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Abstract

Crowdsourcing markets have gained popular-
ity as a tool for inexpensively collecting data
from diverse populations of workers. Classifi-
cation tasks, in which workers provide labels
(such as “offensive” or “not offensive”) for in-
stances (such as “websites”), are among the
most common tasks posted, but due to hu-
man error and the prevalence of spam, the
labels collected are often noisy. This problem
is typically addressed by collecting labels for
each instance from multiple workers and com-
bining them in a clever way, but the question
of how to choose which tasks to assign to each
worker is often overlooked. We investigate
the problem of task assignment and label in-
ference for heterogeneous classification tasks.
By applying online primal-dual techniques,
we derive a provably near-optimal adaptive
assignment algorithm. We show that adap-
tively assigning workers to tasks can lead
to more accurate predictions at a lower cost
when the available workers are diverse.

1. Introduction

Crowdsourcing markets provide a platform for inex-
pensively harnessing human computation power to
solve tasks that are notoriously difficult for computers.
In a typical crowdsourcing market, such as Amazon
Mechanical Turk, registered users may post their own
“microtasks” which are completed by workers in ex-
change for a small payment, usually around ten cents.
A microtask may involve, for example, verifying the
phone number of a business, determining whether or
not an image contains a tree, or determining (subjec-
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tively) whether or not a particular website is offensive.

The availability of diverse workers willing to complete
tasks inexpensively makes crowdsourcing markets ap-
pealing as tools for collecting data (Wah et al., 2011).
Classification tasks, in which workers are asked to pro-
vide a binary label for an instance, are among the most
common tasks posted (Ipeirotis, 2010). Unfortunately,
due to a mix of human error, carelessness, and fraud
— the existence of spammy workers on Mechanical
Turk is widely acknowledged — the data collected is
often noisy (Kittur et al., 2008; Wais et al., 2010). For
classification tasks, this problem can be overcome by
collecting labels for each instance from multiple work-
ers and combining these to infer the true label. In-
deed, much recent research has focused on developing
algorithms for combining labels from heterogeneous la-
belers (Dekel & Shamir, 2009; Ipeirotis et al., 2010).
However, this research has typically focused on the in-
ference problem, sidestepping the question of how to
assign workers to tasks by assuming that the learner
has no control over the assignment. One exception
is the work of Karger et al. (2011a;b), who focus on
the situation in which all tasks are homogeneous (i.e.,
equally difficult and not requiring specialized skills),
in which case they show that it is not possible to do
better than using a random assignment.

One might expect the assignment to matter more when
the tasks are heterogeneous. Classifying images of
dogs versus images of cats is likely easier for the av-
erage worker than classifying images of Welsh Terriers
versus images of Airedale Terriers. It might be neces-
sary to assign more workers to tasks of the latter type
to produce high confidence labels. The assignment can
also be important when tasks require specialized skills.
A worker who knows little about dogs may not be able
to produce high quality labels for the Terrier task, but
may have skills that are applicable elsewhere.

We investigate the problem of task assignment and la-
bel inference for heterogeneous classification tasks. In
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our model, a task requester has a set of tasks, each
of which consists of an instance for which he would
like to infer a binary label. Workers arrive online.
The learner must decide which tasks to assign to each
worker, and then use the noisy labels produced by the
workers to infer the true label for each task. The
goal of the learner is to output a set of labels with
sufficiently low error while requesting as few labels
from workers as possible. Building on online primal-
dual methods (Buchbinder & Naor, 2005), we propose
an exploration-exploitation algorithm that is provably
competitive with an optimal offline algorithm that has
knowledge of the sequence of workers and their skills
in advance. We then evaluate this algorithm in a va-
riety of experiments on synthetic data and show that
adaptively allocating tasks helps when the worker dis-
tribution is diverse or the tasks are heterogeneous.

2. Related Work

Our research is mostly closely related to that of
Karger et al. (2011a;b) and Ho & Vaughan (2012).
Karger et al. introduced a model in which a requester
has a set of homogeneous labeling tasks he must assign
to workers who arrive online. They proposed an as-
signment algorithm based on random graph generation
and a message-passing inference algorithm inspired by
belief propagation, and showed that their technique
is order-optimal in terms of labeling budget. In par-
ticular, let pj be the probability that worker j com-
pletes any given task correctly and q = E[(2pj − 1)2],
where the expectation is over the choice of a random
worker j. They proved that their algorithm requires
O((1/q) log(1/ε)) labels per task to achieve error less
than ε in the limit as the numbers of tasks and work-
ers go to infinity. They also showed that adaptively
assigning tasks does not help in their setting, in that
Ω((1/q) log(1/ε)) labels are still needed in general.

