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Abstract
Multi-task learning is a paradigm shown to
improve the performance of related tasks
through their joint learning. However, for
real-world data, it is usually difficult to as-
sess the task relatedness and joint learning
with unrelated tasks may lead to serious per-
formance degradations. To this end, we pro-
pose a framework that groups the tasks based
on their relatedness in a subspace and al-
lows a varying degree of relatedness among
tasks by sharing the subspace bases across
the groups. This provides the flexibility of
no sharing when two sets of tasks are un-
related and partial/total sharing when the
tasks are related. Importantly, the number of
task-groups and the subspace dimensionality
are automatically inferred from the data. To
realize our framework, we introduce a novel
Bayesian nonparametric prior that extends
the traditional hierarchical beta process prior
using a Dirichlet process to permit poten-
tially infinite number of child beta processes.
We apply our model for multi-task regression
and classification applications. Experimen-
tal results using several synthetic and real
datasets show the superiority of our model
to other recent multi-task learning methods.

1. Introduction

Multi-task learning aims to improve generalization
performance of related tasks by joint learning (Caru-
ana, 1997). Empirical and theoretical evidence sup-
port this claim (Ando & Zhang, 2005; Baxter, 2000;
Argyriou et al., 2008; Xue et al., 2007), with appli-
cations in medical diagnosis (Bi et al., 2008), hand-
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written digit recognition (Kang et al., 2011) and im-
age/video search (Wang et al., 2009). In real-world
situations, where there is limited data, it is useful to
combine related tasks and exploit common statisti-
cal strengths for improved prediction. A common ap-
proach is to assume similarity across tasks - the task
predictors may belong to a low dimensional subspace
or manifold (Argyriou et al., 2008; Rai & Daumé III,
2010; Agarwal et al., 2010), form clusters (Xue et al.,
2007; Kang et al., 2011; Passos et al., 2012) or share a
generative process (Daumé III, 2009). However, given
a pool of so called “related” tasks, it is not easy to as-
sess the degree of similarity/relatedness. If tasks are
not related or related minimally, joint learning may
degrade performance – a phenomenon widely known
as negative transfer learning (Rosenstein et al., 2005).
Therefore, automatically inferring task relatedness is
crucial to the success of multi-task learning.

Although a critical problem, there had been few works
on separating the unrelated tasks from the set of re-
lated tasks. The problem is hard since the tasks usu-
ally have varying degree of relatedness. One approach
represents task predictors (or parameters) in a low
dimensional subspace (Argyriou et al., 2008; Rai &
Daumé III, 2010; Agarwal et al., 2010). However, a
single subspace assumes all the tasks are related, and
this may cause performance degradation when tasks
are unrelated. Dealing with this problem, some works
divide tasks into groups and learn one subspace for
each group (Kang et al., 2011; Passos et al., 2012).
Modeling tasks in this way is extreme in that the
tasks in different groups can not influence each other.
This is because real world tasks can rarely be catego-
rized as totally “related” or “unrelated”. Instead, there
exists a varying degree of relatedness. This problem
was partially tackled by (Kumar & Daumé III, 2012),
who propose a model that learns a subspace whose
bases are shared across tasks and the relatedness be-
tween tasks is determined by the number of shared
bases. However, being a parametric model, this model
needs a priori specification of parameters: the num-
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ber of task groups and the dimensionality of the sub-
space. The performance of this method crucially de-
pends on these parameters and it is hard to estimate
them for the real data. Therefore, a nonparametric
extension of this model is required. The work in (Pas-
sos et al., 2012) is a related Bayesian nonparametric
MTL model - however, it does not allow sharing be-
tween tasks across groups, and thus is not flexible to
capture varying degree of relatedness. (Gupta et al.,
2012a;b) model data from multiple groups through a
subspace allowing sharing of bases. However, their
model is suitable only for unsupervised learning and
requires the number of groups and group membership
of data points to be specified a priori.

