii) Ec[E◦] ≤
(√
Ec[E∗] + η1/4

√
8C(‖E∗‖Ξ + ‖E◦‖Ξ) + δ1/2

)2

.

Proof. First, observe that if E ∈ HΞ then we have due to the Jensen inequality

|EXE[E∗k(x, ·)|x]− EX〈E∗k(x, ·),E∗∗k(x, ·)〉l| ≤ ‖E∗k(x, ·)‖lEX
∣∣∣∣E [ E∗k(x, ·)
‖E∗k(x, ·)‖l

∣∣∣∣x]− 〈 E∗k(x, ·)
‖E∗k(x, ·)‖l

,E∗∗k(x, ·)〉l
∣∣∣∣

≤ ‖E∗k(x, ·)‖l

√
EX

(
E
[

E∗k(x, ·)
‖E∗k(x, ·)‖l

∣∣∣∣x]− 〈 E∗k(x, ·)
‖E∗k(x, ·)‖l

,E∗∗k(x, ·)〉l
)2

= ‖E∗k(x, ·)‖l
√
η.

We can now reproduce the proof of Lemma E.1 with an approximation error. For any E ∈ HΞ we have

|EX〈E∗k(x, ·),E∗∗k(x, ·)〉l − EX×Y 〈l(y, ·),E∗k(x, ·)〉l|
= |EX〈E∗k(x, ·),E∗∗k(x, ·)〉l − EXE[E∗k(x, ·)|x]| ≤ ‖E∗k(x, ·)‖l

√
η.

In particular,

|EX×Y 〈l(y, ·),E∗∗k(x, ·)〉l − EX×Y ‖E∗∗k(x, ·)‖2l | ≤ ‖E∗∗k(x, ·)‖l
√
η.

Like in the proof of Theorem E.1 we have for any E that

Es[E]− Es[E∗] = EX×Y ‖l(y, ·)−E∗k(x, ·)‖2l − EX×Y ‖l(y, ·)−E∗∗k(x, ·)‖2l
≥ EX‖E∗k(x, ·)‖2l − 2EX〈E∗∗k(x, ·),E∗k(x, ·)〉l + EX‖E∗∗k(x, ·)‖2l − 2‖E∗∗k(x, ·)‖l

√
η − 2‖E∗k(x, ·)‖l

√
η

= EX‖E∗∗k(x, ·)−E∗k(x, ·)‖2l − 2
√
η(‖E∗∗k(x, ·)‖l + ‖E∗k(x, ·)‖l). (11)

In particular, |Es[E]− Es[E∗]| ≥ Es[E]− Es[E∗] ≥ EX‖E∗∗k(x, ·)−E∗k(x, ·)‖2l − 2
√
η(‖E∗∗k(x, ·)‖l + ‖E∗k(x, ·)‖l)

and hence
EX‖E∗∗k(x, ·)−E∗k(x, ·)‖2l ≤ |Es[E]− Es[E∗]|+ 2

√
η(‖E∗∗k(x, ·)‖l + ‖E∗k(x, ·)‖l). (12)

We can now bound the error Ec[E] in dependence of how similar E is to E∗ in the surrogate cost function Es:√
Ec[E] ≤

√
Ec[E∗] + sup

‖h‖l≤1

√
EX [〈h,E∗∗k(x, ·)−E∗k(x, ·)〉l]2 ≤

√
Ec[E∗] +

√
EX

(
‖E∗∗k(x, ·)−E∗k(x, ·)‖2l
‖E∗∗k(x, ·)−E∗k(x, ·)‖l

)2

≤
√
Ec[E∗] + η1/4

√
2(‖E∗∗k(x, ·)‖l + ‖E∗k(x, ·)‖l) +

√
|Es[E]− Es[E∗]|, (13)

where we used the triangular inequality, we used that 〈 E∗∗k(x,·)−E∗k(x,·)
‖E∗∗k(x,·)−E∗k(x,·)‖l ,E

∗
∗k(x, ·)−E∗k(x, ·)〉l ≥ 〈h,E∗∗k(x, ·)−

E∗k(x, ·)〉l for any h with ‖h‖l ≤ 1 and eq. 12.