We generalize this model to allow heterogeneous tasks,
so that the probability that worker j completes a task
correctly may depend on the particular task. In this
generalized setting, assigning tasks adaptively can pro-
vide an advantage both in theory and in practice.

Our techniques build on the online primal-dual frame-
work, which has been used to analyze online opti-
mization problems ranging from the adwords prob-
lem (Buchbinder et al., 2007; Devanur et al., 2011)
to network optimization (Alon et al., 2004) and pag-
ing (Bansal et al., 2007). Ho & Vaughan (2012) were
the first to apply this framework to crowdsourcing. In
their model, a requester has a fixed set of tasks of dif-
ferent types, each of which must be completed exactly
once. Each worker has an unknown skill level for each

type of task, with workers of higher skill levels produc-
ing higher quality work on average. Workers arrive on-
line, and the learner must assign each worker to a sin-
gle task upon arrival. When the worker completes the
task, the learner immediately receives a reward, and
thus also a noisy signal of the worker’s skill level for
tasks of that type. Workers arrive repeatedly and are
identifiable, so the learner can form estimates of the
workers’ skill levels over time. The goal is to maximize
the sum of requester rewards. Ho & Vaughan provide
an algorithm based on the online primal-dual frame-
work and prove that this algorithm is competitive with
respect to the optimal offline algorithm that has access
to the unknown skill levels of each worker.

Our model differs from that of Ho & Vaughan in sev-
eral key ways. Their analysis depends heavily on the
assumption that the requester can evaluate the quality
of completed work immediately (i.e., learn his reward
on each time step), which is unrealistic in many set-
tings, including the labeling task we consider here; if
the requester could quickly verify the accuracy of la-
bels, he wouldn’t need the workers’ labels in the first
place. In their model, each task may be assigned to a
worker only once. In ours, repeated labeling is neces-
sary since there would be no way to estimate worker
quality without it. These differences require a different
problem formulation and novel analysis techniques.

Repeated labeling has received considerable empiri-
cal attention, dating back to the EM-based algorithm
of Dawid & Skene (1979). Sheng et al. (2008) consid-
ered a setting in which every worker is correct on every
task with the same probability, and empirically evalu-
ated how much repeated labeling helps. Ipeirotis et al.
(2010) extended this idea to heterogeneous workers
and provided an algorithm to simultaneously esti-
mate workers’ quality and true task labels. More re-
cently, there has been work showing that label infer-
ence can be improved by first estimating parameters
of the structure underlying the labeling process using
techniques such as Bayesian learning (Welinder et al.,
2010), minimax entropy (Zhou et al., 2012), and vari-
ational inference (Liu et al., 2012).

On the theoretical side, there have been several re-
sults on learning a binary classifier using labeled data
contributed by multiple teachers, each of which labels
instances according to his own fixed labeling func-
tion (Crammer et al., 2005; 2008; Dekel & Shamir,
2009). These require PAC-style assumptions and focus
on filtering out low quality workers. Tran-Thanh et al.
(2012) used ideas from the multi-armed bandit litera-
ture to assign tasks. Bandit ideas cannot be applied
in our setting without further assumptions since the
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reward corresponding to an assignment depends on
whether the worker’s label is correct, which cannot
be inferred until the task has been assigned to others.

Ghosh et al. (2011) studied a model similar to
that of Karger et al., also with homogeneous tasks,
and used eigenvalue decomposition to estimate each
worker’s quality. Their bounds depend on a quantity
essentially identical to the quantity q defined above,
which they refer to as the population’s average compe-
tence. A similar quantity plays a role in our analysis.

3. The Model

In our model, a task requester has a set of n tasks,
indexed 1, · · · , n. Each task is a binary classification
problem. The true label of task i, denoted "i, is either
1 or −1, and is unknown to the requester.

Workers arrive online. When worker j arrives, she
announces the maximum number of tasks that she is
willing to complete, her capacity, Mj . No other infor-
mation is known about each worker when she arrives.

Each worker j has a skill level, pi,j ∈ [0, 1], for each
task i. If the algorithm assigns worker j to task i,
the worker will produce a label "i,j such that "i,j = "i
with probability pi,j and "i,j = −"i with probability
1−pi,j , independent of all other labels. The algorithm
may assign worker j up to Mj tasks, and may observe
her output on each task before deciding whether to as-
sign her to another or move on, but once the algorithm
moves on, it cannot access the worker again. This is
meant to reflect that crowdsourced workers are nei-
ther identifiable nor persistent, so we cannot hope to
identify and later reuse highly skilled workers.