Addressing this gap, we propose a Bayesian nonpara-
metric MTL framework that groups tasks based on
their relatedness in a low dimensional subspace. The
assumption is that the when tasks are related, task
predictors lie close in subspace. To model varying
degrees of sharing across tasks, we use a joint factor
modeling approach that allows task predictors to have
both shared and individual subspace bases. We refer
to the approach as factorial multi-task learning (F-
MTL). Since our goal is to model a set of T task pre-
dictors jointly, we employ hierarchical factor analysis –
a modeling paradigm that can jointly model the data
from multiple groups through a subspace such that
some of the subspace bases are shared across groups
while the others are individual to a group. However,
using hierarchical factor analysis in its standard form
requires the tasks to be grouped in advance – some-
thing that is unknown for multi-task learning problem.
To address this, we extend the hierarchical factor anal-
ysis for modeling tasks whose grouping is unknown.
The task membership to the groups and the number of
groups are inferred by clustering the tasks in the sub-
space through a Dirichlet process (DP), while the sub-
space dimensionality and the sharing configurations
are inferred using a hierarchical beta process (HBP).
For an optimal solution, the two processes are unified
by coupling the DP prior with the HBP prior, lead-
ing to a novel Bayesian nonparametric prior termed
as generalized hierarchical beta process (G-HBP).

The proposed model is applied in two settings : multi-
task regression and classification. The model inference
is done using Gibbs sampling. Experimental results
using several synthetic and real-world datasets show
the superiority of the proposed model to recent state-
of-the-art multi-task learning methods. Our main con-
tributions are

• A novel Bayesian nonparametric prior extending
the HBP using a Dirichlet process to permit po-
tentially infinite number of child beta processes.

• A Bayesian nonparametric, multi-task learning
framework that allows joint learning of multi-
ple tasks with varying degrees of relatedness and
demonstrations on real data.

• Inference using a novel combination of Gibbs sam-
pler and Laplace approximation.

The significance of our approach is that the number
of task-groups, the subspace dimensionality and the
usage of bases by different groups are automatically
inferred from data. In addition, the Bayesian nonpara-
metric priors keep the model flexible to allow each task
group to also have its own set of factors and therefore
every group need not necessarily share factors. This
feature is the key to overcome the problem of any neg-
ative inductive bias due to unrelated tasks. This leads
to a flexible model that can be applied freely on a pool
of related/unrelated tasks without any performance
degradation, exploiting statistical strengths from even
marginally related tasks.

2. Background

2.1. Dirichlet Process Mixture (DPM) Model

Dirichlet process (DP) (Ferguson, 1973) has been
widely used in Bayesian mixture models for cluster-
ing applications. It provides a Bayesian nonparamet-
ric prior over clustering partitions enabling a mixture
model to accommodate infinitely many components.
For a given set of observations, the active set of com-
ponents are finite and can be inferred from the pos-
terior distribution. Assuming that we have a set of
observations {ct}Tt=1 with the corresponding mixture
component parameters as {ψt}Tt=1 where ψt’s are real-
izations from a Dirichlet process G with concentration
parameter ξ0 and base measure G0. Using a paramet-
ric distribution Fc (ψ) for data, we can write

ct | ψt ∼ Fc (ψt) , ψt ∼ G, G ∼ DP (ξ0, G0) (1)

Using a constructive definition of DP (Sethuraman,
1994), the measure G can also be written as G =∑∞
j=1 µjδπj

. To relate {ψ1, . . . , ψT } with {π1, . . . , πJ},
we can use an indicator ut for each ψt such that ut = j
if ψt = πj . In applications of DPM to clustering, ut
represents the cluster indicator for data ct and we have

ct | ut, {π1, . . . , πJ} ∼ Fc (πut) (2)

2.2. Beta Process

In factor analysis, inferring the number of factors
requires us defining a prior on the usage probabili-
ties of factors. Under Bayesian framework, this can
be realized using a Bernoulli process prior that is
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parametrized by a beta process (Thibaux & Jordan,
2007). Formally, a beta process B is a completely
random measure implying that for any r disjoint sets
S1, . . . , Sr ∈ Ω (where Ω is a measurable space with
sigma field F), B (S1) , . . . , B (Sr) are independent and
the draws from the beta process B are discrete with
probability one (Kingman, 1967). We denote the beta
process as B ∼ BP (γ0, B0), where γ0 > 0 is referred to
as a concentration parameter and B0 is a base measure
with total mass B0 (Ω) = τ0. In set function notation,
we can write B =

∑
k βkδφk

where {φk, βk} are drawn
from a non-homogeneous Poisson process defined on
the product space Ω × [0, 1]. The distribution over
weight βk follows

p (βk) = beta (γ0B0 (φk) , γ0 (1−B0 (φk))) (3)

For a discrete B0, i.e. B0 =
∑
k pkδφk

, we have
B0 (φk) = pk. For a continuous B0, βk are drawn from
a Poisson process with the following rate measure

ν (dβ, dφ) = γ0β
−1 (1− β)

γ0−1 dβB0 (dφ) (4)

Fixing γ0 to one, βk can be sampled using the stick-
breaking construction (Teh et al., 2007), i.e.

