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Abstract

Current Bayesian models for dynamic social
network data have focused on modelling the
influence of evolving unobserved structure on
observed social interactions. However, an un-
derstanding of how observed social relation-
ships from the past affect future unobserved
structure in the network has been neglected.
In this paper, we introduce a new proba-
bilistic model for capturing this phenomenon,
which we call latent feature propagation, in
social networks. We demonstrate our model’s
capability for inferring such latent structure
in varying types of social network datasets,
and experimental studies show this struc-
ture achieves higher predictive performance
on link prediction and forecasting tasks.

1. Introduction

Social networks have received a large amount of atten-
tion in recent literature due both to the popularity of
sites such as Facebook and Twitter and to the abun-
dance of data collected by these services about users
and their social relationships. As with other forms of
relational data, one often wants to be able to predict
the behaviour or social interactions between two enti-
ties. Probabilistic approaches to analysing relational
data have focused on latent variable representations
of the objects in a network (Nowicki & Snijders, 2001;
Kemp et al., 2006; Airoldi et al., 2008; Miller et al.,
2009; Palla et al., 2012). For social networks, this is
an intuitive approach, since the latent variables can
represent the unobserved hobbies or interests of in-
dividuals in a network, which interact to explain ob-
served social behaviour. In addition to predicting un-
observed relationships, one often wants to be able to
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forecast behaviour in the network at some future time.
To approach this problem, probabilistic models have
been extended to accommodate dynamic network data
with demonstrated success (Fu et al., 2009; Xing et al.,
2010; Foulds et al., 2011).

Current probabilistic models for dynamic relational
data lack the ability to directly use information from
previous network observations to model future latent
structure. Instead, they rely only on latent represen-
tations which evolve independently from the observa-
tions. This is inadequate for social networks, since our
social relationships certainly influence both our per-
sonal interests and our future social interactions. We
call this phenomenon latent feature propagation and to
capture such behaviour, we introduce a new approach
for modelling dynamic social network data. Our model
uses observed social relationships in the network to
model distributions over the latent structure in the
network at the next time point. We motivate the par-
ticular form of our model with intuition from social
network theory, and perform inference using Markov
chain Monte Carlo (MCMC). We will demonstrate our
model’s ability to infer latent feature propagation in
real social networks and provide experimental results
which indicate such structure provides higher predic-
tive power on link prediction and forecasting tasks.

The paper is organised as follows: section 2 provides
background material on latent feature models for dy-
namic network data. Section 3 presents our generative
model and the motivation for its parameterisation. We
discuss related works in section 4, and in section 5 we
present the MCMC inference procedure. In section
6, we provide the experimental results and present an
example visualising latent feature propagation.

2. Dynamic Network Models

A network of N actors is represented by an N x N
binary link adjacency matriz Y, where y;; = 1 if there
is a “link” between person ¢ and j and y;; = 0 if there
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is no link. In social networks, a link can be inter-
preted as friendship or correspondence, though, the
applications for such a model can be far more general
in many branches of the biological and physical sci-
ences. In this work, we do not consider self-links, and
edges are undirected (i.e., Y is a symmetric matrix
and the diagonal elements are meaningless). We asso-
ciate each actor ¢ with a binary latent feature vector h;
of length K, with h;; = 1 indicating actor i possesses
feature k£ and h;; = 0 indicating he does not. These
latent feature models can be viewed as assigning the
actors to multiple, overlapping latent clusters (Airoldi
et al., 2008; Miller et al., 2009). Entries in Y are then
conditionally independent Bernoulli random variables,
given the latent feature assignments. In our social net-
work application, we interpret these latent features as
the hobbies or interests of person i. For example, fea-
ture k could mean “plays tennis” and h;; = 1 means
person ¢ plays tennis. We will refer to the set of all
feature vectors as the N x K binary matrix H where
h; is the i-th row of the matrix.

