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Abstract

The Supplementary Material contains three
elements. First, in Section 1, we give the
proofs for all the main mathematical results
in the paper. Second, in Section 2, we provide
a natural generalization of our framework to
the case the point evaluation operator f(x)
is replaced by a general bounded linear op-
erator. Last, in Section 3, we provide an ex-
act description of Algorithm 1 with the Gaus-
sian or similar kernels in the degenerate case,
when the kernel width σ →∞.

1. Proofs of Main Results

For clarity, we restate all the results in the main paper
that we prove here.

Notation: the definition of f as given by

f = (f(x1), . . . , f(xu+l)) ∈ Wu+l, (1)

is adopted because it is also applicable when W is an
infinite-dimensional Hilbert space. For W = Rm,

f = (f1(x1), . . . , fm(x1), . . . , f1(xu+l), . . . , f
m(xu+l)).

This is different from (Rosenberg et al., 2009), where

f = (f1(x1), . . . , f1(xu+l), . . . , f
m(x1), . . . , fm(xu+l)).

This means that our matrix M is necessarily a per-
mutation of the matrix M in (Rosenberg et al., 2009)
when they give rise to the same semi-norm.
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1.1. Proof of the Representer Theorem

Recall our general minimization problem

fz,γ = argminf∈HK

1

l

l∑
i=1

V (yi, Cf(xi))

+γA||f ||2HK
+ γI〈f ,M f〉Wu+l, (2)

and its least square version

fz,γ = argminf∈HK

1

l

l∑
i=1

||yi − Cf(xi)||2Y

+γA||f ||2HK
+ γI〈f ,M f〉Wu+l. (3)

Theorem 1. The minimization problem (2) has a

unique solution, given by fz,γ =
∑u+l
i=1 Kxiai for some

vectors ai ∈ W, 1 ≤ i ≤ u+ l.

The following is a generalization of the proof for the
Representer Theorem in (Minh & Sindhwani, 2011).
Since f(x) = K∗xf , the minimization problem (2) is

fz,γ = argminf∈HK

1

l

l∑
i=1

V (yi, CK
∗
xi
f)

+γA||f ||2HK
+ γI〈f ,M f〉Wu+l. (4)

Consider the operator EC,x : HK → Y l, defined by

EC,xf = (CK∗x1
f, . . . , CK∗xl

f), (5)

with CK∗xi
: HK → Y and Kxi

C∗ : Y → HK . For
b = (b1, . . . , bl) ∈ Y l, we have

〈b, EC,xf〉Yl =

l∑
i=1

〈bi, CK∗xi
f〉Y

=

l∑
i=1

〈Kxi
C∗bi, f〉HK

= 〈
l∑
i=1

Kxi
C∗bi, f〉HK

.
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The adjoint operator E∗C,x : Y l → HK is thus

E∗C,x : (b1, . . . , bl)→
l∑
i=1

Kxi
C∗bi. (6)

The operator E∗C,xEC,x : HK → HK is then

E∗C,xEC,xf →
l∑
i=1

Kxi
C∗CK∗xi

f, (7)

with C∗C :W →W.

Proof of Theorem 1. Denote the right handside of
(2) by Il(f). Then Il(f) is coercive and strictly convex
in f , and thus has a unique minimizer. Let HK,x =

{
∑u+l
i=1 Kxiwi : w ∈ Wu+l}. For f ∈ H⊥K,x, by the

reproducing property, EC,x satisfies

〈b, EC,xf〉Yl = 〈f,
l∑
i=1

Kxi
C∗bi〉HK

= 0,

for all b ∈ Y l, since C∗bi ∈ W. Thus

EC,xf = (CK∗x1
f, . . . , CK∗xl

f) = 0.

Similarly, by the reproducing property, the sampling
operator Sx satisfies

〈Sxf,w〉Wu+l = 〈f,
u+l∑
i=1

Kxi
wi〉HK

= 0,

for all w ∈ Wu+l. Thus

f = Sxf = (f(x1), . . . , f(xu+l)) = 0.

For an arbitrary f ∈ HK , consider the orthogonal de-
composition f = f0 + f1, with f0 ∈ HK,x, f1 ∈ H⊥K,x.

Then, because ||f0 + f1||2HK
= ||f0||2HK

+ ||f1||2HK
, the

result just obtained shows that

Il(f) = Il(f0 + f1) ≥ Il(f0)

with equality if and only if ||f1||HK
= 0, that is f1 = 0.