βk ∼ StickIBP (τ0) (5)

The beta process defined above can be used to
parametrize a Bernoulli process, which then can be
used to infer the number of factors in the factor analy-
sis. Formally, let zt be a draw from a Bernoulli process,
i.e. zt ∼ BeP (B) , then we have zt,k ∼ Bernoulli (βk).
If Z is defined to be a collection of {zt}Tt=1, the pos-
terior samples of Z given data gives us an estimate
of which factors out of an infinite set are required to
explain the data – indirectly inferring the number of
factors automatically from the data.

2.3. Hierarchical Beta Process and Factor
Analysis

A major strength of probabilistic modeling is to be
able to express the dependencies through hierarchies.
Building a hierarchy over Dirichlet processes, (Teh
et al., 2006) proposed hierarchical Dirichlet process
(HDP) that allows data form multiple groups to share
a common set of parameters. Motivated by the con-
struction of HDP, (Thibaux & Jordan, 2007) devel-
oped a similar hierarchy over beta processes called as
hierarchical beta process (HBP). Formally,

B ∼ BP (γ0, B0), Aj∼BP(αj ,B),Zt,:j ∼BeP(Aj) (6)

where Zt,:j denotes t-th data point from j-th group.
Similar to the use of beta process in nonparametric
factor analysis, hierarchical beta process is used for
a nonparametric hierarchical factor analysis (NHFA)

(Gupta et al., 2012a) – a model that can jointly model
data from multiple groups (or sources). Given data
{Xj}Jj=1 from J-groups, hierarchical factor analysis
(also encountered in shared subspace learning (Gupta
et al., 2011; 2013)) is carried out as

Xj = ΦHT
j +Ej , j = 1, . . . , J (known grouping) (7)

where Φ = [φ1, . . . , φK ] contains the subspace bases,
and Hj denotes the subspace representations for Xj .
Carrying out a joint factor analysis in this manner al-
lows some of the bases to be shared across the groups
while keeping others individual to a group. Being a
Bayesian nonparametric model, NHFA can infer the
number of shared and individual bases using a hierar-
chical beta-Bernoulli process prior (Thibaux & Jordan,
2007). For this, Hj is decomposed as Hj = Zj �Wj

where Wj contains the actual subspace representa-
tions and Zj is a binary matrix with its (t, k)-th el-
ement indicating the presence or absence of the basis
φk for the t-th data point of j-th group. We note that
(6) can be used as a prior over Z1, . . . ,ZJ and given
the data, posterior distribution can be used to get an
estimate of the number of shared/individual bases.

3. Multi-Task Learning Framework

In this section, we describe a our framework for multi-
task learning. Our goal is to jointly model the tasks
with varying degree of relatedness in such a way that
related tasks strengthen each other while unrelated
tasks do not affect themselves. The underlying as-
sumption is that the when tasks are related, the tasks
predictors closely lie in a subspace. For this, we use
a joint factor modeling approach that allows task pre-
dictors to have both shared and individual subspace
bases. We refer to our approach as factorial multi-task
learning (F-MTL). Let us assume we have T tasks, in-
dexed as t = 1, . . . , T and t-th task has labeled training
examples denoted as Dt = {(xti, yti) | i = 1, . . . , Nt}
where xti ∈ RM×1 and we define Xt = [xt1, . . . ,xtNt

]

and yt = [yt1, . . . , ytNt
]
T. Let the task predictor (the

regression or classification weights) of t-th task be de-
noted as θt where θt ∈ RM×1. We use Θ to collectively
define all the task predictors, i.e. Θ = [θ1, . . . , θT ].

