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Abstract

In this paper, we propose a new method in
estimating transition matrices of high dimen-
sional vector autoregressive (VAR) models.
Here the data are assumed to come from a
stationary Gaussian VAR time series. By for-
mulating the problem as a linear program,
we provide a new approach to conduct in-
ference on such models. In theory, under a
doubly asymptotic framework in which both
the sample size T and dimensionality d of
the time series can increase (with possibly
d � T ), we provide explicit rates of conver-
gence between the estimator and the popu-
lation transition matrix under different ma-
trix norms. Our results show that the spec-
tral norm of the transition matrix plays a
pivotal role in determining the final rates of
convergence. This is the first work analyz-
ing the estimation of transition matrices un-
der a high dimensional doubly asymptotic
framework. Experiments are conducted on
both synthetic and real-world stock data to
demonstrate the effectiveness of the proposed
method compared with the existing methods.
The results of this paper have broad impact
on different applications, including finance,
genomics, and brain imaging.

1. Introduction
Vector autoregressive (VAR) models are an important
class of models for analyzing multivariate time series
data and have been used heavily in a number of do-
mains such as finance, genomics and brain imaging
data analysis (Tsay, 2005; Ledoit & Wolf, 2003; Bar-
Joseph, 2004; Lozano et al., 2009; Andersson et al.,
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2001).

This paper aims at estimating the transition matrices
of high dimensional stationary vector autoregressive
(VAR) time series. In detail, let X1,X2, . . . ,XT be a
time series. We assume that for t = 1, . . . , T , Xt ∈ Rd

is a d-dimensional random vector and we have

Xt+1 = ATXt + Zt, for t = 1, 2, . . . , T − 1. (1.1)

Here {Xt}T
t=1 is a stationary process with Xt ∼

Nd(0,Σ) for t = 1, . . . , T , A ∈ Rd×d is called the tran-
sition matrix, and Z1,Z2, . . . ,ZT ∼i.i.d. Nd(0,Ψ) are
independent multivariate Gaussian white noise with
covariance matrix Ψ. It is easy to observe that, in
order to preserve the stationary property, we need to
have Σ = ATΣA + Ψ.

Given the time series data {Xt}T
t=1, a common method

for estimating A is the least-square estimator (see, for
example, Hamilton (1994)). The estimator can be ex-
pressed as the optimum to the following optimization
problem:

ÂLSE = argmin
M∈Rd×d

||Y −MTX||2F, (1.2)

where Y := [X2,X3, . . . ,XT ], X :=
[X1,X2, . . . ,XT−1] and || · ||F represents the matrix
Frobenius norm. Different penalty terms, such as
the ridge penalty ||M||2F , can be further posed on
M in Equation (1.2). A more recent work proposed
by Huang & Schneider (2011) utilizes a new penalty
term called Lyapunov penalty and they accordingly
obtain an estimator, which they claim to have good
empirical performance. However, these estimators are
no longer consistent in high dimensional settings when
the dimensionality d is greater than the sample size T .
Moreover, the optimization formulation in Huang &
Schneider (2011) is not convex, making the estimator
hard to compute and analyze. More recently, Wang
et al. (2007); Hsu et al. (2008) propose to add sparsity
penalty

∑
ij |Mij | to Equation (1.2) to handle the
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high dimensional case. The corresponding estimators’
theoretical performance is further analyzed in Wang
et al. (2007); Nardi & Rinaldo (2011) under the as-
sumption that A is sparse, i.e., the number of nonzero
entries in A is much less than the dimensionality d2.
However, they only consider fixed d setting in their
analysis.

In this paper, we propose a new approach to esti-
mate the transition matrix A, where A can be both
sparse and nonsparse matrices and without restricted
to a specific sparsity pattern. We also consider re-
covering the support set of A. We introduce a new
method by directly estimating A utilizing the relation-
ship between A and the marginal and lag one covari-
ance matrices. The new method has several advan-
tages. Firstly, the method is computational attractive
because we can formulate the problem as d linear pro-
gram and solve it either in sequence or in parallel.
Similar convex formulations have been used in learn-
ing high dimensional graphical models (Candes & Tao,
2007; Yuan, 2010; Cai et al., 2011; Liu et al., 2012).
Secondly, we can provide theoretical analysis for the
propose method. Let a matrix be called s-sparse if
there are at most s nonzero elements on each row.
We show that if A is s-sparse, then under some mild
conditions, the error between our estimator Â and A
satisfies that,

||Â−A||1 = OP

(
s · ||A||1

1− ||A||2

√
log d

T

)
,

and ||Â−A||max = OP

(
||A||1

1− ||A||2

√
log d

T

)
.