Several of our results depend on the quantity qi,j =
(2pi,j − 1)2. Intuitively, when this quantity is close to
1, the label of worker j on task i will be informative;
when it is close to 0, the label will be random noise.

To model the fact that the requester cannot wait arbi-
trarily long, we assume that he can only assign tasks to
the first m workers who arrive, for some known m. We
therefore index workers 1, · · · ,m. Later we consider an
additional γm workers who are used for exploration.

In addition to assigning tasks to workers, the learn-
ing algorithm must produce a final estimate "̂i for the
label "i of each task i based on the labels provided
by the workers. The goal of the learner is to produce
estimates that are correct with high probability while
querying workers for as few labels as possible.

Task structure: A clever learning algorithm should
infer the worker skill levels pi,j and assign workers to

tasks at which they excel. If the skills are arbitrary,
then the learner cannot infer them without assigning
every worker to every task. Therefore, it is necessary
to assume that the pi,j values exhibit some structure.
Karger et al. (2011a;b) assume that all tasks are iden-
tical, i.e., pi,j = pi′,j for all j and all i and i′. We con-
sider a more general setting in which the tasks can be
divided into T types, and assume only that pi,j = pi′,j
if i and i′ are of the same type.

Gold standard tasks: As is common in the litera-
ture (Oleson et al., 2011), we assume that the learner
has access to “gold standard” tasks of each task type.1

These are instances for which the learner knows the
true label a priori. They can be assigned in order to
estimate the pi,j values. Of course the algorithm must
pay for these “pure exploration” assignments.

Random permutation model: We analyze our
algorithm in the random permutation model as in
Devanur & Hayes (2009). The capacities Mj and skills
pi,j of each worker j may be chosen adversarially, as
long as the assumptions on task structure are satis-
fied. However, the arrival order is randomly permuted.
Since only the order of workers is randomized, the of-
fline optimal allocation is well-defined.

Competitive ratio: To evaluate our algorithm, we
use the notion of competitive ratio, which is an upper
bound on the ratio between the number of labels re-
quested by the algorithm and the number requested
by an optimal offline algorithm which has access to
all worker capacities and skill levels, but must still
assign enough workers to each task to obtain a high-
confidence guess for the task’s label. The optimal
offline algorithm is discussed in Sections 4 and 5.

4. An Offline Problem

To gain intuition, we first consider a simplified offline
version of our problem in which the learner is provided
with a full description of the sequence of m workers
who will arrive, including the skill levels pi,j and ca-
pacities Mj for all i and j. The learner must decide
which tasks to assign to each worker and then infer the
task labels. We discuss the inference problem first.

4.1. Aggregating Workers’ Labels

Suppose that the learner has already assigned tasks
to workers and observed the workers’ labels for these
tasks. How should the learner aggregate this informa-
tion to infer the true label for each task?

1If gold standard tasks are not available, they can be
created by assigning a small set of tasks to many workers.
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We consider aggregation methods that take a weighted
vote of the workers’ labels. Fix a task i. Let Ji denote
the set of workers assigned to this task. We consider
methods that set "̂i = sign(

∑
j∈Ji

wi,j"i,j) for some set
of weights {wi,j}. The following lemma shows that this
technique with weights wi,j = 2pi,j − 1 is guaranteed
to achieve a low error if enough high quality workers
are queried. Recall that qi,j = (2pi,j − 1)2.

Lemma 1. Let "̂i = sign(
∑

j∈Ji
wi,j"i,j) for some set

of weights {wi,j}. Then "̂i #= "i with probability at

most e−
1
2 (

∑
j∈Ji

wi,j(2pi,j−1))2/
∑

j∈Ji
w2

i,j . This bound is
minimized when wi,j ∝ (2pi,j − 1), in which case the

probability that "̂i #= "i is at most e−
1
2

∑
j∈Ji

qi,j .

The proof, which uses a simple application of Hoeffd-
ing’s inequality, is in the appendix.2 This tells us that
to guarantee that we make an error with probability
less than ε on a task i, it is sufficient to select a set of
labelers Ji such that Σj∈Jiqi,j ≥ 2 ln(1/ε) and aggre-

gate labels by setting "̂i = sign(
∑

j∈Ji
(2pi,j − 1)"i,j).