Since our goal is to model a set of T task predictors
jointly, we employ hierarchical factor analysis – a mod-
eling paradigm that can jointly model the data from
multiple groups through a subspace such that some of
the subspace bases are shared across groups while the
others are individual to a group. However, using hi-
erarchical factor analysis in its standard form requires
the tasks to be grouped in advance – something that is
unknown for multi-task learning problem. To address
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Figure 1: Directed graphical representation for the pro-
posed factorial multi-task learning (F-MTL). We have T
tasks with t-th task having Nt examples. The task predic-
tors {θt}Tt=1 are clustered in J groups via a Dirichlet pro-
cess (DP) and represented in a subspace having the bases
{φk}Kk=1 that are shared across groups.

this problem, we shall extend the hierarchical factor
analysis for modeling a set of tasks whose grouping
is unknown. If the task groupings are known (i.e. a
partition of Θ having J groups as {Θ1, . . . ,ΘJ}), fol-
lowing (7) we can model the task predictors as

Θj = ΦHT
j + Ej , j = 1, . . . , J (8)

where Φ = [φ1, . . . , φK ] contains basis vectors of a sub-
space (spanned by the column of Φ) and Hj is the
representation of the task predictors of j-th group (i.e.
Θj) in the subspace. The matrix Ej represent model-
ing errors. We note that K is overall subspace dimen-
sionality. For j-th task group, some of the basis vectors
may not be used and thus, its effective dimensionality
Kj ≤ K. For real world applications, the values of K
and Kj are hard to guess and require model selection.
Conventional model selection approaches are compu-
tationally expensive and wasteful of data (Corduneanu
& Bishop, 2001). The subspace dimensionalities can
be automatically inferred using a hierarchical beta pro-
cess prior over Φ and Hj (Gupta et al., 2012a). In par-
ticular, Hj can be written as an element-wise product
Hj = Wj � Zj where Wj denotes the subspace rep-
resentations and Zj is a binary matrix denoting the
presence or absence of a basis vector. Using Bernoulli
process priors over matrices Z1:J in combination with
the task-predictor likelihood, an estimate of K and Kj

is obtained from the posterior distribution. The g-th
vector of j-th group, zg,j is drawn as

B ∼ BP (γ0, B0), Aj∼BP(αj ,B), zg,j∼BeP(Aj) (13)

where B =
∑
k βkδφk

, Aj =
∑
k πjkδφk

and Aj are

B ∼ BP (γ0, B0)

B =

∞∑
k=1

βkδφk where β ∼ stickIBP (τ0) , φk
iid∼ B0

G∼DP (ξ0,BP (α,B)) , µ∼GEM (ξ0),Aj
iid∼BP (α,B)

G =

∞∑
j=1

µjδAj where Aj =

∞∑
k=1

πj,kδφk ,

and πj,k ∼ beta
(
αjβk, αj β̄k

)
, j = 1, 2, . . . (9)

For t = 1 to T
ut ∼ Discrete (µ) , zt ∼ Ber (πut) (10)

θt∼N
(

Φ (zt �wt)
T, σ2

nut
I
)
,wt∼N

(
0, σ2

wut
I
)

(11){
yti∼N

(
θTt xti, σ

2
y

)
, i = 1 toNt regression

yti∼Ber
(
σ
(
θTt xti

))
, i = 1 toNt classification

(12)

Figure 2: A summary of the G-HBP prior, and the F-
MTL generative process. In above, σ (.) denotes the sig-
moid function and β̄k , 1 − βk. The notations N (., .),
Ber(.) and beta(., .) denote the normal, the Bernoulli and
the beta distributions respectively; Φ = [φ1, φ2, . . .] and
zt represents zgt,ut described earlier.

i.i.d. draw from a beta process. When the task group-
ings are unknown, we can use a group indicator vari-
able ut such that ut ∈ {1, . . . , J} and ut is to be in-
ferred from data. For this, we use a Dirichlet process
(DP) as a prior to induce clusters over zt, creating an
infinite mixture of Bernoulli processes. Formally

µ ∼ GEM (ξ0) , ut ∼ Discrete (µ) (14)

where GEM (ξ0) denotes the well-known stick-
breaking construction for DP. Since t-th task pre-
dictor belongs to the group indexed by ut, we fur-
ther use gut

to index its position in ut-th group.
To keep the notation simple, we write gut

just
as gt. As an example, consider 4 tasks in-
dexed as t = 1, 2, 3, 4; assuming a partition (1, 4)
and (2, 3), we have (u1 = 1, g1 = 1), (u2 = 2, g2 = 1),
(u3 = 2, g3 = 2), (u4 = 1, g4 = 2). Using this notation

zgt,ut
| ut, A1:J ∼ BeP (Aut

) (15)

We call the prior described by (13-15) as generalized
hierarchical beta process (G-HBP) prior.