Here for any square matrix M, ||M||max and ||M||1
represent the matrix elementwise absolute maximum
norm (`max norm) and induced `1 norm (detailed defi-
nitions will be provided later). Utilizing the `max con-
vergence result, the estimators’ performance in sup-
port recovery can also be established.

The rest of the paper is organized as follows. In Section
2, we briefly introduce the background of this paper,
especially the VAR time series model. In Section 3,
we introduce the proposed method on inferring the
VAR model. We prove the main theoretical results
in Section 4. In Section 5, we apply the obtained new
method on both synthetic and real-world stock data to
illustrate its effectiveness. The conclusion is provided
in the last section.

2. Background

In this section, we briefly introduce the background of
this paper. We start with some notation: Let M =

[Mjk] ∈ Rd×d and v = (v1, ..., vd)T ∈ Rd. Let v’s
subvector with entries indexed by J be denoted by
vJ . Let M’s submatrix with rows indexed by J and
columns indexed by K be denoted by MJK . Let MJ∗
and M∗K be the submatrix of M with rows in J , and
the submatrix of M with columns in K. For 0 < q <
∞, we define the `0,`q, and `∞ vector norms as

||v||0 :=
∑

j

I(vj 6= 0), ||v||q :=
( d∑

i=1

|vi|q
)1/q

and ||v||∞ := max
1≤i≤d

|vi|,

where I(·) is the indicator function. We use the fol-
lowing notation for matrix `q, `max and `F norms:

‖M‖q := max
‖v‖q=1

‖Mv‖q, ‖M‖max := max
jk

|Mjk|,

and ‖M‖F :=
(∑

j,k

|Mjk|2
)1/2

.

Let Λj(M) be the j-th largest eigenvalue of M. In par-
ticular, Λmin(M) := Λd(M) and Λmax(M) := Λ1(M)
are the smallest and largest eigenvalues of M. Let
1d = (1, . . . , 1)T ∈ Rd.

The stationary Vector Autoregressive (VAR) time se-
ries model linear dependence between different move-
ments. In particular, we assume that the T observa-
tions X1, . . . ,XT can be modeled by a lag one autore-
gressive process:

Xt+1 = ATXt + Zt, for t = 1, 2, . . . , T − 1. (2.1)

To secure the stationary of the above process, the tran-
sition matrix A must have bounded spectral norm
||A||2 < 1. We assume the Gaussian colored noise
Z1,Z2, . . . ∼i.i.d. Nd(0,Ψ). Zt and Xt are indepen-
dent. We have the following proposition, which states
that A is relevant to the marginal and lag one covari-
ance matrices of {Xt}T

t=1. This motivates the pro-
posed method provided in the next section.

Proposition 2.1. With the above notation, suppose
that the VAR model in Equation (2.1) holds. For i ≥ 1,
let Σi := Cov(X1,X1+i). We have for any 1 ≤ t ≤
T − i, Σi = Cov(Xt,Xt+i) = (AT)iΣ. Moreover,

A = Σ−1(Σ1)T. (2.2)

Proof. Using Equation (2.1), for any t, we have

Cov(Xt,Xt+i) = Cov(Xt, (AT)iXt) = (AT)iΣ,

which is not relevant to t. Moreover, Σ1 = ATΣ,
implying that A = Σ−1(Σ1)T.
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VAR model is widely used in the analysis of economic
time series (Hatemi-J, 2004; Briiggemann & Liitke-
pohl, 2001), signal processing (de Waele & Broersen,
2003) and brain fMRI (Goebel et al., 2003; Roebroeck
et al., 2005).

3. Methods and Algorithms

In this section, we provide an new optimization for-
mulation of the proposed method to achieve the final
estimator. We then provide the detailed algorithm to
calculate this estimator.

Let X1,X2, . . . ,XT be a sequence satisfying the VAR
model described in Equation (2.1). Let S and S1 be
the marginal and lag one sample covariance matrices
of {Xt}T

t=1:

S :=
1
T

T∑
t=1

XtX
T
t and S1 :=

1
T − 1

T−1∑
t=1

XtX
T
t+1.

Using Proposition 2.1, we propose to estimate A by
plugging the marginal and lag one sample covariance
matrices S and S1 into the following convex optimiza-
tion problem:

Â = argmin
M∈Rd×d

∑
jk

|Mjk|

subject to ||SM− ST
1 ||max ≤ λ0, (3.1)

where λ0 > 0 is a tuning parameter. When a suit-
able sparsity assumption on the transition matrix A
is added, we will see that Â is a consistent estimator
of A. It can be further shown that this is equivalent to
calculate A in column by column. In detail, letting β̂j

be the solution to the following optimization problem:

β̂j = argmin
v∈Rd

||v||1

subject to ||Sv − [ST
1 ]∗j ||∞ ≤ λ0, (3.2)

we have Â∗j := β̂j for j = 1, . . . , d.