One might ask if it is possible to guarantee an error
of ε with fewer labels. In some cases, it is; if there ex-
ists an i and j such that pi,j = qi,j = 1, then one can
achieve zero error with only a single label. However,
in some cases this method is optimal. For this rea-
son, we restrict our attention to algorithms that query
subsets Ji such that Σj∈Jiqi,j ≥ 2 ln(1/ε). We use the
shorthand Cε = 2 ln(1/ε).

4.2. Integer Programming Formulation

There is a significant benefit that comes from re-
stricting attention to algorithms of the form described
above. Let yi,j be a variable that is 1 if task i is as-
signed to worker j and 0 otherwise. The requirement
that

∑
j∈Ji

qi,j ≥ Cε can be expressed as a linear con-
straint of these variables. This would not be possible
using unweighted majority voting to aggregate labels;
weighting by 2pi,j − 1 is key. This allows us to express
the optimal offline assignment strategy as an integer
linear program (IP), with variables yi,j for each (i, j):

min Σn
i=1Σ

m
j=1yi,j

s.t. Σn
i=1yi,j ≤ Mj ∀j (1)

Σm
j=1qi,jyi,j ≥ Cε ∀i (2)

yi,j ∈ {0, 1} ∀(i, j). (3)

Constraint (1) guarantees that worker j does not ex-
ceed her capacity. Constraint (2) guarantees that ag-
gregation will produce the correct label of each task

2An appendix containing all omitted proofs and addi-
tional details can be found in the long version of this paper
available on the authors’ websites.

with high probability. Constraint (3) implies that a
task is either assigned to a worker or not.

Note that there may not exist a feasible solution to this
IP, in which case it would not be possible to guarantee
a probability of error less than ε for all tasks using
weighted majority voting. For most of this paper, we
assume a feasible solution exists; the case in which one
does not is discussed in Section 5.1.

For computational reasons, instead of working directly
with this IP, we will work with a linear programming
relaxation obtained by replacing the last constraint
with 0 ≤ yi,j ≤ 1 ∀(i, j); we will see below that this
does not impact the solution too much.

4.3. Working with the Dual

Solving the linear program described above requires
knowing the values qi,j for the full sequence of workers
j up front. When we move to the online setting, it will
be more convenient to work with the dual of the re-
laxed linear program, which can be written as follows,
with dual variables xi, zj , and ti,j for all (i, j):

max CεΣ
n
i=1xi − Σm

j=1Mjzj − Σn
i=1Σ

m
j=1ti,j

s.t. 1− qi,jxi + zj + ti,j ≥ 0 ∀(i, j)
xi, zj , ti,j ≥ 0 ∀(i, j).

We refer to xi as the task weight for i, and define the
task value of worker j on task i as vi,j = qi,jxi − 1.

Suppose that we were given access to the task weights
xi for each task i and the values qi,j . (We will discuss
how to approximate these values later.) Then we could
use the following algorithm to approximate the opti-
mal primal solution. Note that to run this algorithm,
it is not necessary to have access to all qi,j values at
once; we only need information about worker j when
it comes time to assign tasks to this worker. This is
the advantage of working with the dual.

Algorithm 1 Primal Approximation Algorithm

Input: Values xi and qi,j for all (i, j)
For every worker j ∈ {1, . . . ,m}, compute the task
values, vi,j = qi,jxi − 1, for all tasks i. Let nj be the
number of tasks i such that vi,j ≥ 0. If nj ≤ Mj , then
set yij ← 1 for all nj tasks with non-negative task
value. Otherwise, set yi,j ← 1 for the Mj tasks with
highest task value. Set yi,j ← 0 for all other tasks.

The following theorem shows that this algorithm pro-
duces a near-optimal primal solution to our original
IP when given as input the optimal dual solution for
the relaxed LP. The condition that qi,jx∗

i #= qi′,jx∗
i′ for

all i #= i′ is needed for technical reasons, but can be
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relaxed by adding small random perturbations to qi,j
values as in Devanur et al. (2011).3 For the rest of the
paper, we assume that perturbations have been added
and that the condition above holds. Call this the “per-
turbation assumption.” In our final algorithm, we will
perturb our estimates of the qi,j values for this reason.

Theorem 1. Let y∗ be the primal optimal of the IP
and x∗ be the dual optimal of the relaxed formulation.
Let y be the output of the Primal Approximation Algo-
rithm given input x∗ and the true values q. Then y is
feasible in the IP, and under the perturbation assump-
tion, Σn

i=1Σ
m
j=1yi,j − Σn

i=1Σ
m
j=1y

∗
i,j ≤ min(m,n).