4. Model Inference

The closed form inference for the proposed model is
intractable. Therefore, we use Markov chain Monte
Carlo (MCMC) (Gilks et al., 1995), which is widely
used for performing inference with such kind of hi-
erarchical Bayesian models. The MCMC state space
comprises of the variables {Θ,Φ,W,Z, π, β,u, µ, α}
where u , {u1, . . . , uT }. However, some of these
variables {π, β, µ} are nuisance variables. Due to us-
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ing conjugate priors, we can integrate out {π, µ} and
sample the remaining variables. For inference, we
combine Gibbs sampling with adaptive rejection sam-
pling/Laplace approximation (Bishop et al., 2006).

To sample β, we use stick-breaking process construc-
tion of the Indian buffet process (Teh et al., 2007).
This is made possible by fixing the concentration pa-
rameter of the parent beta process to one. How-
ever, the stick-breaking process construction requires
us maintaining an infinite set of atoms. This is dealt
with by using the slice sampler (Gupta et al., 2012b),
which turns the infinite representation into a finite one.
The slice sampler employs an auxiliary variable ρ that
can be sampled from a uniform distribution. In par-
ticular, ρ | Z, β ∼ U (0, β∗) where β∗ = min

k|∃i, Zik=1
β(k)

and β(k) is a decreasing order representation of βk.
Given ρ, if β(k) < ρ, Zt,k = 0 for all t and therefore, we
need to update Zt,k for only those k such that β(k) ≥ ρ.
Assuming K† to be an index so that all active features
have index k < K†, if β(K†) ≥ ρ, we extend our stick-
breaking representation until β(K†) < ρ (see (Gupta
et al., 2012b) for details).

4.1. Sampling Θ

Sampling of θt can be done independently for each t.
Under the Gibbs sampling framework, we can sample
θt from the following conditional posterior distribution

p (θt | ...) ∝ p (yt | Xt, θt) p (θt | Φ, zt,wt) (16)

Since our data generative process differs for regression
and classification, we separately describe them below.

4.1.1. Regression

Using the prior distributions of (11-12) for regression
model, the posterior p (θt | ...) can be derived to be a
multi-variate Gaussian with mean and covariance as

Σpost
θt

=

(
XtX

T
t

σ2
y

+
I

σ2
t

)−1

,mpost
θt

= Σpost
θt

(
Xtyt
σ2
y

+
Φht
σ2
t

)
(17)

where we have ht , zt �wt.

4.1.2. Classification

Using the generative distributions of (11-12), the con-
ditional posterior p (θt | ...) of (16) can be written as

p (θt | ...) ∝
[
ΠNt
i=1s

yti
ti (1− sti)1−yti

]
e−Rt/2σ

2
t (18)

where we define sti , σ
(
θTt xti

)
and Rt , ||θt−Φht||22.

The above expression can not be simplified to standard
parametric distributions. Therefore, exact inference
is intractable. From this point, we found two ways

to proceed (1) adaptive rejection sampling (ARS) (2)
Laplace approximation. The first method fits well un-
der the Gibbs framework while ensuring sampling from
the exact distribution (Gilks & Wild, 1992). To mo-
tivate the application of adaptive rejection sampling,
we note that the second derivative of log of the above
posterior is given as

52
θt lnp (θt | ...) = −XtDs (θt)X

T
t −

I

σ2
t

(19)

whereDs (θt) , diag ([st1 (1− st1) , . . . , stNt
(1− stNt

)])
is a diagonal matrix with entries between 0 and 1.
We note that the Hessian given by (19) is a negative
semi-definite implying that p (θt | ...) is log-concave.
This allows efficient sampling of θt through ARS.