Recall that any real number a takes the decomposition
a = a+ − a−, where a+ = a · I(a ≥ 0) and a− = −a ·
I(a < 0). For any vector v = (v1, . . . , vd)T ∈ Rd, let
v+ := (v+

1 , . . . , v+
d )T and v− := (v−1 , . . . , v−d )T. We say

that v ≥ 0 if v1, . . . , vd ≥ 0 and v < 0 if v1, . . . , vd < 0.
We say that v1 ≥ v2 if v1− v2 ≥ 0, and v1− v2 < 0 if
v1−v2 < 0. Letting v = (v1, . . . , vd)T, Equation (3.2)
can be further relaxed to the following problem:

β̂j = argmin
v+,v−

1T
d (v+ + v−)

subject to ||Sv+ − Sv− − [ST
1 ]∗j ||∞ ≤ λ0,

and v+ ≥ 0,v− ≥ 0. (3.3)

Equation (3.4) can be written as

β̂j = argmin
v+,v−

1T
d (v+ + v−)

subject to Sv+ − Sv− − [ST
1 ]∗j ≤ λ01d

−Sv+ + Sv− + [ST
1 ]∗j ≤ λ01d

and v+ ≥ 0,v− ≥ 0. (3.4)

This is equivalent to

β̂j = argmin
ω

1T
2dω

subject to θ + Wω ≥ 0, and ω ≥ 0, (3.5)

where

ω =
(

v+

v−

)
,θ =

(
[ST

1 ]∗j + λ01d

−[ST
1 ]∗j + λ01d

)
,

and W =
[
−S S
S −S

]
. (3.6)

Equation (3.5) is a linear programming problem. In
this paper, we use the simplex algorithm to compute
Â.

4. Theoretical Properties

In this section we analyze the theoretical properties of
the proposed method. We provide the nonasymptotic
upper bound of the rate of convergence in parameter
estimation under the matrix `1 and `max norms. To
our knowledge, this is the first work analyzing the esti-
mation of transition matrix under a high dimensional
doubly asymptotic framework. In the sequel, we as-
sume that d > T .

4.1. Main Result

The main result states that under the VAR model, the
estimator Â obtained by Equation (3.1) can approxi-
mate A consistently even when d grows exponentially
fast with respect to T , and the upper bound of the
convergence is also related to the sparsity level of the
transition matrix A.

We start with some additional notation. Let Md be a
quantity which may scale with the dimensionality d.
For any matrix M = [Mij ] ∈ Rd×d, we define

M(q, s, Md):=

M : max
1≤i≤d

d∑
j=1

|Mij |q ≤ s,||M||1 ≤ Md

 .

For q = 0, the class M(0, s, Md) contains all the s-
sparse matrices as defined in Section 1.
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Theorem 4.1. Suppose that {Xt}T
t=1 follows the

VAR model described in Equation (2.1) with transi-
tion matrix A. Suppose that A ∈ M(q, s, Md) for
some 0 ≤ q < 1. Let Â be the optimum to Equation
(3.1) with tuning parameter

λ0 =
16||Σ||2 maxj(Σjj)

minj(Σjj)(1− ||A||2)
· (2Md + 5)

√
log d

T
.

Then when T ≥ 6 log d and d ≥ 8, with probability
larger than 1− 14d−1,

||Â−A||1 ≤

4s

(
32||Σ−1||1 maxj(Σjj)||Σ||2

minj(Σjj)(1− ||A||2)
· (2Md+5)

√
log d

T

)1−q

.

Moreover, with probability larger than 1− 14d−1,

||Â−A||max ≤

32||Σ−1||1 maxj(Σjj)||Σ||2
minj(Σjj)(1− ||A||2)

· (2Md + 5)

√
log d

T
.

Remark 4.2. The bound obtained in Theorem 4.1 de-
pends on both Σ and A. Here A characterized the data
dependence degree. When both ||Σ−1||1 and ||Σ||2 do
not scale with (n, d, s), the rate can be further simpli-
fied as:

||Â−A||1 = OP

(
s · Md

1− ||A||2

√
log d

T

)
,

and ||Â−A||max = OP

(
Md

1− ||A||2

√
log d

T

)
.