The proof shows that the yi,j values assigned by the
Primal Approximation Algorithm differ from the opti-
mal solution of the relaxed LP for at most min(m,n)
pairs (i, j), and that this implies the result.

5. Moving to the Online Setting

We have shown that, given access to q and the optimal
task weights x∗, the Primal Approximation Algorithm
generates an assignment which is close to the optimal
solution of the IP in Section 4.2. However, in the online
problem that we initially set out to solve, these values
are unknown. In this section, we provide methods for
estimating these quantities and incorporate these into
an algorithm for the online problem.

Our online algorithm combines two varieties of explo-
ration. First, we use exploration to estimate the op-
timal task weights x∗. To do this, we hire an addi-
tional γm workers on top of the m workers we origi-
nally planned to hire, for some γ > 0, and “observe”
their qi,j values. (We will actually only estimate these
values; see below.) Then, by treating these γm work-
ers as a random sample of the population (which they
effectively are under the random permutation model),
we can apply online primal-dual methods and obtain
estimates of the optimal task weights. These estimates
can then be fed to the Primal Approximation Algo-
rithm in order to determine assignments for the re-
maining m workers, as described in Section 5.1.

The second variety is used to estimate workers’ skill
levels. Each time a new worker arrives (including the
γm extras), we require her to complete a set of gold
standard tasks of each task type. Based on the labels
she provides, we estimate her skill levels pi,j and use
these to estimate the qi,j values. The impact of these
estimates on performance is discussed in Section 5.2.

3 Adding noise will introduce an error, but this error
can be made arbitrarily small when Cε is large. To simplify
presentation, we do no include the error in our discussion.

If we require each worker to complete s gold standard
tasks, and we hire an extra γm workers, we need to pay
for an extra (1+γ)ms assignments beyond those made
by the Primal Approximation Algorithm. We pre-
cisely quantify how the number of assignments com-
pares with the offline optimal in Section 5.3.

5.1. Estimating the Task Weights

In this section, we focus on the estimation of task
weights in a simplified setting in which we can observe
the quality of each worker as she arrives. To estimate
the task weights, we borrow an idea from the litera-
ture on the online primal-dual framework. We use
an initial sampling phase in which we hire γm work-
ers in addition to the primary m workers, for some
γ. We observe their skill levels and treat the distribu-
tion over skills of the sampled workers as an estimate
of the distribution of skills of the m primary workers.
Given the qi,j values from the sampled γm workers, we
can solve an alternative linear programming problem,
which is the same as our relaxed offline linear program-
ming problem, except thatm is replaced by γm and Cε

is replaced by γCε. Let x̂
∗ be the optimal task weights

in this “sampled LP” problem. We show that if ε is
small enough, running the Primal Approximation Al-
gorithm using x̂∗ and q yields a near-optimal solution,
with a number of assignments close to optimal, and a
prediction error close to ε after aggregation.

Theorem 2. For any ε, δ ∈ (0, 1/2), for any γ = "/m
with " ∈ {1, 2, · · · ,m} and γ ∈ [1/Cε, 1], let ŷ

s,∗ and
x̂∗ be the primal and dual optimal solutions of the sam-
pled LP with parameters ε and γ. Let ŷ∗ be the out-
put of the Primal Approximation Algorithm with in-
puts x̂∗ and q, and let ȳ∗ be the optimal assignment of
the relaxed offline formulation with parameter ε. Let
qmin = min(i,j):ŷs,∗

i,j >0 qi,j. Then under the perturba-

tion assumption, with probability at least 1− δ,

n∑

i=1

m∑

j=1

ŷ∗i,j ≤
(
1+

min(m,n)

qminnCε
+
35 ln(2/δ)

qmin
√
γCε

) n∑

i=1

m∑

j=1

ȳ∗i,j .

If the labels collected from the resulting assignment are
used to estimate the task labels via weighted majority
voting, the probability that any given task label is pre-
dicted incorrectly is no more than ε1−6 ln(2/δ)/

√
γCε .

The requirement that γ ≥ 1/Cε stems from the fact
that if Cε is small, the total number of assignments
will also be small, and the quality of the assignment
is more sensitive to estimation errors. If Cε is large,
small estimation errors effect the assignment less and
we can set the sampling ratio to a smaller value.