The second method to obtain the samples of θt is to use
Laplace approximation, which is obtained by finding
the mode of the posterior distribution and then fit-
ting a Gaussian having mean at the computed mode.
We can find the mode of the posterior by maximizing
the log of the posterior, which can be done by find-
ing a solution θLaplace

t to 5θt lnp (θt | ...) = 0. This
can be done using either gradient-descent or Newton’s
method. The co-variance of the Gaussian is given by
the negative of the inverse of Hessian of log posterior,
i.e. ΣLaplace

θt
. Given θLaplace

t and ΣLaplace
θt

, the posterior
in (18) takes the form

q (θt) = N
(
θLaplace
t ,ΣLaplace

θt

)
(20)

In our implementation, we found that both gradient-
descent and Newton’s method methods worked fairly
well and the later was clearly faster.

4.2. Sampling ut

Gibbs conditional posterior of ut can be written as

p (ut | ...) ∝ p
(
ut | u−t, zgt,ut ,Z

−gt
ut

, β,wgt,ut

)
∝ p

(
ut | u−t

)︸ ︷︷ ︸
CRP

p
(
zgt,ut | Z

−gt
ut

, β
)
p
(
wgt,ut | σwut

)︸ ︷︷ ︸
joint likelihood in latent space

(21)

where we define u−t = {ut′ | t′ 6= t} and Z−gtut
=

{zg′,ut
| g′ 6= gt}. In the above expression, the first

term is the predictive prior distribution of ut and
widely known as Chinese Restaurant process (CRP).
The second term is the likelihood, which measures how
well t-th task predictor goes along with the group in-
dexed by ut in latent space. The predictive distribu-
tion of zgt,ut given Z−gtut

can be simplified to

p
(
zgt,ut | Z

−gt
ut

, β
)

=
1

β∗

K†∏
k=1

Γ (αut) Γ
(
αutβ(k) + f−t,kut

)
Γ
(
αut β̄(k) + f̄−t,kut

)
Γ
(
αut+Tut

)
Γ
(
αutβ(k)

)
Γ
(
αut β̄(k)

)
(22)
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Figure 3: Synthetic data results (a) The joint posterior over the number of groups (J) and the number of subspace bases
(K) for the first dataset (b) Inferred basis usages for the first dataset (c) The RMSE for various tasks in the first dataset
(d) The joint posterior over the number of groups (J) and the number of subspace bases (K) for the second dataset (e)
Inferred basis usages for the second dataset. (f) The RMSE for various tasks in the second dataset.

where f−t,kut
,
∑
t′ 6=t

zt
′,k
ut

, f̄−t,kut
= Tut − f−t,kut

and Tut is

the total number of tasks in the group indexed by ut.
Plugging (22), the CRP prior over ut and the normal
prior over wgt,ut

into (21), we can sample ut from a
categorical distribution.

4.3. Sampling Z

Gibbs conditional posterior for Z can be written as

p (ztk = 1 | ...)

∝p
(
ztk = 1|Z−gt,kut

, βk
)

︸ ︷︷ ︸
Predictive HBP prior

p
(
θt |Φ, ztk = 1, z−kt ,wt

)
︸ ︷︷ ︸

task parameter likelihood

(23)

where z−gt,kut
, {zt′k | ut′ = ut, t

′ 6= gt} and z−kt ,
{ztk′ | k′ 6= k}. The predictive prior simplifies to

p
(
ztk = 1 | z−gt,kut

, βk
)

=
αutβ(k) + f−t,kut

β∗ (αut + Tut)
(24)

Thus the variable ztk can be drawn from the posterior
distribution of (23), which is a Bernoulli distribution.

4.4. Sampling W, Φ and β

Once we sample the group indicator of the t-th task
(i.e. the variable ut), we have a partition of the task
predictors Θ into J groups. In other words, we have a
partition of the tasks as Θ = [Θ1, . . . ,ΘJ ] where Θj is
a matrix formed by stacking (column-wise) each task
predictor t such that ut = j. Using ut’s, we can parti-
tion the matrix W similarly. Given this partition, we

can utilize the sampling steps in (Gupta et al., 2012b)
to sample Φ, W, β and the hyperparameters.

5. Experiments

We evaluate our proposed F-MTL on multi-task re-
gression and classification applications using both syn-
thetic and real datasets. Experiments with synthetic
data do a sanity check of the model while also il-
lustrating the model behavior. Experiments with
real datasets demonstrate the true effectiveness of our
model for multi-task learning.