Moreover, if A ∈ M(0, s, Md), utilizing the result on
elementwise `max norm convergence, a support recov-
ery result can be easily derived. In detail, let Ã be the
truncated version of Â with level γ, i.e.,

Ãij = ÂijI(|Âij | ≥ γ).

We then have the following corollary, claiming that we
can recover the support set of A with large probability.
Corollary 4.3. Suppose that the assumptions in The-
orem 4.1 hold and A ∈M(0, s, Md). Then choose the
truncation level

γ =
32||Σ−1||1 maxj(Σjj)||Σ||2

minj(Σjj)(1− ||A||2)
· (2Md + 5)

√
log d

T
.

Provided that minj,k |Ajk| ≥ 2γ, with probability larger
than 1− 14d−1, we have sign(A) = sign(Ã). Here for
any matrix M, sign(M) determines the sign of each
entry in M.

Detailed proofs of Theorem 4.1 and Corollary 4.3 can
be found in the long version of this paper (Han & Liu,
2013).

5. Experiments

In this section we show the numerical results on both
synthetic and real-world data to illustrate the effective-
ness and empirical usefulness of the proposed method
compared with the existing methods. In detail, the
following three methods are considered:

Ridge: the method implemented by adding a ridge
penalty ||M||2F on Equation (1.2);

Lasso: the method implemented by adding a sparsity
penalty

∑
ij |Mij | on Equation (1.2);

LP: the proposed method by formulating the problem
as a linear program (see Equation (3.1)).

We use package glmnet in computing Lasso and the
simplex algorithm in computing LP.

5.1. Synthetic Data

In this section we show the effectiveness of LP com-
pared with Ridge and Lasso on several synthetic data.
In our numerical simulations, we consider the setting
where the sample size T varies from 50 to 800 and
the dimensionality d varies from 50 to 200. Each data
are distributed according to a VAR model described
in Equation (2.1). To generate such data, we first de-
termine the sparse matrix A according to several pat-
terns. We adopt the following five models for A: band,
cluster, hub, random and scale-free. Typical patterns
of the generated A are illustrated in Figure 1. Here the
white points represent the zero entries and the black
points represent the nonzero entries. Note that in each
pattern, A is not symmetric.

We then rescale A such that the operator norm of
A is set to be ||A||2 = α, where α is set to be
0.5. Given A, Σ is generated such that the oper-
ator norm of Σ is ||Σ||2 = 2||A||2. According to
the stationary property, the covariance matrix of the
noise vector Zt is Ψ = Σ − ATΣA, where Ψ must
be a positive definite matrix. Using the generating
model in Equation (2.1), we can then obtain a se-
quence X = [X1, . . . ,XT ]T ∈ RT×d. We repeat this
procedure for 1, 000 times in each setting. We apply
the three methods on each dataset X, the averaged dis-
tance between the estimators and the true transition
matrix with respect to the matrix Frobenius, opera-
tor and `1 norms are illustrated in Tables 1 to 5, with
standard deviations provided in the brackets. Here the
tuning parameter is selected by cross validation.

There are several conclusions which can be drawn from
the results shown in Tables 1 to 5: (i) It can be ob-
served that, across all these settings, LP outperforms
Ridge and Lasso significantly in terms of the `1 norm,
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(a) band (b) cluster (c) hub

(d) random (e) scale-free

Figure 1. Four different transition matrix patterns. Here white points represent the zero entries and black points represent
nonzero entries. Here d = 100.

indicating that LP is more effect in estimating the tran-
sition matrix than the existing methods; (ii) When the
sample size increases, the error in estimating the tran-
sition matrix increases for Lasso and LP, coinciding
with the theoretical result in the last section. On the
other hand, Ridge has a very poor performance in each
setting, indicating that it can not handle the high di-
mensional data.

5.2. Equity Data

We compare different methods on the stock price data
from Yahoo! Finance (finance.yahoo.com). We col-
lect the daily closing prices for 452 stocks that are
consistently in the S&P 500 index between January
1, 2003 through January 1, 2008. This gives us alto-
gether 1,257 data points, each data point correspond-
ing to the vector of closing prices on a trading day.
Let St = [Stt,j ] with Stt,j denoting the closing price
of stock j on day t. Let X be the standardized ver-
sion of St. We model the variables Xt,j using the
VAR model shown in Equation (2.1) and estimate the
transition matrix A. For any estimator Âs with the
number of nonzero entries to be s, we calculate the

prediction error as:

εs =
1

T − 1

T∑
t=2

||Xt∗ − ÂT
s X(t−1)∗||2.

We plot (s, εs) for methods Lasso and LP in Figure 6. It
can be observed that LP constantly outperform Lasso
with respect to any given sparsity level s. This illus-
trates the empirical usefulness of the proposed method
compared with the existing methods.