With dynamic network data, we observe a sequence of
networks YU, Y@ Y(T) each an observation of
the edges in the network at time slicest = 1,...,T. We
assume that the corresponding sequence of latent fea-
tures HO, H® ... HT) comprise a latent Markov
chain. In this framework, the latent features evolve
through time according to some Markov dynamics:

B ~ @ (n m Y (1)

where Q(r,s) is a Markov transition probability of
moving from feature state r to s, which can be a fixed
parameter, feature specific, or otherwise arbitrary, as
long as it defines a Markov transition matrix. In the
context of hidden Markov models (HMM), this transi-
tion probability does not depend on any observations.
While the state space of possible latent feature con-
figurations may seem large, models of the form (1)
actually factor the states into a matrix of state vari-
ables and are known as factorial hidden Markov mod-
els, within which tractable inference can be performed
(Ghahramani & Jordan, 1997). With an HMM, static
snapshots of the network are generated independently
from all other observations, given the latent structure
H® at time t:

yl(jt) |hl(-t)7 hg-t) ~ Bernoulli (7@(;))
) _ () Tyrp (8)
T =0 (hi th + s) (2)
Vi ~ N(O, 0’3)
where vy, k,k' = 1,..., K are the elements of the

K x K feature-interaction weight matrix V', the func-

tion o(-) is the logistic sigmoid o(x) = ﬁ, and

s is a link-bias parameter representing an underly-
ing global probability of a link. Different variants of
this model can also be considered, for example a non-
negative and diagonal feature-interaction weight ma-
trix V' corresponds to allowing links to only be affected
by the possession of common features, and such an in-
teraction can only increase the probability of a link.

3. A Latent Feature Propagation Model

In the context of social networks, HMMs assume that
social interactions such as friendships are determined
by latent hobbies or interests, and that the evolution
of these interests over time do not depend on past ob-
servations of social interactions. Consider, however,
the following two examples:

e If my friends enjoy playing tennis, I am likely to
start playing recreational tennis.

e If a friend gets me to start playing tennis, I will
likely befriend other tennis players.

In these examples, a person’s interests are influenced
by his current friends and, as he adopts their hobbies,
his future friendships are influenced by his new inter-
ests. Viewed in this manner, we wish to capture the
information propagating between the network obser-
vations and the latent structure over time.

In order to encode the latent feature propagation as-
sumption, we model the Markov transition probability
for a latent state as dependent on a weighted sum of
neighbour features. In particular, if we set the ini-

tial or “null” states of the features off, i.e., hgg) =0,
i=1,...,N, k= 1,..., K, then the latent features
dynamically evolve according to

hz(.zﬂ) M(ZH) ~ Bernoulli [0’ (c;C [ugfjl) - ka} (3)

t t
hz(‘k) + Ej@(i,t) wjh%
1+ Zj’es(i,t) wi

HEZH) =(1- Ai)hz('? + X (4)

where £(i,t) is the set of actors which are linked to
actor 7 at time ¢ and we interpret the parameters as:

1. \; € ]0,1]: actor i’s susceptibility to the influence
of friends and 1 — )\; is a corresponding measure
of actor 4’s social independence,

2. w; € Ry: the weight of influence of actor 1,

3. ¢, € Ry: a scale parameter for the persistence of
feature k, and

4. b, € R4: a bias parameter for feature k.
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We will discuss the interpretation of these social pa-
rameters in section 3.1, though, without strong prior
knowledge, we give them the following broad priors
s ~ N(—1,4), by, ~ Gamma(1,1), w; ~ Gamma(1,1),
A; ~ Beta(2,2), and ¢, ~ Gamma(l,1). The gen-
erative process for our model is then completed with
the likelihood function and prior distribution over the
feature-interaction weights in V' given by (2).

We can see from (3) that the distribution of hgzﬂ) de-
pends on the local topology of the observed network
around actor ¢ at the previous time step. A graphical
model representing our latent feature propagation as-
sumption is shown in figure 1, where the dependence
on the parameters of the model are excluded for sim-
plicity. Note in the graphical model that if we drop the
edges from the observed networks to future latent fea-
ture states, we recover the HMM given by (1). Finally,
although we focus in this work on social networks, we
conjecture that feature propagation may also be useful
for structure in networks studied in other domains.

7R

Figure 1. Graphical representation of the latent feature
propagation model. Network observations (shaded grey)
influence future latent features, thereby propagating in-
formation between the observed and latent structures
throughout the network over time.

