
The lasso, persistence, and cross-validation

Darren Homrighausen darrenho@stat.colostate.edu

Department of Statistics, Colorado State University, Fort Collins, CO 80523

Daniel J. McDonald dajmcdon@indiana.edu

Department of Statistics, Indiana University, Bloomington, IN 47408

Abstract

During the last fifteen years, the lasso pro-
cedure has been the target of a substan-
tial amount of theoretical and applied re-
search. Correspondingly, many results are
known about its behavior for a fixed or op-
timally chosen smoothing parameter (given
up to unknown constants). Much less, how-
ever, is known about the lasso’s behavior
when the smoothing parameter is chosen in
a data dependent way. To this end, we give
the first result about the risk consistency of
lasso when the smoothing parameter is cho-
sen via cross-validation. We consider the
high-dimensional setting wherein the number
of predictors p = nα, α > 0 grows with the
number of observations.

1. Introduction

Since its introduction in the statistical (Tibshirani,
1996) and signal processing (Chen et al., 1998) commu-
nities, `1-penalized linear regression has been a fixture
as both a data analysis tool and as a subject for deep
theoretical investigations. In particular, for a response
vector Y ∈ Rn, design matrix X ∈ Rn×p, and tuning
parameter t, we consider the lasso problem of finding

β̂t ∈ argmin
β∈Bt

1

n
||Y − Xβ||22 (1)

where Bt := {β : ||β||1 ≤ t} and ||·||2 and ||·||1 indicate
the Euclidean and `1-norms respectively. By convex-
ity, for each t, there is always at least one solution in
equation (1). Note that, while the solution is not nec-
essarily unique (i.e.: when rank(X) < p), this detail is
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unimportant for our purposes and we abuse notation
slightly by referring to β̂t as ‘the’ lasso solution.

There is a large and growing literature investigating
the asymptotic properties of the lasso solution. We
highlight some results here, but it is not our intention
to give an exhaustive overview of the field. In one
of the earliest theoretical papers, Fu & Knight (2000)
examine the asymptotic distribution of the lasso solu-
tion under the assumption that the sample covariance
matrix has a nonnegative definite limit and p is fixed.
Alternatively, Zou (2006); Wainwright (2009); Donoho
et al. (2006); Meinshausen & Yu (2009); Meinshausen
& Bühlmann (2006) and Zhao & Yu (2006) have in-
vestigated the model selection properties of the lasso.
These results, which hold under various sparsity and
“irrepresentability” conditions, show that if we assume
the best predicting linear model to be sparse, the lasso
will tend to asymptotically recover those predictors.

The criterion we focus on for this paper is risk con-
sistency, alternatively known as persistence. That is,
we require the prediction risk of the estimated model
to converge to that of the best linear oracle predictor.
Risk consistency has previously been investigated by
Bunea et al. (2007), van de Geer (2008), and Green-
shtein & Ritov (2004). These results depend critically
on the choice of tuning parameters and are typically
of the form: if t = tn is such that tn = o(an) for some

rate an, such as an = (n/ log(n))1/4, then β̂tn is per-
sistent. However comforting results of this type are,
this theoretical guidance says little about the proper-
ties of the lasso when the tuning parameter is chosen
in a data-dependent, and hence stochastic, way.

There are several proposed techniques for choosing t,
or equivalently, the parameter in the Lagrangian for-
mulation, commonly denoted by λ. Zou et al. (2007)
and Tibshirani & Taylor (2012) investigate using the
“degrees of freedom” of a lasso solution which can be
informally defined as the trace of the covariance be-
tween the lasso solution and the response Y . The logic
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of this procedure is that an unbiased estimator of the
degrees of freedom provides an unbiased estimator of
the risk. Hence, minimizing this estimator of the risk
provides a method for choosing the tuning parameter.
Another risk estimator is the adapted Bayesian infor-
mation criterion of Wang & Leng (2007). It uses a
plug-in estimator of the second-order Taylor’s expan-
sion of the risk.

However, in many papers, for example (Tibshirani,
1996; Greenshtein & Ritov, 2004; Hastie et al., 2009;
Efron et al., 2004; Zou et al., 2007; Tibshirani, 2011;
van de Geer & Lederer, 2011) and in the R package
glmnet described by Friedman et al. (2010), the rec-
ommended or default technique for selecting t in the
lasso problem is to choose t = t̂ such that t̂ minimizes
the cross-validation (which we abbreviate CV) estima-
tor of the risk.