Now, for E := Es observe that Es[Es] + 2
√
η(‖E∗∗k(x, ·)‖l + ‖E∗sk(x, ·)‖l) ≥ Es[E∗] follows from eq. (11) and as

Es is a Es minimiser we have | Es[E∗]− Es[Es] | ≤ 2
√
η(‖E∗∗k(x, ·)‖l + ‖E∗k(x, ·)‖l) and from eq. 13 we get√

Ec[Es] ≤
√
Ec[E∗] + η1/4

√
8(‖E∗∗k(x, ·)‖l + ‖E∗sk(x, ·)‖l).

Furthermore, with ‖E∗k(x, ·)‖l ≤ ‖E‖Ξ‖A1/2‖op‖B‖1/2op

√
k(x, x) we have√

Ec[Es] ≤
√
Ec[E∗] + η1/4

√
8C(‖E∗‖Ξ + ‖Es‖Ξ).

Similarly, for E := E◦ we have√
Ec[E◦] ≤

√
Ec[E∗] + η1/4

√
8C(‖E∗‖Ξ + ‖E◦‖Ξ) + δ1/2.
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E.2.2. Convergence Rates for the Surrogate Risk

The surrogate risk is a standard vector-valued risk function for which convergence rates are known under certain
assumptions (Caponnetto & De Vito, 2007). This was used in Grünewälder et al. (2012a) to derive rates for
conditional expectation estimates. We can do the same in our setting. With the n-sample estimate being denoted
with En we have:

Theorem E.3. Under assumptions E.1 we have that for every ε > 0 there exists a constant C such that

lim sup
n→∞

sup
P∈P

Pn
[
Es[En]− Es[Es] > Cn−1

]
< ε.

Proof. We only need to verify the assumptions in Caponnetto & De Vito (2007) to apply Theorem 2 from the
same paper. Most of the verifications below are generic, however, there is one important point. The input space
for the regression problem needs to be bounded in a suitable sense. If we use the full space HX here then this
is obviously not bounded. However, for the conditional expectation estimate we do not observe arbitrary HX
functions, but only functions k(x, ·) and, due to our assumptions, k(x, ·) is bounded. We hence use a bounded
and closed ball BX ⊂ HX , which contains all k(x, ·), as the input space.

(a) The first assumption concerns the space BX . BX must be a Polish space, that is a separable completely
metrizable topological space. HX is finite dimensional, hence separable and a Polish space and BX as a closed
subset is too.

(b) HY must be a separable Hilbert space. Like in (a) this is fulfilled.

We continue with Hypothesis 1 from Caponnetto & De Vito (2007).

(c) The space HΞ is separable. PPP Let {ei}ni=1 be a basis of HX and {gi}mi=1 be a basis of HY . Now, for any
N ∈ N we have that

N∑
t=1

〈·,Aft〉kBht =

N∑
t=1

〈·,A
n∑
i=1

aitei〉kB
m∑
j=1

bjtgj =

n∑
i=1

m∑
j=1

〈·,Aei〉kBgj

(
N∑
t=1

aitbjt

)
=

n∑
i=1

m∑
j=1

cij〈·, ei〉kgj ,

where ft =
∑n
i=1 aitei, ht =

∑m
j=1 bjtgj , ei = Aei,gj = Bgj and cij =

∑N
t=1 aitbjt ∈ R.

We have for two such finite sums F =
∑n
i=1

∑m
j=1 cij〈·, ei〉kgj ,G =

∑n
i=1

∑m
j=1 dij〈·, ei〉kgj ∈ HΞ that

‖F−G‖Ξ = ‖
n∑
i=1

m∑
j=1

(cij − dij)〈·, ei〉kgj‖Ξ ≤
n∑
i=1

m∑
j=1

‖〈·, ei〉kgj‖Ξ|cij − dij | =
n∑
i=1

m∑
j=1

wij |cij − dij |

with wij = ‖〈·, ei〉kgj‖Ξ ≥ 0. Now |
∑n
i=1

∑m
j=1 wij |cij − dij | ≤ maxi,j wij

∑n
i=1

∑m
j=1 |cij − dij | and we can use

a countable cover of Rnm to approximate arbitrary operators represented as finite sums. As these operators are
dense in HΞ we also gain a countable cover for HΞ and HΞ is separable. QQQ Restricting to BX instead of HX
does not change the argument.