3.1. Social parameters

We briefly discuss the motivation for the particular
form of our model; specifically, we focus on the social
parameters in the feature transition probability, given
by (3). This expression is well-defined for all config-
urations of the features HT). The state of feature
hi? at time t stochastically depends on a weighted
combination of the current state of the feature and a
contribution from the local topology of the network

around actor ¢ at time ¢t — 1, given by

(t—1) (t-1)
hig — + Z]Ee(z t—1) wjhgy,
LD jreeii—1) Wy

()

This contribution is determined by actor i’s friends
and is a normalized sum of their social influence
weights w; € Ry. Clearly, as w; increases, the more

influential actor j is to its connections. We can also
see that if friend j has feature k turned off at the pre-
vious time point h;tk) = 0, then the feature transition
probability is decreased since w; (a positive number)
is present in the denominator of the ratio (5).

The weighting in the combination of hg;_l) and (5) is
determined by the susceptibility parameter \; € [0, 1]
for actor ¢ (shown by (4)). It is clear that as A,
increases (and thus the social independence measure
1 — \; decreases), actor ¢ will tend to adopt the fea-
tures of his friends. If we consider the case when actor
7 has no friends at the previous time step, then the
weighted combination collapses down to the state hl(.z).

Finally, the combination of features is scaled and
shifted by the feature-specific persistency parameter
cr € Ry and b, € Ry, respectively. We can see that
as ¢y increases, the part of the expression for the fea-
ture probability in (3) inside the sigmoid gets pushed
further into the extremes of the logistic function, i.e.,
it becomes less likely for feature k£ to change from it’s
current state. Thus, large values could be appropriate
for a feature such as “lives in London” which is un-
likely to change over time, and low values appropriate
for features such as “likes rock music”.

4. Related work

A classical approach to analysing both static and dy-
namic networks is with a family of models called ezpo-
nential random graph models, all of which can be rep-
resented via a particular canonical parameterisation
(Hanneke et al., 2010). These methods, however, suffer
from both inconsistencies in their modelling framework
and difficulties with computation (Handcock et al.,
2003). Latent variable representations of dynamic net-
works have been presented in Xing et al. (2010), Fu
et al. (2009), and Sarkar & Moore (2005), where the
evolution of the network through time is determined
by the underlying latent variables evolving according
to a linear Gaussian model. The work in Westveld &
Hoff (2011), and a particular study of social networks
in Hoff et al. (2002), also use latent representations and
treat network evolution as a regression problem, where
parameters in the model represent expectations and
covariances of connectivity patterns in the network. In
contrast to these approaches, our model instead uses
the framework of HMMs, where the latent variables
stochastically depend on their state at the previous
time step. Highly related to our model in this sense is
the dynamic relational infinite feature model (DRIFT)
from Foulds et al. (2011), which is the dynamic ex-
tension of the latent feature relational model (LFRM)
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from Miller et al. (2009). Like our model, DRIFT uses
Markov switching dynamics to model the evolution of
multiple latent Markov chains through time, however,
it is unable to capture the latent feature propagation
associated with social networks.

Previous work on modelling dynamic network struc-
ture as dependent on the observed structure at pre-
vious time points are usually referred to as autore-
gressive models. This literature is far too vast to
attempt to summarise, however, these models typi-
cally deal with only the observations Y and do not
use latent variable representations or Bayesian mod-
elling approaches, for example, see Snijders (2006) and
their application to social networks in Snijders (2001).
In the social network literature, there is a great deal
of work which studies the latent feature propagation
phenomenon, often termed social influence, selection,
and trust propagation, for instance see Crandall et al..
Some of these works do use latent variable approaches,
but lack a probabilistic framework. To the best of
our knowledge, our method is the first Bayesian model
for dynamic network data which is able to model la-
tent structure which directly depends on observed data
from the network.