The main contribution of this paper is to show that
the use of cross-validation to choose the tuning pa-
rameter in lasso remains persistent relative to the the-
oretically optimal, but empirically unavailable, non-
stochastic choice. We consider the high-dimensional
regime where pn = nα, for a positive α that is to be
discussed in Section 3.

Some results supporting the use of CV for statistical
algorithms other than lasso are known. For instance
kernel regression (Györfi et al., 2002, Theorem 8.1), k-
nearest neighbors (Györfi et al., 2002, Theorem 8.2),
and neural networks (Plutowski et al., 1994) all behave
well with tuning parameters selected via CV. However,
the vast literature on the lasso is strangely silent on the
theoretical behavior of the cross-validated estimator.
The prevailing heuristic understanding of the perfor-
mance of β̂t̂, which is the lasso solution with t chosen
by CV, is encapsulated in the statement

Regarding the choice of the regularization
parameter, we typically use [t̂] from cross-
validation. ‘Luckily’, empirical and some
theoretical indications support [good perfor-
mance]...(Tibshirani, 2011, Bühlmann’s com-
ments).

The supporting theory for non-lasso methods suggests
that there should be corresponding theory for the
lasso. However, other results are not so encouraging.
In particular, Shao (1993) shows that cross-validation
is inconsistent for model selection. As lasso implic-
itly does model selection, and shares many connections
with forward stepwise regression (Efron et al., 2004),
this raises a concerning possibility that lasso might
similiarly be inconsistent for prediction under cross-
validation. Likewise, Leng et al. (2006) show that us-

ing prediction accuracy (which is what cross-validation
estimates) as a criterion for choosing the tuning pa-
rameter in lasso fails to recover the sparsity pattern
consistently in an orthogonal design setting. Further-
more, Xu et al. (2008) show that sparsity inducing al-
gorithms like lasso are not (uniformly) algorithmically
stable. In other words, leave-one-out versions of the
lasso estimator are not uniformly close to each other.
As shown in Bousquet & Elisseeff (2002), algorithmic
stability is a sufficient, but not necessary, condition for
persistence.

These results taken as a whole leave the lasso in an
unsatisfactory position, with some theoretical results
and generally accepted practices advocating the use
of cross-validation while others indicate that cross-
validation may not be a sound method for selecting
the tuning parameter at all.

In this paper, we show that the lasso under random
design with cross-validated tuning parameter is indeed
risk consistent under some conditions on the joint dis-
tribution of the design that generates X and the re-
sponse Y . In Section 2, we outline the mathemati-
cal setup for the lasso prediction problem and discuss
some empirical concerns. Section 3 contains the main
result and associated conditions. Section 4 presents
some useful lemmas and provides the proof of our re-
sults, while Section 5 summarizes our contribution.

2. Notation and definitions

2.1. Preliminaries

Suppose we observe pairs Z>i,n = (Yi,n, X
>
i,n) of pre-

dictor variables, Xi,n ∈ Rpn , and response variables,

Yi, where Zi,n
i.i.d∼ Fn for i = 1, 2, . . . , n and the dis-

tribution Fn is in some class F to be specified later.
Here, we use the notation pn to allow the number of
predictor variables to change with n. For simplicity
of notation, in what follows, we omit the subscript n
when there is little risk of confusion.

We consider the problem of estimating the best lin-
ear functional f(X1, . . . ,Xp) = β>X for predicting
Y, when Z> = (Y,X>) ∼ Fn is a new data point
from the same distribution and β is constrained to
be in some set B. We use the L2-risk of a predictor
β = (β1, . . . , βp)

>, defined as

L (β) := EFn

[
(Y − β>X )2

]
, (2)

for our criterion. Note that the expectation here is
taken only over the new datum Z and not over any
observables which may or may not be used to choose β.
This will be our convention throughout: L(·) denotes
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the expectation over a new data point conditional on
the original sample.

Using the n independent observations Z1, . . . , Zn, we
can form the response vector Y := (Yi)

n
i=1 and design

matrix X := [X1, . . . , Xn]>. Then, given a vector β,
we can write the squared-error objective function as

L̂ (β) :=
1

n
||Y − Xβ||22 =

1

n

n∑
i=1

(Yi −X>i β)2. (3)

Recall that we define Bt := {β : ||β||1 ≤ t}. Anal-
ogously to equation (3), we write the K-fold cross-
validation estimator of the risk with respect to some
regularization set Bt, which we abbreviate to CV-risk,
as

L̂Vn
(t) = L̂Vn

(
β̂
(v1)
t , . . . , β̂

(vKn )
t

)
:=

1

K

∑
v∈Vn

1

|v|
∑
r∈v

(
Yr −X>r β̂

(v)
t

)2
. (4)