In the proof, we show that the gap between the ob-
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jectives of the primal solution generated by the Pri-
mal Approximation Algorithm using x̂∗ and q and the
corresponding dual solution is exactly the summation
of x̂∗

i (Cε −Σm
j=1qi,j ŷ

∗
i,j) over all tasks i, which is small

if enough workers are sampled. By weak duality, the
optimal number of assignments is between the primal
and the dual objectives, so the primal solution output
by the algorithm must be near-optimal.

A note on feasibility: We have implicitly assumed
that the sampled LP is feasible. In practice, it may
not be, or even if it is, there may exist tasks i such
that minj:ŷs,∗

i,j >0 qi,j is very small, leading to a small

value of qmin. If either of these things happen, the
task requester may want to discard some of the tasks
or lower his desired error, solve the sampled LP with
these modified constraints, and continue from there,
as there is no way to guarantee low error on all tasks.

5.2. Using Estimates of Skill Levels

We now discuss the effect of estimating worker skills.
Given observations of the gold standard tasks of type
τ that worker j completed, we can estimate pi,j for
any task i of type τ as the fraction of these tasks she
labeled correctly. The following lemma, follows from
a straightforward application of the Hoeffding bound;
we state it here as it will be useful, but omit the proof.

Lemma 2. For any worker j, for any task type τ ,
and for any t, δ ∈ (0, 1), suppose that worker j labels
ln(2/δ)/(2t2) gold standard tasks of type τ . Then with
probability at least 1− δ, for all tasks i of type τ , if we
set p̂i,j to the fraction of gold standard tasks of type τ
answered correctly then |pi,j − p̂i,j | ≤ t.

This estimate of pi,j can then be used to derive an
estimate for qi,j , with error bounded as follows.

Lemma 3. For any worker j and task i, if p̂i,j is an
estimate of pi,j such that |pi,j − p̂i,j | ≤ t, and q̂i,j is
set to (2p̂i,j − 1)2, then |qi,j − q̂i,j | ≤ 4t.

Of course the use of estimated values impacts per-
formance. Consider the offline problem discussed in
the previous section. One might hope that if we ap-
plied the Primal Approximation Algorithm using q̂,
the number of assignments would be close to the num-
ber made using q. Unfortunately, this is not true.
Consider this toy example. Let qi,1 = qi,2 = qi,3 = 1
for all i, qi,j = 10−4 for all i and j > 3, and Mj = n
for all j. Set ε = 0.224 so that Cε ≈ 3. In the op-
timal solution, each task i should be assigned only to
workers 1, 2, and 3. If we underestimate the qi,j val-
ues, we could end up assigning each task to many more
workers. This can be made arbitrarily bad.

To address this, instead of solving the relaxed offline
formulation directly, we consider an alternative LP
which is identical to the relaxed offline formulation,
except that q is replaced with q̂ and Cε is replaced
with a smaller value Cε′ (corresponding to a higher al-
lowable error ε′). We call this the approximated LP.
We show that, if ε′ is chosen properly, we can guar-
antee the optimal solution in the relaxed offline for-
mulation is feasible in the approximated LP, so the
optimal solution of the approximated LP will yield an
assignment with fewer tasks assigned to workers than
the optimal solution of the relaxed offline formulation,
even though it is based on estimations.

To set ε′, we assume the requester has a rough idea
of how hard the tasks are and how inaccurate his
estimates of worker skills are. The latter can be
achieved by applying Lemma 2 and the union bound
to find a value of t such that |pi,j − p̂i,j | ≤ t for
all (i, j) pairs with high probability, and setting each
q̂i,j = (2p̂i,j − 1)2 as in Lemma 3. For the former, let
ȳ∗ be the optimal solution of the relaxed offline formu-
lation. Define q̄∗i = Σm

j=1qi,j ȳ
∗
i,j/Σ

m
j=1ȳ

∗
i,j . We assume

that the requester can produce a value q̄∗min such that
q̄∗min ≤ q̄∗i for all i and then set Cε′ = 2 ln(1/ε′) where
ε′ = ε1−4t/q̄∗min . If the requester doesn’t have much in-
formation, he can conservatively set q̄∗min much smaller
than mini{q̄∗i }, but will both need more accurate esti-
mates of pi,j and sacrifice some prediction accuracy.

Theorem 3. Assume that we have access to a value
q̄∗min such that q̄∗min ≤ q̄∗i for all i and values p̂i,j such
that |pi,j − p̂i,j | ≤ t for all (i, j) pairs for any known
value t < q̄∗min/4. Then for any ε > 0, the opti-
mal solution of the approximated LP with parameter
ε′ = ε1−4t/q̄∗min and skill levels q̂i,j = (2p̂i,j − 1)2 is no
bigger than the optimal solution of the relaxed offline
formulation with parameter ε and skill levels qi,j.