6. Conclusion

In this paper a new method in estimating the tran-
sition matrix under the stationary vector autoregres-
sive model is proposed. The contribution of the paper
includes: (i) With respect to methodology, we pro-
pose a new method utilizing the power of linear pro-
gramming; (ii) With respect to theory, under the dou-
bly asymptotic framework, the nonasymptotic bound
of convergence with respect to different matrix norms
are explicitly provided; (iii) With respect to empirical
usefulness, numerical experiments on both synthetic
and real-world stock data are conducted, demonstrat-
ing the effectiveness of the proposed method compared
with the existing methods. To our knowledge, this is
the first work analyzing the performance of estimators
on inferring the VAR model in high dimensional set-
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Table 1. Comparison of averaged matrix losses for three methods over 1,000 replications. Here A’s pattern is ”band”,
`F , `2 and `1 represent the Frobenius, induced `2 and `1 matrix norms respectively.

Ridge Lasso LP

d n `F `2 `1 `F `2 `1 `F `2 `1

50 50 11.8(0.33) 1.17(0.04) 12.54(1.27) 3.53(0.09) 0.66(0.03) 2.46(0.24) 2.21(0.06) 0.50(0.01) 0.86(0.09)

100 6.96(0.15) 0.91(0.04) 7.65(0.40) 2.34(0.06) 0.50(0.02) 1.48(0.13) 2.09(0.03) 0.49(0.00) 0.57(0.03)

200 4.03(0.04) 0.60(0.03) 4.16(0.17) 1.56(0.05) 0.39(0.03) 0.82(0.07) 2.13(0.06) 0.49(0.01) 0.50(0.01)

400 2.59(0.05) 0.41(0.02) 2.67(0.20) 1.25(0.05) 0.34(0.02) 0.49(0.04) 1.34(0.18) 0.36(0.04) 0.45(0.03)

800 1.74(0.03) 0.26(0.01) 1.78(0.08) 0.98(0.10) 0.29(0.03) 0.36(0.03) 0.98(0.09) 0.27(0.03) 0.37(0.03)

100 50 9.83(0.17) 1.24(0.02) 10.53(0.85) 5.52(0.07) 0.75(0.03) 3.06(0.19) 3.27(0.04) 0.53(0.02) 1.06(0.27)

100 20.3(0.29) 1.23(0.03) 21.87(1.18) 3.96(0.06) 0.58(0.02) 2.18(0.17) 3.00(0.03) 0.49(0.00) 0.62(0.05)

200 10.01(0.09) 0.92(0.03) 9.96(0.38) 2.49(0.06) 0.43(0.02) 1.12(0.07) 3.01(0.05) 0.49(0.00) 0.50(0.01)

400 5.71(0.05) 0.62(0.03) 5.67(0.18) 1.85(0.04) 0.37(0.02) 0.58(0.05) 2.18(0.51) 0.42(0.05) 0.50(0.01)

800 3.68(0.02) 0.42(0.02) 3.58(0.11) 1.61(0.07) 0.31(0.02) 0.39(0.03) 1.59(0.10) 0.31(0.02) 0.40(0.01)

200 50 9.08(0.04) 1.23(0.02) 8.70(0.35) 7.97(0.06) 0.79(0.02) 3.34(0.16) 4.88(0.08) 0.55(0.02) 1.31(0.34)

100 14.31(0.11) 1.26(0.01) 14.17(0.39) 6.38(0.05) 0.65(0.02) 2.75(0.18) 4.26(0.03) 0.50(0.00) 0.69(0.05)

200 34.65(0.32) 1.27(0.03) 36.13(1.35) 4.12(0.05) 0.47(0.01) 1.59(0.12) 4.28(0.04) 0.49(0.00) 0.52(0.01)

400 14.22(0.08) 0.93(0.02) 13.92(0.33) 2.72(0.04) 0.37(0.01) 0.70(0.07) 4.37(0.56) 0.49(0.04) 0.50(0.00)

800 8.11(0.04) 0.63(0.02) 7.60(0.13) 2.35(0.08) 0.33(0.01) 0.43(0.02) 2.41(0.12) 0.34(0.02) 0.42(0.01)

Table 2. Comparison of averaged matrix losses for three methods over 1,000 replications. Here A’s pattern is ”cluster”,
`F , `2 and `1 represent the Frobenius, induced `2 and `1 matrix norms respectively.