5.1. Synthetic Data Experiments

For synthetic data experiments, we use two different
datasets. The first dataset is identical to the synthetic
data used in (Kang et al., 2011; Kumar & Daumé III,
2012). This dataset has 3 groups of tasks. Within
each task-group, there are 10 tasks whose predictors
(i.e. θt) are identical up to a scaling factor. Each
task has 15 examples lying in a 20-dim space. The
task predictors are used in a linear regression model to
generate target values of the training data. We note
that only tasks within a group are related.

The second dataset is generated to simulate the vary-
ing degree of relatedness among task predictors. The
degree of relatedness is controlled by varying the num-
ber of subspace bases shared by the tasks. For this
dataset, we have 4 groups of tasks, 10 tasks per group
and 4 bases. The task predictors of the first group
are generated as random (Gaussian with zero mean
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Table 1: Regression/classification results on real datasets: the performance is reported in terms of RMSE for regression
and classification error (in %) for classification tasks. The results are averaged over 20 trials.

Regression Classification
Method Computer survey School MNIST USPS
STL 2.70± 0.10 10.67± 0.20 14.8± 0.34 9.0± 0.4

NG-MTL 2.06± 0.07 10.18± 0.15 14.4± 0.28 7.8± 0.2
DG-MTL 2.01± 0.10 10.18± 0.20 14.0± 0.30 7.8± 0.2
GO-MTL 1.76± 0.09 10.04± 0.24 13.4± 0.30 7.2± 0.2
F-MTL 1.65± 0.02 9.73± 0.03 6.99± 0.34 3.58± 0.07

Table 2: Comparison with a recent Bayesian nonparametric multi-task learning model (referred to as MFA-MTL) (Passos
et al., 2012). The number of examples in the training set for these comparison are quite small (refer text for details).

Regression Classification
Computer survey School Landmine 20-Newsgroup

MFA-MTL 5.46 19.35 37.6 23.1
F-MTL 8.33± 0.75 12.62± 0.29 7.37± 1.09 17.39± 1.15

and one standard deviation) linear combination of the
basis-1 and basis-2. The task predictors of the second
group are generated similarly using basis-2 and basis-3
causing basis-2 to be shared between groups 1 and 2.
Tasks of the third group are generated using basis-1
and basis-3 to simulate relatedness with the tasks in
the first group. Finally, a fourth group is created with
task predictors using only basis-4 and thus not share
anything from the tasks of other groups. For each task,
we randomly generate 15 examples in a 20-dim space.
These task predictors are used in a linear regression
model to generate the target values where we intro-
duce an additive Gaussian noise with zero mean and
standard deviation 0.1.

For our model, we initialized all the hyperparameters
( i.e. σy, σn, σw, τ, γ, αj) to 1 while both the number of
bases (K) and the number of groups (J) to 10. We run
the Gibbs sampler for 500 iterations and the results
(after rejecting first 200 samples as burn-in) are shown
in Figure 3. The first row of figures depict the results
for the first synthetic dataset. The joint posterior over
(K,J) in Figure 3(a) clearly shows the mode of the dis-
tribution at (3, 3)–accurately recovering the subspace
dimension and the number of task groups. Figure 3(b)
depicts the basis usages of different tasks clearly show-
ing that the three groups are nearly disjoint in using
the bases. The 3(c) shows the root-mean-square-error
(RMSE) for all the tasks, which is roughly at the true
noise level. The second row of figures depict the simi-
lar results for the second synthetic dataset. We can see
that model infers the true number of bases and groups
(see the mode at (4, 4) in Figure 3(d)) along with the
correct basis usages including the sharing/non-sharing
patterns. The model captures the fact that the first
three task groups are related with one another while

the fourth is disjoint. This ensures that there is no
inductive bias transferred from the first three groups
to the fourth group and vice versa.

5.2. Real Data Experiments

We perform experiments on four real datasets: two
of them have regression tasks and the other two have
classification tasks.

5.2.1. Datasets

• Computer Survey: This dataset contains a sur-
vey where 190 students rated 20 personal comput-
ers (PC). Students rated each PC over 13 features
(see (Argyriou et al., 2008)) and assigned a score
(scale: 0-10) indicating their likelihood of buying.
We treat students as tasks while PCs as examples.