Here, Vn = {v1, . . . , vK} is a set of validation sets, β̂
(v)
t

is the estimator in equation (1) with the observations
in the validation set v removed, and |v| indicates the
cardinality of the set v. Notice in particular that the
CV-risk is a function of Bt, and hence t, rather than
a single predictor β̂. As the more complete notation
makes clear, the CV-risk is actually a function of K

different predictors β̂
(v)
t . Lastly, we define the CV-risk

minimizing choice of tuning parameter to be

t̂ = argmin
t∈Tn

L̂Vn (t) . (5)

2.2. Choosing the set Tn

In practice, an upper bound must be selected for any
grid-search optimization over t. Note that more ad-
vanced optimization techniques are generally not prac-
tical as the CV objective function in equation (5) is
often noisy. To define such an upper bound in a prac-
tical way, it should be large enough to include all pos-
sible estimators in a given class while still being finite.
This implies we must choose Tn to be a function of the
data, in the same way that t̂ is. The specifics of Tn
depend on the regularizing set Bt. This upper bound
has a nontrivial impact on the quality of the recovery,
as choosing a value too small may possibly eliminate
the best solutions. Thus, treating the upper bound as
a random function of the data is more realistic from a
statistical practice point of view.

We note that, by the definition of Bt, β̂t must be in the
`1-ball with radius t. This constraint is only binding
(Osborne et al., 2000) if

t < min
η∈K
||β̂0 + η||1 =: t0,

where β̂0 := (X>X)†X>Y is a least squares solution,
(·)† is a pseudoinverse, and K := {a : Xa = 0} is the
null space of X. Observe that K = {0} if n ≥ p and

otherwise K has dimension p−n, and β̂0 is not unique
(both of these statements assume the columns of X are
linearly independent). In either case, if t ≥ t0, then

β̂t is equal to a least squares solution. Therefore, we
define Tn := [0, tmax], where

tmax :=
∣∣∣∣∣∣β̂0

∣∣∣∣∣∣
1
,

and β̂0 is the least squares solution when (·)† is given
by the Moore-Penrose inverse rather than any other
pseudoinverse. It holds that tmax ≥ t0 as 0 ∈ K and
therefore tmax is a bit conservative in the sense that
the lasso solution is already a least squares solution
for values of t ∈ [t0, tmax). We make this definition to
eliminate the explicit dependence on the null space of
X that appears in the definition of t0. As an aside,
in the R implementation of LARS (Efron et al., 2004),
a fraction of the `1-norm of the ‘saturated’ model is
used, with a default fraction value of 1. This coincides
with our choice of tmax, the `1-norm of a particular
least squares solution.

3. Main results

We define the oracle estimator generated by Bt to be

βt := argmin
β∈Bt

L (β) .

A natural criterion for studying the performance of
the estimator β̂t̂ is the excess risk of β̂t̂ relative to βt,
which we define as

E(t̂, t) := L
(
β̂t̂

)
− L (βt) . (6)

This criterion allows for meaningful theory when the
oracle linear model is not risk consistent; that is, when
the term L (βt) does not necessarily go to zero. This
is particularly important in this case, as the condi-
tional expectation of Y given X need not be even ap-
proximately linear. It is important to clarify two as-
pects of this definition of excess risk. First, E(t̂, t)

is random due to the term L
(
β̂t̂

)
in equation (6).

Here, L
(
β̂t̂

)
is a function of the data, and the ex-

pectation involved is only over a new test random
variable Z and not with respect to the observed data
used to choose either t̂ or β̂t̂. Second, conventionally,
Bt̂ = Bt, and so the excess risk is necessarily nonneg-
ative. However, as we are examining the case where
the tuning parameter t̂ (and hence the optimization
set Bt̂) is estimated, E(t̂, t) may be negative. Note
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that P(E(t̂, t) ≤ 0) ≤ P(Bt ⊆ Bt̂) = P(t ≤ t̂), because
βt is the risk minimizer over all of Bt. We return to
this issue in the proof of our main result in the next
section. We wish to show that the excess risk of an
estimator with tuning parameter chosen by CV goes
to zero in probability. First, we define the following
set of distributions

Definition 3.1. Let

F :=

{
(Fn)n≥1 : ∃C<∞ for all n

s.t. EFn
max

0≤j,k≤p
(ZjZk − EFn

ZjZk)2≤C
}
.

Heuristically, F is the set of all triangular distribu-
tions where a universal constant exists that bounds the
variance of each the (p+ 1)2 interaction terms.