Ridge Lasso LP

d n `F `2 `1 `F `2 `1 `F `2 `1

50 50 12.07(0.38) 1.09(0.06) 13.38(0.88) 3.34(0.09) 0.57(0.03) 2.61(0.24) 1.60(0.04) 0.48(0.02) 0.84(0.07)

100 7.00(0.19) 0.83(0.04) 7.66(0.52) 2.14(0.06) 0.44(0.04) 1.50(0.17) 1.48(0.02) 0.49(0.01) 0.68(0.02)

200 4.07(0.07) 0.57(0.03) 4.21(0.23) 1.39(0.04) 0.40(0.02) 0.88(0.07) 1.43(0.08) 0.47(0.02) 0.65(0.02)

400 2.64(0.03) 0.39(0.02) 2.67(0.09) 1.11(0.03) 0.39(0.02) 0.60(0.03) 1.20(0.10) 0.42(0.03) 0.58(0.02)

800 1.79(0.03) 0.26(0.01) 1.84(0.08) 0.91(0.06) 0.35(0.03) 0.50(0.03) 0.92(0.05) 0.35(0.02) 0.51(0.03)

100 50 9.61(0.14) 1.13(0.02) 10.36(0.92) 5.22(0.07) 0.65(0.03) 3.12(0.20) 2.29(0.12) 0.48(0.02) 1.00(0.15)

100 20.8(0.32) 1.12(0.02) 22.29(0.96) 3.55(0.06) 0.49(0.02) 2.12(0.13) 1.97(0.02) 0.49(0.01) 0.70(0.03)

200 9.93(0.11) 0.84(0.03) 10.12(0.36) 2.20(0.04) 0.40(0.03) 1.17(0.06) 1.92(0.05) 0.48(0.02) 0.68(0.02)

400 5.74(0.05) 0.58(0.02) 5.67(0.16) 1.56(0.03) 0.40(0.02) 0.69(0.05) 1.63(0.12) 0.43(0.03) 0.64(0.04)

800 3.74(0.03) 0.38(0.02) 3.56(0.10) 1.37(0.07) 0.38(0.02) 0.59(0.04) 1.30(0.07) 0.36(0.02) 0.58(0.04)

200 50 8.44(0.04) 1.14(0.02) 8.69(0.35) 7.37(0.08) 0.70(0.02) 3.30(0.18) 3.48(0.26) 0.49(0.01) 1.23(0.21)

100 13.98(0.13) 1.16(0.01) 14.53(0.58) 5.78(0.05) 0.57(0.02) 2.82(0.17) 2.81(0.01) 0.49(0.01) 0.75(0.05)

200 35.69(0.39) 1.16(0.02) 36.68(1.51) 3.66(0.03) 0.44(0.02) 1.63(0.07) 2.80(0.06) 0.49(0.01) 0.70(0.02)

400 14.1(0.08) 0.84(0.02) 13.63(0.39) 2.34(0.03) 0.41(0.01) 0.82(0.03) 2.54(0.15) 0.47(0.02) 0.64(0.03)

800 8.13(0.03) 0.58(0.03) 7.55(0.16) 2.00(0.05) 0.40(0.01) 0.60(0.03) 1.99(0.08) 0.40(0.02) 0.60(0.03)
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Table 3. Comparison of averaged matrix losses for three methods over 1,000 replications. Here A’s pattern is ”hub”, `F , `2
and `1 represent the Frobenius, induced `2 and `1 matrix norms respectively.

Ridge Lasso LP

d n `F `2 `1 `F `2 `1 `F `2 `1

50 50 12.08(0.38) 1.04(0.02) 13.37(1.24) 3.21(0.09) 0.53(0.02) 2.40(0.23) 1.25(0.08) 0.49(0.07) 1.18(0.11)

100 6.94(0.15) 0.78(0.04) 7.51(0.42) 1.93(0.07) 0.39(0.05) 1.47(0.13) 1.13(0.15) 0.38(0.06) 1.04(0.07)

200 4.04(0.05) 0.55(0.03) 4.21(0.14) 1.17(0.05) 0.32(0.05) 1.03(0.07) 1.05(0.11) 0.32(0.05) 0.92(0.09)

400 2.64(0.05) 0.39(0.02) 2.71(0.22) 0.91(0.07) 0.28(0.03) 0.86(0.05) 0.89(0.06) 0.28(0.04) 0.86(0.07)

800 1.79(0.03) 0.26(0.01) 1.85(0.10) 0.77(0.06) 0.20(0.03) 0.74(0.06) 0.74(0.06) 0.21(0.02) 0.74(0.06)

100 50 9.59(0.16) 1.10(0.01) 10.47(0.52) 5.06(0.09) 0.64(0.03) 2.96(0.15) 1.90(0.05) 0.50(0.01) 1.40(0.12)