• School: This dataset consists of examination
scores of 15,362 students from 139 schools. For
each student, there are 26 features (see (Argyriou
et al., 2008)) covering year of examination, school
and student-specific attributes. Each school is
treated as a task and its students as examples.

• MNIST and USPS: Both of these datasets con-
sist of handwritten digits having 10 classes and a
total of 2000 examples where 1000, 500 and 500
samples are used for training, test and validation
respectively. The problem is posed as MTL where
each task is classification of one class vs. others.

To have a fair comparison, we keep the training and
test sets for all the above datasets identical to the ones
used in (Kumar & Daumé III, 2012). Further, all our
comparisons are based on the RMSE for regression and
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Figure 4: Multi-task regression/classification performances for various datasets w.r.t. varying amount of training data.

multi-class classification error for classification.

5.2.2. Baseline Methods

• STL: This baseline learns each task separately
and does not exploit any relatedness of the tasks.

• NG-MTL (Argyriou et al., 2008): This model
represents the task predictors in a subspace with-
out any grouping.

• DG-MTL (Kang et al., 2011): This model par-
titions the tasks into groups and tasks in a group
are represented in a subspace. There is no sharing
of subspace bases across groups.

• GO-MTL (Kumar & Daumé III, 2012): This
model groups the task predictors in a subspace
and allows the bases to be shared across groups.

• MFA-MTL (Passos et al., 2012): This is a
Bayesian nonparametric model dividing tasks
into groups, each group modeled using a subspace
and no sharing of the bases across groups.

5.2.3. Experimental Results

Table 1 presents a comparison of our proposed F-
MTL with the first four baselines for both regression
and classification tasks. The F-MTL clearly outper-
forms all the baselines for both tasks irrespective of
the datasets. The closest contender is the GO-MTL,
whose performance on regression tasks is somewhat
close, however, the difference is still statistically signifi-
cant (details omitted). On classification tasks, F-MTL
gets significantly better results (6.4% improvement on
MNIST and 3.6% improvement on USPS) than GO-
MTL. This is important especially under the view that
both methods use logistic regression for mapping in-
puts to target outputs. We attribute this improve-
ment in performance to the following (1) F-MTL being
a Bayesian nonparametric model automatically infers
the number of groups and subspace bases from data
and thus uses optimal sharing (2) F-MTL shares the
latent bases across different task groups (enables over-
lapping/grouping) while allowing a separate distribu-
tion for each group respecting the idiosyncrasies.

We also compare our method with MFA-MTL (Passos
et al., 2012). This comparison is presented separately
as this baseline uses different datasets (Landmine and
20 Newsgroup) for classification and the computer and
school datasets for regression but with different train-
ing/test settings. We use the same training and test
sets as in (Passos et al., 2012). Table 2 shows the
comparison between the two models where we can
see that F-MTL clearly outperforms MFA-MTL on
school dataset for regression and both Landmine and
20-Newsgroup datasets for classification.

Finally we show the performance of our method for
varying fractions of training data and compare it with
those of STL and NG-MTL. For this, we used the same
training and test sets as used for generating Table 1.
For all the datasets, we increased the training exam-
ples from 10% to 100% with a step of 10% and mea-
sured the performances. The results are shown in Fig-
ure 4. We can see from the figure that the performance
of the proposed method is consistently better irrespec-
tive of the size of the training set.

6. Conclusion

We present a novel Bayesian nonparametric, factorial
multi-task learning (F-MTL) framework that groups
the similar task predictors by representing them in a
low dimensional subspace. A key feature of the pro-
posed F-MTL is that it automatically infers the num-
ber of task groups and allows the groups to share the
subspace bases. This feature enables the framework to
jointly model the tasks with varying degree of related-
ness. For this, we propose a generalized hierarchical
beta process (G-HBP) prior that permits a hierarchy
of potentially infinite number of child beta processes
controlled via a Dirichlet process. Another key feature
of the proposed model is that it uses a different dis-
tribution of basis usages for each group allowing each
group to vary when necessary. This has implications
in overcoming the negative inductive biases from un-
related tasks. Using synthetic and real datasets, we
demonstrate the utility of the model for regression and
classification tasks while outperforming many recent
state-of-the-art multi-task learning techniques.
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