5. MCMC Inference

We develop a Markov chain Monte Carlo procedure to
approximate samples from the posterior distributions
of the latent variables in our model. Let H(_tz)k be
the current states of all latent features in the model at
time ¢, excluding hg?. Let 2 be the current state of all
parameters and variables in the model which are con-
stant across time, and let Y (1) denote the sequence
(Y ... Y®) and similarly for H®),

5.1. Sample latent features H(7)

We use the forward-backward recursion algorithm
from Scott (2002) to sample each latent feature chain
hgi:T) one at a time given the current state of all other
variables and parameters in the model. The algorithm
first defines a deterministic forward pass which runs
down the chain starting at time one and, at each time
point %, collects information from the data and param-
eters up to time ¢ in a dynamic programming cache. A
stochastic backwards pass is then defined which starts
at time T and samples each hl(.,? in backwards order
T,T—1,...,1 conditioned on all of the data Y (:7) | us-
ing the information collected during the forward pass.

In particular, the forward pass creates the dynamic
programming cache P, ..., Pp, where P, is the joint
distribution of (hgz_l),hgz)) given all variables and

data up to time ¢t. Thus, P; = (pg-s) is a 2 X 2 matrix
with elements

Prs = P (h(t Y =" h(t) ‘Y(ltt)a H(,li:]z)7 Q)

w0 Q4 s P (YO[B =5, HY) @)
where the quantity

can be computed once P; is known, settlng up the
next step in the recursion. Proportionality is recon-

ciled with > > pus = 1. Here, Q(t_l t)('r s) is the
(t n_

o (1:¢
= S‘Hiik

Markov transition probability from state h;

hi? = s. It is expressed as the Bernoulli den81ty

letcﬂ,t) (r,s) = [Pz('?r [1 3 pm (1—s)
() )

Pir. = U(Ck[
where the expression for /%(‘k) is given by (4), evalu-
ated at hE,t;l) = r and the current states of all other
variables in the model. Finally, the partial likelihood
term P(Y'(®) \h(t) = s, Hgk,ﬂ) is computed only for
the observations Y ®) at time t, evaluated at h(k) =s
and the current states of all other variables.

For the stochastic backwards pass, we first sample

hl(.kT) ~ 7r§,?(~), then sample each remaining state

in the chain hl(.;:Tfl) in backwards order (i.e., t =
T-1,T-2,....1) via
Pl ™" = [y~ y T, @)

X Py 1,5, n (T4

Scott (2002) shows that this procedure avoids the
label-switching problem commonly encountered with
mixture models. Sampling one chain with this algo-
rithm computes as O(257), while computing the likeli-
hood in (2) for a single time point costs O(K?N?). The
latter computation can be straightforwardly reduced
to O(K?2L), where L is the number of observed links
in the network, using the likelihood model in Mgrup
et al. (2011). Such a model variant allows scalability
to large realistically-sized datasets, however, it suffers
from reduced expressibility, allowing only positive in-
teraction weights (given by the matrix V' in (2)).

5.2. Sample feature interaction weights and
social parameters

We use slice sampling (Neal, 2003) to learn the feature-
interaction weights V' and the social parameters (with
prior distributions specified in section 3) in turn given
the current values of all other variables in the model.
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6. Experiments

We evaluate our method on two tasks: 1) the pre-
diction of held-out links, and 2) forecasting a future,
unseen network. We also provide an example which
visualises latent feature propagation in a network.

6.1. Datasets and baseline methods

We experiment on a synthetic dataset generated from
our model and two social network datasets. Compari-
son is made against two baseline methods.

Synthetic data: simulated network of 50 actors over
100 time steps with 10 features and parameters ran-
domly drawn from their prior distributions. We train
the data on the correct number of features (K = 10).

NIPS co-authorship: a subset of the widely studied
NIPS co-authorship dataset.! The full dataset con-
sists of co-authorship information among researchers
on publications in the NIPS conference over the years
from 1987 to 2003 (T' = 17 years). We take the 110
researchers which are most connected across all time
steps and use K = 15 latent features for training.

INFOCOM ’06: proximity interactions between 78
students at the INFOCOM 2006 conference (Scott
et al., 2009), recorded using wireless detector remotes
given to student attendees over a period of about 93
continuous hours. We agglomerated the recordings
into one hour-long time slices, symmetricised the link
matrices (remote sightings aren’t necessarily recipro-
cated) by keeping only reciprocated sightings. We also
removed slices with less than 80 links (corresponding
to late night and early morning hours), resulting in 50
time steps. We use K = 10 latent features for training.