100 21.02(0.31) 1.08(0.02) 22.46(1.39) 3.37(0.06) 0.45(0.03) 2.15(0.15) 1.53(0.07) 0.50(0.05) 1.23(0.05)

200 9.88(0.11) 0.80(0.03) 10.12(0.33) 1.92(0.04) 0.35(0.04) 1.35(0.09) 1.39(0.05) 0.39(0.04) 1.09(0.07)

400 5.75(0.05) 0.56(0.02) 5.65(0.18) 1.26(0.03) 0.32(0.02) 1.03(0.05) 1.25(0.05) 0.32(0.03) 1.01(0.05)

800 3.75(0.02) 0.38(0.02) 3.69(0.11) 1.06(0.04) 0.27(0.02) 0.91(0.03) 1.05(0.05) 0.26(0.02) 0.91(0.04)

200 50 8.28(0.05) 1.10(0.01) 8.66(0.35) 7.23(0.07) 0.68(0.03) 3.29(0.15) 2.95(0.17) 0.50(0.01) 1.55(0.14)

100 13.90(0.10) 1.12(0.01) 14.22(0.48) 5.49(0.05) 0.52(0.02) 2.69(0.18) 2.10(0.04) 0.50(0.00) 1.24(0.03)

200 35.83(0.27) 1.11(0.02) 37.13(0.84) 3.31(0.03) 0.37(0.02) 1.64(0.11) 1.98(0.05) 0.43(0.03) 1.14(0.04)

400 14.07(0.09) 0.81(0.01) 13.60(0.48) 1.93(0.03) 0.33(0.02) 1.11(0.07) 1.82(0.03) 0.35(0.03) 1.04(0.05)

800 8.15(0.04) 0.56(0.02) 7.69(0.16) 1.56(0.02) 0.31(0.02) 0.97(0.03) 1.57(0.05) 0.29(0.02) 0.97(0.03)

Table 4. Comparison of averaged matrix losses for three methods over 1,000 replications. Here A’s pattern is ”random”,
`F , `2 and `1 represent the Frobenius, induced `2 and `1 matrix norms respectively.

Ridge Lasso LP

d n `F `2 `1 `F `2 `1 `F `2 `1

50 50 12.10(0.32) 1.11(0.05) 13.35(0.71) 3.36(0.09) 0.60(0.04) 2.48(0.23) 1.72(0.03) 0.47(0.02) 0.88(0.10)

100 6.95(0.15) 0.87(0.05) 7.31(0.51) 2.18(0.06) 0.44(0.03) 1.46(0.13) 1.63(0.04) 0.48(0.02) 0.67(0.05)

200 4.02(0.06) 0.59(0.03) 4.13(0.20) 1.40(0.05) 0.37(0.03) 0.84(0.08) 1.40(0.14) 0.43(0.04) 0.64(0.03)

400 2.62(0.04) 0.39(0.03) 2.67(0.11) 1.09(0.05) 0.34(0.02) 0.54(0.05) 1.12(0.06) 0.35(0.04) 0.55(0.03)

800 1.79(0.02) 0.27(0.02) 1.78(0.07) 0.87(0.05) 0.27(0.03) 0.47(0.03) 0.89(0.05) 0.29(0.03) 0.46(0.04)

100 50 9.73(0.16) 1.17(0.01) 10.90(0.50) 5.18(0.08) 0.67(0.03) 3.05(0.19) 2.43(0.06) 0.48(0.02) 0.96(0.11)

100 20.92(0.42) 1.14(0.02) 21.91(1.01) 3.65(0.05) 0.50(0.01) 2.14(0.14) 2.16(0.03) 0.49(0.02) 0.74(0.04)

200 9.96(0.09) 0.85(0.03) 10.24(0.46) 2.23(0.04) 0.39(0.03) 1.12(0.09) 1.97(0.12) 0.44(0.03) 0.68(0.04)

400 5.75(0.05) 0.58(0.03) 5.65(0.19) 1.55(0.05) 0.35(0.02) 0.65(0.05) 1.61(0.12) 0.37(0.03) 0.60(0.03)

800 3.73(0.03) 0.40(0.02) 3.60(0.08) 1.27(0.06) 0.31(0.02) 0.53(0.03) 1.22(0.07) 0.30(0.03) 0.53(0.04)

200 50 8.43(0.04) 1.15(0.01) 8.82(0.32) 7.38(0.07) 0.71(0.02) 3.39(0.20) 3.48(0.04) 0.49(0.03) 1.18(0.13)