Thus the minimizer of (2) must lie in HK,x.

1.2. Proofs for the Least Square Case

Proposition 1. The minimization problem (3) has a

unique solution fz,γ =
∑u+l
i=1 Kxiai, where the vectors

ai ∈ W are given by

lγI

u+l∑
j,k=1

MikK(xk, xj)aj + C∗C(

u+l∑
j=1

K(xi, xj)aj)

+lγAai = C∗yi, (8)

for 1 ≤ i ≤ l, and

γI

u+l∑
j,k=1

MikK(xk, xj)aj + γAai = 0, (9)

for l + 1 ≤ i ≤ u+ l.

The following is a generalization of the proof for
Proposition 1 in (Minh & Sindhwani, 2011). We have

fz,γ = argminf∈HK

1

l

l∑
i=1

||yi − CK∗xi
f ||2Y

+γA||f ||2K + γI〈f ,M f〉W(u+l). (10)

With the operator EC,x, (10) is transformed into the
minimization problem

fz,γ = argminf∈HK

1

l
||EC,xf − y||2Yl

+γA||f ||2K + γI〈f ,M f〉Wu+l . (11)

Proof of Proposition 1. By the Representer Theo-
rem, (3) has a unique solution. Differentiating (11)
and setting the derivative to zero gives

(E∗C,xEC,x + lγAI + lγIS
∗
x,u+lMSx,u+l)fz,γ = E∗C,xy.

By definition of the operators EC,x and Sx, this is

l∑
i=1

KxiC
∗CK∗xi

fz,γ + lγAfz,γ + lγI

u+l∑
i=1

Kxi(M fz,γ)i

=

l∑
i=1

Kxi
C∗yi,

which we rewrite as

fz,γ = − γI
γA

u+l∑
i=1

Kxi
(M fz,γ)i

+

l∑
i=1

Kxi

C∗yi − C∗CK∗xi
fz,γ

lγA
.

This shows that there are vectors ai’s in W such that

fz,γ =

u+l∑
i=1

Kxi
ai.

We have fz,γ(xi) =
∑u+l
j=1K(xi, xj)aj , and

(M fz,γ)i =

u+l∑
k=1

Mik

u+l∑
j=1

K(xk, xj)aj

=

u+l∑
j,k=1

MikK(xk, xj)aj .
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Also K∗xi
fz,γ = fz,γ(xi) =

∑u+l
j=1K(xi, xj)aj . Thus for

1 ≤ i ≤ l:

ai = − γI
γA

u+l∑
j,k=1

MikK(xk, xj)aj

+
C∗yi − C∗C(

∑u+l
j=1K(xi, xj)aj)

lγA
,

which gives the formula

lγI

u+l∑
j,k=1

MikK(xk, xj)aj + C∗C(

u+l∑
j=1

K(xi, xj)aj)

+lγAai = C∗yi.

Similarly, for l + 1 ≤ i ≤ u+ l,

ai = − γI
γA

u+l∑
j,k=1

MikK(xk, xj)aj ,

which is equivalent to

γI

u+l∑
j,k=1

MikK(xk, xj)aj + γAai = 0.

This completes the proof.

Proposition 2.

(C∗CJW,u+ll K[x]+ lγIMK[x]+ lγAI)a = C∗y, (12)

where a = (a1, . . . , au+l), y = (y1, . . . , yu+l) are con-
sidered as column vectors in Wu+l and Yu+l, respec-
tively, and yl+1 = · · · = yu+l = 0.

Proof of Proposition 2. This is straightforward to
obtain from Proposition 1 using the operator-valued
matrix formulation described in the main paper.

Proposition 3. For C = cT ⊗ IP , c ∈ Rm, MW =
L⊗ IP , MB = Iu+l ⊗ (Mm ⊗ IP ), the system of linear
equations (12) in Proposition 2 is equivalent to

BA = YC , (13)

where

B =
(
(Ju+ll ⊗ ccT ) + lγB(Iu+l ⊗Mm) + lγWL

)
G[x]

+lγAI(u+l)m, (14)

which is of size (u + l)m × (u + l)m, A is the matrix
of size (u + l)m × P such that a = vec(AT ), and YC
is the matrix of size (u + l)m × P such that C∗y =
vec(Y TC ). Ju+ll : Ru+l → Ru+l is a diagonal matrix of
size (u+ l)×(u+ l), with the first l entries on the main
diagonal being 1 and the rest being 0.