(d) The next assumption concerns point evaluation. There exists for every f ∈ BX ⊂ HX an operator (Ξf )∗ :
HΞ → HY such that for any F ∈ HΞ it holds that Ff = (Ξf )∗F. This operator is the adjoint of the operator
Ξf that we defined in Section 2.4. We have that this operator (Ξf )∗ is a Hilbert-Schmidt operator. PPP We have
that (Ξf )∗ is a Hilbert-Schmidt operator if Ξf is and in this case both have the same Hilbert-Schmidt norm
which is for a given basis {ei}mi=1 of HY

m∑
i=1

‖Ξfei‖2Ξ =

m∑
i=1

〈ei,Ξ(f, f)ei〉l = 〈f,Af〉k
m∑
i=1

〈ei,Bei〉l

finite as A and B are bounded. Hence, both operators are Hilbert-Schmidt operators. QQQ

(e) The trace of (Ξf )∗Ξf must have a common upper bound for all f ∈ BX . This is the point where we need
the boundedness assumption of k(x, ·). For a basis {ei}mi=1 of HY we have that

Tr[(Ξf )∗Ξf ] =

m∑
i=1

〈Ξfei,Ξfei〉l =

m∑
i=1

〈ei,Ξ(f, f)ei〉l ≤ ‖A1/2f‖2k
m∑
i=1

〈ei,Bei〉l
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which is bounded as f is bounded.

The final assumptions we need to verify are the ones in Hypothesis 2 from Caponnetto & De Vito (2007).

(f) The output data for this regression problem is concentrated on the set {l(y, ·) : y ∈ Y } for which we have
‖l(y, ·)‖2l = l(y, y) <∞, and, as by assumption ‖l(y, ·)‖2l is measurable we have that ‖l(y, ·)‖2l is integrable.

(g) The final assumption concerns the conditional distribution PY |x. We have ‖l(y, ·)−E∗s[k(x, ·)]‖l ≤
√
l(y, y)+

‖E∗s[k(x, ·)]‖l ≤
√
l(y, y) +C‖k(x, ·)‖k =

√
l(y, y) +C

√
k(x, x) with a constant C as E∗s is a bounded operator.

This norm is hence bounded by assumption that the kernels are bounded. As we assumed also that all our HX
and HY functions are integrable we have that the following expectation is well defined

EY |x [exp ‖l(y, ·)−E∗s[k(x, ·)]‖l − ‖l(y, ·)−E∗s[k(x, ·)]‖l − 1]

and bounded. This implies Assumption 9 in Caponnetto & De Vito (2007) as our observations are concentrated
on {l(y, ·) : y ∈ Y }.

E.2.3. Convergence Rates for the Natural Risk

We now combine the upper bound argument with the convergence rate for the upper bound.

Theorem E.4. Let C = ‖A1/2‖op‖B‖1/2op supx∈X
√
k(x, x) and assume that there exists an η > 0 and E∗ ∈ HΞ

such that sup‖E‖Ξ≤1 EX [E[E∗k(x, ·)|x]− 〈E∗k(x, ·),E∗∗k(x, ·)〉l]2 = η <∞. Under assumptions E.1 we have that
for every ε > 0 there exists a constant D such that

lim sup
n→∞

sup
P∈P

Pn
[
Ec[En] >

(√
Ec[E∗] + η1/4

√
8C(‖E∗‖Ξ + ‖En‖Ξ) +Dn−1/2

)2
]
< ε.

The theorem tells us that we essentially have a rate of n−1 up to an approximation error which we suffer if we
can not represent the conditional expectation exactly with our RKHS HΞ.

Also note that the term Ec[E∗] is closely related to η. So if we can represent the true conditional expectation
then both η and Ec[E∗] will be 0 and we have a O(n−1) convergence to the true conditional expectation.