Comparison to baseline methods: we compare the
performance of our model (LFP) against two baseline
methods. The first is the finite (parametric) version
of the DRIFT model from Foulds et al. (2011), which
is presented therein before taking the infinite limit of
their model. We also implement a finite version of
the LFRM model from Miller et al. (2009), which is a
model for static networks. This is equivalent to using
the finite version of the Indian buffet process presented
in Griffiths & Ghahramani (2011) as a prior distribu-
tion over the feature matrix. Essentially, each feature
assignment has a beta-Bernoulli distribution with the
Bernoulli parameter integrated out. By re-examining
figure 1, we can see that (finite) DRIFT corresponds
to dropping the edges from observations to latent fea-
tures, and (finite) LFRM corresponds to additionally
dropping the edges between latent features.

!Obtained from http://ai.stanford.edu/~gal/data.html

6.2. Prediction of missing links

We first evaluate our model and the baseline methods
on the task of predicting missing edges in a network,
interpreted as observing some social relations (or lack
thereof) in a network and having to predict a set of
unobserved interactions. At each time point, we hold
out a different 20% of the interactions (either links or
non-links) as a test set chosen uniformly at random.
We run the MCMC inference procedure; for the syn-
thetic and INFOCOM datasets, we use 1,000 burn-in
iterations for LFP and finite DRIFT, and 800 itera-
tions for finite LFRM. For the NIPS dataset, we used
800 burn-in iterations for LFP and finite DRIFT and
600 iterations for finite LFRM. We found all of these
burn-in times to be sufficient. Since LFRM is a static
model, we train it on each time step individually.

After the Markov chains have burned-in, we collected
300 samples of the latent features and model parame-
ters from their approximated steady state distribution.
We then estimate the posterior mean of the link prob-
ability for each interaction in the test set by averaging
(2) over the collected samples. These link probabili-
ties are then used to evaluate the log-likelihood of each
model computed on the test set. We also compute the
area under the curve (AUC) of the receiver operating
characteristic metric. We perform 10 repeats of this
procedure, each time holding out a different random
20% of the data as a test set. Box-plots of the results
on the 10 repeats are shown in figures 2 and 3 for the
log-likelihoods and AUC scores, respectively. In each
plot, we designate with (xx) any statistically signifi-
cant results compared to the second best performing
method, based on a T-test at a 0.05 significance level.

On the synthetic dataset, LFP achieves a higher log-
likelihood under the test data than both baseline meth-
ods, with a statistically significant improvement over
the next best result (from finite DRIFT) based on the
T-test (p-value of 1.7 x 107%9). Without a capability
to model the dynamics of the network, finite LFRM
is drastically outperformed by both LFP and finite
DRIFT and is noticeably less robust (higher variance
over the repeats). LFP also achieves the highest AUC
score, with a statistically significant improvement (p-
value of 9 x 107%9) over finite LFRM, the second best
performing method. Interestingly, finite LFRM sig-
nificantly outperforms finite DRIFT on this dataset,
perhaps indicating that modelling latent feature dy-
namics based only on their popularity is a bad model
when feature propagation is truly present in a network.

On the NIPS dataset, LFP again outperforms both
baselines on the log-likelihood and AUC metrics, the
result being statistically significant in both cases (p-
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Figure 3. AUC scores for classifying the test set in the same experiment as in figure 2. Statistically significant results are
indicated by (xx) based on a T-test at a 0.05 significance level.

values of 0.0091 and 0.0098, respectively). Upon ex-
amining the result plots, LFP appears to also provide
the most robust estimates. On the INFOCOM dataset,
the median (and mean) of both the log-likelihood and
AUC score are highest for LFP, however, the results
are not statistically significant based on a T-test (p-
values of 0.1806 and 0.2055, respectively). Despite
this, we will see in the forecasting task some evidence
that LFP is still a preferable model on this dataset.