100 13.99(0.11) 1.16(0.01) 14.31(0.40) 5.75(0.05) 0.54(0.01) 2.69(0.16) 2.78(0.04) 0.47(0.03) 0.89(0.08)

200 35.39(0.25) 1.15(0.02) 36.35(1.00) 3.60(0.04) 0.39(0.02) 1.53(0.07) 2.63(0.07) 0.41(0.03) 0.75(0.08)

400 14.13(0.09) 0.85(0.02) 13.60(0.37) 2.23(0.04) 0.33(0.02) 0.79(0.06) 2.28(0.08) 0.36(0.02) 0.69(0.07)

800 8.14(0.03) 0.58(0.02) 7.68(0.13) 1.73(0.06) 0.29(0.02) 0.59(0.04) 1.73(0.12) 0.29(0.02) 0.62(0.04)
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Table 5. Comparison of averaged matrix losses for three methods over 1,000 replications. Here A’s pattern is ”scale-free”,
`F , `2 and `1 represent the Frobenius, induced `2 and `1 matrix norms respectively.

Ridge Lasso LP

d n `F `2 `1 `F `2 `1 `F `2 `1

50 50 12.07(0.4) 1.06(0.02) 13.29(1.06) 3.24(0.09) 0.54(0.03) 2.41(0.25) 1.31(0.14) 0.41(0.07) 0.96(0.13)

100 6.90(0.13) 0.80(0.03) 7.44(0.42) 1.99(0.07) 0.39(0.05) 1.43(0.14) 1.16(0.08) 0.37(0.09) 0.89(0.16)

200 4.06(0.05) 0.56(0.03) 4.19(0.18) 1.19(0.05) 0.29(0.04) 0.88(0.10) 1.06(0.05) 0.33(0.04) 0.77(0.08)

400 2.64(0.05) 0.39(0.02) 2.71(0.21) 0.91(0.07) 0.26(0.04) 0.74(0.09) 0.91(0.05) 0.26(0.04) 0.71(0.07)

800 1.79(0.03) 0.26(0.02) 1.83(0.10) 0.73(0.05) 0.19(0.02) 0.60(0.07) 0.71(0.05) 0.19(0.02) 0.58(0.06)

100 50 9.59(0.16) 1.10(0.01) 10.64(0.7) 5.05(0.08) 0.61(0.03) 2.97(0.16) 1.78(0.16) 0.39(0.08) 1.15(0.23)

100 21.09(0.34) 1.06(0.02) 22.41(1.23) 3.36(0.06) 0.41(0.02) 2.10(0.17) 1.42(0.16) 0.40(0.08) 1.04(0.13)

200 9.90(0.10) 0.79(0.02) 9.90(0.34) 1.89(0.05) 0.28(0.03) 1.10(0.08) 1.31(0.14) 0.34(0.04) 0.94(0.08)

400 5.77(0.05) 0.56(0.02) 5.63(0.13) 1.25(0.11) 0.29(0.03) 0.89(0.07) 1.20(0.06) 0.31(0.03) 0.91(0.06)

800 3.76(0.02) 0.38(0.02) 3.66(0.09) 0.99(0.05) 0.25(0.03) 0.83(0.07) 1.02(0.11) 0.23(0.03) 0.79(0.06)

200 50 8.17(0.05) 1.08(0.01) 8.64(0.32) 7.16(0.07) 0.67(0.02) 3.24(0.25) 2.64(0.07) 0.45(0.08) 1.42(0.16)

100 13.89(0.11) 1.10(0.01) 14.19(0.42) 5.41(0.05) 0.48(0.02) 2.64(0.18) 1.71(0.15) 0.36(0.07) 1.18(0.11)

200 35.96(0.33) 1.08(0.03) 37.59(1.25) 3.19(0.03) 0.31(0.03) 1.54(0.10) 1.69(0.16) 0.33(0.05) 1.07(0.10)

400 14.06(0.08) 0.79(0.02) 13.62(0.5) 1.74(0.03) 0.28(0.03) 1.03(0.08) 1.58(0.07) 0.30(0.03) 1.02(0.06)

800 8.17(0.04) 0.55(0.02) 7.73(0.17) 1.38(0.03) 0.27(0.02) 0.99(0.04) 1.36(0.10) 0.25(0.02) 0.95(0.04)

tings. The proof techniques we used have the separate
interest for analyzing a variety of other multivariate
statistical methods on time series data. The results of
this paper have broad impact on different application,
including finance, genomics and brain imaging.
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Figure 2. The figure illustrating the prediction error versus
the sparsity level of the transition matrix. Here the x-lab
represents the number of nonzero entries in the estimated
matrix, y-lab represents the averaged prediction error.
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