Of course this guarantee is not free. We pay the price
of decreased prediction accuracy since we are using ε′

in place of ε. We also pay when it comes time to ag-
gregate the workers’ labels, since we must now use q̂ in
place of q when applying the weighted majority voting
method described in Section 4.1. This is quantified in
the following theorem. Note that this theorem applies
to any feasible integer solution of the approximated
LP and therefore also the best integer solution.

Theorem 4. Assume again that we have access to
a value q̄∗min such that q̄∗min ≤ q̄∗i for all i and val-
ues p̂i,j such that |pi,j − p̂i,j | ≤ t for all (i, j) pairs
for any known value t < q̄∗min/4. For any ε > 0, let
y be any feasible integer assignment of the approxi-
mated LP with parameter ε′ = ε1−4t/q̄∗min and skill lev-
els q̂i,j = (2p̂i,j−1)2. Let Ji = {j : yi,j = 1} denote the
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set of workers that are assigned to task i according to
y , and define q̂i = Σj∈Jiqi,j/ |Ji|. If the tasks are as-
signed according to y and the results aggregated using
weighted majority voting with weights wi,j = 2p̂i,j − 1,
the error probability of the predicted task label for task
i is bounded by ε(1−4t/q̄∗min)(1−4t/q̂i).

Theorem 4 tells us that if our estimates of the worker
skills are accurate (i.e., if t is small), then our pre-
diction error will be close to the error we would have
achieved if we had known the true worker skills. How
good the estimates need to be depends on the quality
of the workers, as measured by q̄∗min and q̂i. Intu-
itively, if q̄∗min is small, there may exist some task i
at which workers perform poorly in the optimal solu-
tion. In this case, the assignment will be very sensitive
to the value of ε′ chosen, and it will be necessary to
set ε′ larger to guarantee that the true optimal solu-
tion is feasible in the approximated LP. If q̂i is small,
then a small amount of error in estimated worker qual-
ity would dramatically change the weights used in the
weighted majority voting aggregation scheme.

5.3. Putting it All Together

We have separately considered relaxations of the task
assignment and label inference problem in which the
optimal task weights or worker skill levels are already
known. We now put all these pieces together, give a
combined algorithm, and state our main theorem.

Algorithm 2 Main Algorithm

Input: Values (ε, γ, s, and q̄∗min)
Hire γm preliminary workers.
for each preliminary worker do
Assign s gold standard tasks of each task type.
Calculate q̂i,j values as in Section 5.2 and per-
turb with a negligible amount of noise.

end for
Calculate Cε′ and solve the sampled LP with q̂ to
obtain primal ys and dual x̂∗ as in Section 5.1.
for each worker j ∈ {1, ...,m} do
Assign s gold standard tasks of each task type.
Calculate q̂i,j values as in Section 5.2 and per-
turb with a negligible amount of noise.
Run the Primal Approximation Algorithm with
inputs x̂∗ and (perturbed) q̂ to y.
Assign worker j to all tasks i with yi,j = 1.

end for
Aggregate the workers’ labels using weighted ma-
jority voting as in Section 4.1.

The complete algorithm is stated in Algorithm 2, and
its performance guarantee is given below. Recall that

T is the number of task types. Again, we assume that
the optimization problems are feasible.

Theorem 5. For any ε, δ ∈ (0, 1/2), for any γ = "/m
for an " ∈ {1, 2, ...,m} such that γ ∈ [1/Cε, 1], as-
sume we have access to a value q̄∗min satisfying the
condition in Theorem 3, let s be any integer satis-
fying s ≥ 8 ln(4T (1 + γ)m/δ)/q̄∗2min, and let ε′ =

ε1−4
√

ln(4T (1+γ)m/δ)/(2s)/q̄∗min . Then under the per-
turbation assumption, with probability at least 1 −
δ, when the Main Algorithm is executed with input
(ε, γ, s, q̄∗min) , the following two things hold:

1) The number of assignments of to non-gold standard
tasks is no more than

(
1 +

min(m,n)

q̂minnCε′
+

35 ln(4/δ)

q̂min
√
γCε′

)

times the optimal objective of the IP, where q̂min =
min(i,j):ys

i,j=1 q̂
s
i,j.