6.3. Forecasting

Our next task is to forecast the interactions in a previ-
ously unseen network. Following Foulds et al. (2011),
for each time t = 1,...,T, we train a model on the
data from time 1 to t — 1 and estimate the predictive
distribution of the unseen network ¥ ) using

P(Y®|ytt=1y = Z Z P(YWO|H®)
H® Hit—1)
> P(H(t) |H(t71), Y(tfl))P(H(lztfl) |Y(1:t71))'

In order to approximate this distribution, we obtain
multiple samples of the features H(1*=1 following the

MCMC inference procedure. Using each of these sam-
ples, we draw repeated samples of H(*) using the learnt
feature transition probabilities and the data Y *) from
time t. In particular, for each sample obtained for
H =1 we must draw multiple samples of H® to ac-
curately approximate its posterior distribution in order
to marginalise it out. In our experiments, we generate
10 such samples for each of the 300 samples collected
for H(:*=1_ For LFRM, we predict a network Y ()
at time ¢ by training on only Y *~Y and using the
predictive distribution for Y= as a model for Y ®).

We perform this experiment on the NIPS and IN-
FOCOM datasets. We used the same number of la-
tent chains for each dataset as in the prediction task,
and burn-in the incremental time steps as follows: for
t =1 we used 300 burn-in iterations. We then use the
burned-in states of the variables and parameters in
the model to initialise training on the next time point
t = 2 (after adding the data Y(?), and so on. Upon
analysing the burn-in periods for all time increments,
we found this amount of training time to be more than
sufficient for both datasets on all models. For accu-



Latent Feature Propagation in Social Networks

4000 - ' '

-4000 -

8000 [-e-bassline

—-2-LFP
—+DRIFT
12000 | -&-LFRM

log-likel. difterence from baseline

0 2 4 8 8 10 12 14 18
time

(a) NIPS dataset, K = 15 features.

10 T T

—e—baseline
-&—LFP
—+—DRIFT

—=-LFRM

log-likel. difference from baseline

8] 5 10 15 20 25 20 35 40 45 50
time

(b) INFOCOM dataset, K = 10 features.

Figure 4. Forecasting a future unseen network. Differences from a naive baseline of the log-likelihoods of Y after training
on Y=Y performed sequentially for each ¢ = 1,...,T. No data was held out of the training sets.

rate comparison, we also implement the same naive
baseline method used for comparison in Foulds et al.
(2011), where at each time ¢, the posterior predictive
probability for a link in the network is proportional to
the previous number of occurrences of that link in the
training data in ¢ = 1,...,t — 1. This is equivalent
to an independent Dirichlet-multinomial distribution
on each ygﬁ), i,7 =1,...,N, and a symmetric Dirich-
let prior distribution is used with parameter ¢/5 (note
this increases with the amount of training data).

In figure 4, we show the difference of the test log-
likelihoods from the baseline for each predicted time
point ¢t. First, we note that the NIPS dataset is very
sparse so it is not surprising that the baseline method
performs relatively well, since it will more often than
not predict a non-link. LFP is the only method which
is able to consistently achieve higher likelihoods at
each time point than the naive baseline method, with
finite DRIFT and finite LFRM consistently under per-
forming. On the INFOCOM dataset, we see that LFP
and finite DRIFT both perform consistently well, with
LFP clearly providing the best results. Near the be-
ginning of the dataset, there are a few irregular time
points in which both finite LFRM and finite DRIFT
perform unusually well, perhaps attributing to the lack
of a statistically significant result for LFP in the pre-
diction tasks on the INFOCOM dataset.

We make one final note that the two social network
datasets are very different in nature. As already men-
tioned during the forecasting task, the NIPS dataset
is very sparse across the time steps and, conversely,
the INFOCOM dataset is very dense. The superior
performance of LFP in our experiments on both of
these datasets evidences the appropriateness of the la-
tent feature propagation assumption for widely vary-
ing types of social network data.

6.4. Feature propagation

We demonstrate our model’s ability to capture the
phenomenon of latent feature propagation throughout
a network over time. We run the MCMC inference
procedure described in section 5 to learn a latent fea-
ture representation of a small (N = 70) subset of the
NIPS dataset with no data held out. We learn a set
of K = 15 features resulting in an N x K matrix of
Bernoulli probabilities at each time t. These proba-
bilities define the distribution over the latent feature
matrix H®+1) at time t + 1, the expressions of which
are given by (3) (the transition probability for hl(,tjl)
is the Bernoulli parameter). We perform a singular
value decomposition of these feature probability ma-
trices in order to reduce the representation of each au-
thor’s feature vector to a location in two-dimensional
space, using the two most significant components.