Proof of Proposition 3. Recall some properties of
the Kronecker tensor product:

(A⊗B)(C ⊗D) = AC ⊗BD, (15)

(A⊗B)T = AT ⊗BT , (16)

and
vec(ABC) = (CT ⊗A)vec(B). (17)

Thus the equation

AXB = C (18)

is equivalent to

(BT ⊗A)vec(X) = vec(C). (19)

In our context,γIM = γBMB + γWMW , which is

γIM = γBIu+l ⊗Mm ⊗ IP + γWL⊗ IP .

C∗ = Iu+l ⊗ C∗.
Using the property stated in Equation (16), we have
for C = cT ⊗ IP ,

C∗ = Iu+l ⊗ c⊗ IP ∈ RPm(u+l)×P (u+l), (20)

C∗C = (c⊗ IP )(cT ⊗ IP ) = (ccT ⊗ IP ).

So then
C∗C = (Iu+l ⊗ ccT ⊗ IP ). (21)

JW,u+ll = Ju+ll ⊗ Im ⊗ IP . (22)

It follows that

C∗CJW,u+ll = (Ju+ll ⊗ ccT ⊗ IP ). (23)

Then

C∗CJW,u+ll K[x] = (Ju+ll ⊗ ccT )G[x]⊗ IP .

γIMK[x] = (γBIu+l ⊗Mm + γWL)G[x]⊗ IP .
Consider again now the system

(C∗CJW,u+ll K[x] + lγIMK[x] + lγAI)a = C∗y.

The left hand side is

(B ⊗ IP )vec(AT ),

where a = vec(AT ), A is of size (u+ l)m× P and

B =
(
(Ju+ll ⊗ ccT ) + lγB(Iu+l ⊗Mm) + lγWL

)
G[x]

+lγAI(u+l)m.

Then we have the linear system

(B ⊗ IP )vec(AT ) = vec(Y TC ),

which, by properties (18) and (19), is equivalent to

ATBT = Y TC ⇐⇒ BA = YC .

This completes the proof.
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Remark 1. The vec operator is implemented by the
flattening operation (:) in MATLAB. To compute the
matrix Y TC , note that by definition

vec(Y TC ) = C∗y = (Iu+l ⊗ C∗)y = vec(C∗Y ),

where Y is the P × (u+ l) matrix with the ith column
being yi, with

y = vec(Y ).

Note that Y TC and C∗Y in general are not the same:
Y TC is of size P × (u + l)m, whereas C∗Y is of size
Pm× (u+ l).

2. Learning with General Bounded
Linear Operators

The present framework generalizes naturally beyond
the point evaluation operator

f(x) = K∗xf.

Let H be a separable Hilbert space of functions on X .
We are not assuming that the functions in H are de-
fined pointwise or with values in W, rather we assume
that ∀x ∈ X , there is a bounded linear operator

Ex : H →W, ||Ex|| <∞, (24)

with adjoint E∗x :W → H. Consider the minimization

fz,γ = argminHK

1

l

l∑
i=1

V (yi, CExif) + γA||f ||2H

+γI〈f ,M f〉Wu+l , where f = (Exi
f)u+li=1 , (25)

and its least square version

fz,γ = argminHK

1

l

l∑
i=1

||yi − CExi
f ||2Y + γA||f ||2H

+γI〈f ,M f〉Wu+l . (26)

Following are the corresponding Representer Theorem
and Proposition stating the explicit solution for the
least square case. When H = HK , Ex = K∗x, we
recover Theorem 1 and Proposition 1, respectively.

Theorem 2. The minimization problem (25) has a

unique solution, given by fz,γ =
∑u+l
i=1 E

∗
xi
ai for some

vectors ai ∈ W, 1 ≤ i ≤ u+ l.

Proposition 4. The minimization problem (26) has a

unique solution fz,γ =
∑u+l
i=1 E

∗
xi
ai, where the vectors

ai ∈ W are given by

lγI

u+l∑
j,k=1

MikExk
E∗xj

aj + C∗C(

u+l∑
j=1

ExiE
∗
xj
aj)

+lγAai = C∗yi, (27)

for 1 ≤ i ≤ l, and

γI

u+l∑
j,k=1

MikExk
E∗xj

aj + γAai = 0, (28)

for l + 1 ≤ i ≤ u+ l.