2) The probability that the aggregated label for each
task i is incorrect is bounded by ε(1−l1)(1−l2)(1−l3,i),
where l1 = 4t/q̄∗min, l2 = 6 ln(4/δ)/

√
γCε′ , l3,i = 4t/q̂i,

and t =
√
ln(4T (1 + γ)m/δ)/(2s).

When ε is small, Cε′ is large, and l2 approaches 0. The
competitive ratio may shrink, but if ε is too small, q̂min

will shrink as well, and at some point the problem may
become infeasible. When s is large, t is small, and so
l1 and l3,i approach 0, leading to error almost as low
as if we knew the true q values, as we would expect.

6. Synthetic Experiments

In this section, we evaluate the performance of our
algorithm through simulations on synthetically gener-
ated data. As a comparison, we also run the message-
passing inference algorithm of Karger et al. (2011a;b)
on the same data sets. As described in Section 2,
Karger et al. use a non-adaptive, random assignment
strategy in conjunction with this inference algorithm.
We show that adaptively allocating tasks to workers
using our algorithm can outperform random task as-
signment in settings in which (i) the worker distribu-
tion is diverse, or (ii) the set of tasks is heterogeneous.

We create n = 1, 000 tasks and m = 300 workers with
capacity Mj = 200 for all j, and vary the distribution
over skill levels pi,j . We would like to compare the
error rates of the algorithms when given access to the
same total number of labels. In the message-passing
algorithm, we can directly set the number of labels by
altering the number of assignments. In our algorithm,
we change the parameter ε and observe the number of
labels (including exploration) and the prediction error.
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Figure 1. Uniform tasks with one or two worker types.

6.1. Worker Diversity

In their analysis, Karger et al. assume there is only
one task type (that is, pi,j = pi′,j for all i, i′, and
j), and claim that in this setting adaptively assigning
tasks does not yield much of an advantage. Our first
experiment simulates this setting. We would like to
see if our algorithm can perform better if the worker
distribution is diverse, even though it requires some
“pure exploration” — we need to pay each worker to
complete the gold standard tasks, and we need to hire
an extra γm workers to estimate the task weights.

For our algorithm, we set γ = 0.3 and sample 90 ex-
tra workers from the same distribution to learn task
weights. Each worker is required to complete s = 20
gold standard tasks of each type when she arrives.
These values were not optimized, and performance
could likely be improved by tuning these parameters.

We examine two settings. In the first, every worker
gives us a correct label with probability 0.6414 for all
tasks. In the second, the population is 50% spammers
and 50% hammers. The spammers give random an-
swers, while the hammers answer correctly with prob-
ability 0.7. Note that these values are chosen such that
E[qi,j ] = E[(2pi,j − 1)2] is the same in both settings.

The results are shown in Figure 1. The performance
of the message-passing algorithm is almost identical in
the two settings. Our algorithm performs relatively
poorly in the setting with uniform workers since we
can’t benefit from adaptive assignments but still pay
the exploration costs. However, our algorithm outper-
forms message passing in the setting with two types
of workers, quickly learning not to assign any tasks to
the spammers beyond those used for exploration.

6.2. Heterogeneous Tasks

We next examine a setting in which there are multiple
types of tasks, and every worker is skilled at exactly
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Figure 2. Heterogeneous tasks.

one type. We generate k task types and k correspond-
ing worker types, for k = 1, 2, and 3. Type α workers
complete type α tasks correctly with probability 0.7,
but other tasks correctly with probability 0.5.

For our algorithm, we set γ = 0.3. Each worker com-
pletes s = 10 gold standard tasks of each type.

The results are shown in Figure 2. Not surprisingly,
since the message-passing algorithm does not attempt
to match tasks to suitable workers, its performance
degrades quickly when k grows. Since our algorithm
attempts to find the best match between workers and
tasks, the performance degrades much more slowly
when k grows, even with the extra exploration costs.

7. Conclusion

We conclude by mentioning several extensions of our
model. We have assumed that the requester pays the
same price for any label. Our results can be extended
to handle the case in which different workers charge
different prices. Let ci,j denote the cost of obtaining
a label for task i from worker j. The objective in the
integer program would become Σn

i=1Σ
m
j=1ci,jyi,j . This

is linear and the same techniques would apply.

The framework can also be extended to handle more
intricate assumptions about the structure of tasks.
We have assumed that there are T task types, with
pi,j = pi′,j whenever i and i′ are of the same type.
However, this assumption is used only in the explo-
ration phase in which workers’ skills are estimated.
While the amount of exploration required by the al-
gorithm depends on the particular task structure as-
sumed, the derivation of our algorithm and the general
analysis are independent of the task structure.
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