In figure 5, we display the evolution of the authors’ la-
tent feature representations from 1997 to 1999. Each
blue dot represents an author, 20 of which are labelled
in order to track their movement across time (see the
caption of figure 5 for the author names). Here, close-
ness in the 2D-reduced space represents similarity in
the original 15-dimensional feature space. We display
the co-authorship observations (as red lines) in a par-
ticular sequence to demonstrate that if two researchers
co-author a paper in one year, their latent feature rep-
resentations become closer in the following year.

In figure 5(a), we begin with the authors’ latent feature
representations in 1997, along with the observed co-
authorships in 1997. In figure 5(b), we advance the la-
tent feature representations by one year to 1998, while
still displaying the same co-authorships from 1997 so
that the reader can easily compare the movement of
linked authors. We can see that the feature representa-
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Figure 5. Visualising feature propagation in a subset of the NIPS dataset from 1997 to 1999 using the LFP model with
K = 15 features. A sequence of learnt feature matrices are plotted (as blue dots) onto a 2D-reduced feature space and
overlaid with the co-authorship observations (as red lines) in a particular sequence to show that if two researchers co-author
a paper, their latent feature representations become closer in the following year (see the text for details). Several authors
are tracked: Barber_D (DB); Bengio_Y (YB); Bishop-C (CBi); Burges.C (CBu); Dayan_P (PD); Ghahramani-Z (ZG);
Hinton G (GH); Jordan-M (MJ); Saul_L (LS); Scholkopf B (BSchol); Schottky_B (BSchot); Sejnowski_T (TS); Simard_P
(Psi); Singer_Y (YSi); Singh_S (SS); Smola_A (AS); Sollich_P (PSo); Vapnik_V (VV); Williams_C (CW); Zemel R (RZ).

tions of one inter-connected group of authors have clus-
tered towards the top of the figure. Another smaller
set of co-authors have grouped in the middle of the
figure. This convergence of authors in latent feature
space following a co-authorship in the previous year is
an example of latent feature propagation. Such config-
urations improve the explanatory power of the model,
as evidenced by the experimental results on the pre-
diction and forecasting tasks.

We can see the same pattern in the following year.
Continuing to figure 5(c), we again show the fea-
ture representation from 1998 and we update the co-
authorships to 1998 (one year following those in figure
5(b)). Many of the co-authorships in 1997 have oc-
curred again in 1998 and some authors that are far
apart in feature space in 1997 have collaborated on a
paper in 1998. With latent feature propagation, we
expect these authors to move closer in latent feature
space in the following year, and indeed this is the case.
In figure 5(d), we advance the feature representations
to 1999 while still displaying the co-authorships from
the previous year. We can see that the feature space
has reorganised itself using latent feature propagation
to form two inter-connected groups of authors which
have been distinctly separated from the large number
of authors with no co-authorship information.

7. Future Work

In this work, we only consider a fixed, finite number
of features, however, Bayesian non-parametrics employ
methods which can automatically learn the complexity
of a network model (Kemp et al., 2006; Miller et al.,
2009; Palla et al., 2012) (see also Roy & Teh (2009)
and Lloyd et al. (2012) for interesting alternatives).
Non-parametric extensions of the HMM allowing a po-
tentially infinite number of latent states are based on
the infinite HMM from Beal et al. (2002) (see also Teh
et al. (2006)) and the infinite factorial HMM from Van
Gael et al. (2009). Applications to network data were
done by Xing et al. (2010) and Foulds et al. (2011)
(see also Xu et al. (2006)). These methods require the
distribution over the data to be invariant to permu-
tations of the transitions in the state space, a prop-
erty called Markov exchangeability which has yet to be
reconciled in our model. However, we envision that
some form of this symmetry may exist on the joint
space {H® Y}, which could likely be exploited
to take the infinite limit K — oo of our model.
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