The reproducing kernel structures come into play
through the following.

Lemma 1. Let E : X × X → L(W) be defined by

E(x, t) = ExE
∗
t . (29)

Then E is a positive definite operator-valued kernel.

Proof of Lemma 1. For each pair (x, t) ∈ X × X ,
the operator E(x, t) satisfies

E(t, x)∗ = (EtE
∗
x)∗ = ExE

∗
t = E(x, t).

For every set {xi}Ni=1 in X and {wi}Ni=1 in W,

N∑
i,j=1

〈wi, E(xi, xj)wj〉W =

N∑
i,j=1

〈wi, ExiE
∗
xj
wj〉W

=

N∑
i,j=1

〈E∗xi
wi, E

∗
xj
wj〉H = ||

N∑
i=1

E∗xi
wi||2H ≥ 0.

Thus E is an L(W)-valued positive definite kernel.

Proofs of Theorem 2 and Proposition 4. These
are entirely analogous to those of Theorem 1 and
Proposition 1, respectively. Instead of the sampling
operator Sx, we consider the operator Ex : H → W l,
with

Exf = (Exi
f)li=1, (30)

with the adjoint E∗x :W l → H given by

E∗xb =

l∑
i=1

E∗xi
bi. (31)

for all b = (bi)
l
i=1 ∈ W l. The operator EC,x : H → Y l

is now defined by

EC,xf = (CEx1f, . . . , CExl
f). (32)

The adjoint E∗C,x : Y l → H is

E∗C,xb =

l∑
i=1

E∗xi
C∗bi, (33)

for all b ∈ Y l, and E∗C,xEC,x : H → H is

E∗C,xEC,xf =

l∑
i=1

E∗xi
C∗CExif. (34)

We then apply all the steps in the proofs of Theorem
1 and Proposition 1 to get the desired results.
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Remark 2. We stress that in general, the function fz,γ
is not defined pointwise, which is the case in the follow-
ing example. Thus one cannot make a statement about
fz,γ(x) for all x ∈ X without additional assumptions.

Example 1. (Wahba, 1977) X = [0, 1], H = L2(X ),
W = R. Let G : X × X → R be continuous and

Exf =

∫ 1

0

G(x, t)f(t)dt. (35)

for f ∈ H. One has the reproducing kernel

ExE
∗
t = E(x, t) =

∫ 1

0

G(x, u)G(t, u)du. (36)

3. The Degenerate Case

This section deals with the Gaussian kernel k(x, t) =

exp
(
− ||x−t||

2

σ2

)
when σ → ∞ and other kernels with

similar behavior. We show that the matrix A in Propo-
sition 3 has an analytic expression. This can be used
to verify the correctness of an implementation of our
algorithm. At σ =∞, for each pair (x, t), we have

K(x, t) = IPm, (37)

and

fz,γ(x) =

u+l∑
i=1

K(xi, x)ai =

u+l∑
i=1

ai. (38)

Thus fz,γ is a constant function. Let us examine the
form of the coefficients ai’s for the case

C =
1

m
eTm ⊗ IP .

We have
G[x] = eu+le

T
u+l ⊗ Im.

For γI = 0, we have

B =
1

m2
(Ju+ll ⊗ emeTm)(eu+le

T
u+l ⊗ Im) + lγAI(u+l)m,

which is

B =
1

m2
(Ju+ll eu+le

T
u+l ⊗ emeTm) + lγAI(u+l)m.

Equivalently,

B =
1

m2
(J

(u+l)m
ml e(u+l)meT(u+l)m) + lγAI(u+l)m.

The inverse of B in this case has a closed form:

B−1 =
I(u+l)m

lγA
−
J
(u+l)m
ml e(u+l)meT(u+l)m

l2mγA(mγA + 1)
, (39)

where we have used the identity

e(u+l)meT(u+l)mJ
(u+l)m
ml e(u+l)meT(u+l)m = mle(u+l)meT(u+l)m.

(40)
We have thus

A = B−1YC =

I(u+l)m
lγA

−
J
(u+l)m
ml e(u+l)meT(u+l)m

l2mγA(mγA + 1)

YC .

(41)
Thus in this case we have an analytic expression for
the coefficient matrix A, as we claimed.
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