E.2.4. Convergence Rates for the Approximate Sum Rule

We can apply these rates now directly to the approximate sum rule with the help of Theorem 4.1. The theorem
uses a mean estimate together with an estimate for the conditional expectation. We therefore need samples from
QX and PX×Y . We use the notation Q ⊗ P to denote the product measure over X × (X × Y ) and (Q ⊗ P)n

denotes the product measure over n samples, whereas we assume that all the samples are iid.

Theorem E.5. Let C = ‖A1/2‖op‖B‖1/2op supx∈X
√
k(x, x) and assume that there exists an η > 0 and E∗ ∈ HΞ

such that sup‖E‖Ξ≤1 EX [E[E∗k(x, ·)|x]− 〈E∗k(x, ·),E∗∗k(x, ·)〉l]2 = η < ∞. Furthermore, assume the mean
estimate mn

X fulfills eq. 10 with an α ∈]0, 1]. Under assumptions E.1 and if QX � PX with a Radon-Nikodým
derivative that is a.e. upper bounded by b we have that for every ε > 0 exist constants A and D such that

lim sup
n→∞

sup
P∈P

(P⊗Q)n
[
Em[mn

Y ] > b
(√
Ec[E∗] + η1/4

√
8C(‖E∗‖Ξ + ‖En‖Ξ) +Dn−1/2

)2

+A‖En‖2Ξn−α
]
< ε.

We restate the theorem in a more readable form. For this we combine the approximation error terms:

EA[E∗] := max{
√
Ec[E∗], η1/4}

and we simplify the theorem to:

Theorem E.6. Let E∗ be a minimiser of the approximation error EA. Under assumptions E.1 and if QX � PX
with a bounded Radon-Nikodým derivative we have that for every ε > 0 exist constants a, b, c, d such that

lim sup
n→∞

sup
P∈P

(P⊗Q)n
[
Em[mn

Y ] >
(
EA[E∗](1 +

√
a+ b‖En‖Ξ) + cn−1/2

)2

+ d‖En‖2Ξn−α
]
< ε.
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F. Measure & Integration Assumptions

In this paper we have essentially three different sorts of expectation operations: Expectations over functions
f ∈ HX on a space X, expectations over functions g ∈ HX×Y on product spaces X × Y and conditional
expectations of functions h ∈ HY given a x ∈ X. We use Lebesgue integrals based on Fremlin (2000).

For the simple expectation Ef we assume that all f ∈ HX are integrable wrt. the corresponding probability
measure P on X. This is not a very restrictive assumption and most kernels one will consider in practice will
imply this assumption (see also Berlinet & Thomas-Agnan (2004)).

Expectations over product spaces are similar. Given two measure spaces (X,Σ,PX) and (Y,T,PY ) we use the
product measure (X × Y,Λ,PX×Y ) from Fremlin (2001)[Def. 251A]. For this product measure we have that
Σ ⊗̂T ⊂ Λ and for E ∈ Σ, F ∈ T we have that PX×Y (E×F ) = PX(E)PY (F ). In the cases where we have RKHS
functions on the product space we assume that these functions are integrable wrt. PX×Y .

The important theorem for product integrals is the Fubini theorem (Fremlin, 2000)[Thm. 252B] which guarantees
us that for PX×Y -integrable functions g the function EY g(x, y) is PX -integrable and EX×Y g = EXEY g(x, y).

The final object of interest is the conditional expectation E[h|x]. There are multiple ways to deal with condi-
tioning. The easiest case is where we have densities p(x, y) and p(x) wrt. Lebesgue-measure for PX×Y and PX .
We can then define a conditional expectation

E[h|x] :=

∫
h(y)

p(x, y)

p(x)
PY (dy)

interpreting 0/0 as 0. Densities are only defined up to a set of zero measure and, hence, also this conditional
expectation is only unique up to a PX zero measure set. If such densities exist and if these are integrable wrt.
the relevant measure then the Fubini theorem guarantees us that

∫
h(y)p(x, y)PY (dy) is PX -integrable and also

that
∫
h(y)p(x,y)

p(x) PY (dy) is PX -integrable.

For simplicity we assume that we have such a conditional expectation, however, the density assumption is not
crucial and can be avoided by working with general conditional expectations as in Fremlin (2001)[chp. 233].