Remark 1. Definition 3.1 is the same moment con-
dition imposed in Greenshtein & Ritov (2004) to show
risk consistency of the lasso in high-dimensional set-
tings.

We also state the following conditions.

Condition 1. All (Fn) ∈ F are such that

EFn

[
t4max

]
= o(t4n).

Condition 2. For any cross-validation procedure Vn,
which is defined in equation (4) , there exists a se-
quence of constants (cn) such that for all v ∈ Vn, |v| ≥
cn. Additionally, for any v 6= v′ ∈ Vn, v ∩ v′ = ∅.

For example, with K-fold cross-validation, we can take
cn = bn/Kc, which is the integer part of n/K.

Before explaining these conditions in depth, we state
our main result.

Theorem 3.2. Suppose pn = nα for some α > 0.
Let (Fn) ∈ F be given and suppose Condition 1 and
Condition 2 hold.

Then, for any δ > 0,

P(E(t̂, tn) > δ) = o

(
t2n

√
log n

cn

)
.

This result shows that choosing the tuning parameter
t̂ with CV and then estimating β by β̂t̂ has the same
asymptotic risk as minimizing the true risk over the
set Btn as long as cn � n which is the case for K-fold
CV.

The inclusion of tn in Theorem 3.2 deserves comment.
Here, tn is any sequence of non-random constants
which determine the amount of regularization. As

mentioned in Greenshtein & Ritov (2004), if tn grows

as fast or faster than
(

n
logn

)1/4
, then L

(
β̂tn

)
−L (βtn)

does not necessarily converge to 0 in probability and
hence the lasso is not persistent. However, if tn =
o((n/ log n)1/4), then the lasso is persistent. There-
fore, we choose the oracle risk over Btn as our compar-
ison for persistence.

We discuss Condition 1 next.

Explaining Condition 1 Some assumptions about
the design distribution can be used to derive sufficient
conditions for the moment condition we impose. Sup-
pose that pn = nα for α > 0. Then

E[t4max] = E
[∣∣∣∣∣∣β̂0

∣∣∣∣∣∣4
1

]
≤ E

[∣∣∣∣∣∣(X>X)†X>
∣∣∣∣∣∣4

1
||Y ||41

]
(7)

≤ p2E
[∣∣∣∣∣∣(X>X)†X>

∣∣∣∣∣∣4
2
||Y ||41

]
= p2EX

[∣∣∣∣∣∣(X>X)†X>
∣∣∣∣∣∣4

2

]
EY |X

[
||Y ||41

]
= n2αEX

[
σ+
min(X)−4

]
EY |X

[
||Y ||41

]
, (8)

where σ+
min(A) is the smallest non-negative singular

value of a matrix A, |||·|||s is the operator norm corre-
sponding to the `s vector norm, and equation (7) uses
the sub-multiplicative property of the operator norm.

Suppose that our model is the usual nonparametric
regression model Y = m(X) + e, where X and e are
stochastically independent random variables and e has
zero mean. If there exists a constant C independent
of n such that ess supxm(x) < C with respect to the
distribution of X and Ee4 < ∞, then there exists a
C ′ <∞, again independent of n, such that

E[Y 4|X] = E

[
4∑
l=0

(
4

l

)
m(X)le4−l

∣∣∣∣X
]

=

4∑
l=0

(
4

l

)
m(X)lEe4−l < C ′.

This implies that EY |X ||Y ||
4
1 = O(n). Combining

this with equation (8) and writing EX
[
σ+
min(X)−4

]
=

O(n−u), with u ≥ 0, we see that

E
[∣∣∣∣∣∣β̂0

∣∣∣∣∣∣4
1

]
= O(n−u+2α+1).

Therefore, Condition 1 follows if n−u+2α+1 =

o
(

n
logn

)
, which happens if, for instance, u > 2α. So,

if with high probability σ+
min(X) = Ω(nα/2), i.e. is
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of larger order than nα/2, Condition 1 holds. Indeed,
as shown by Rudelson & Vershynin (2009), a random
matrix composed of independent and identically dis-
tributed sub-Gaussian random variables has, with high
probability,

σ+
min(X) ≥

{√
pn = nα/2 if α > 1
√
n = n1/2 if α < 1.

In either case, σ+
min(X) is at least of order nα/2.

4. Proof of main results

To show the results of this paper, we decompose the ex-
cess risk into several parts. Define t∗ := min{tmax, tn}.
Then, we write

E(t̂, tn) = L
(
β̂t̂

)
− L (βtn)

= L
(
β̂t̂

)
− L̂Vn

(
t̂
)

︸ ︷︷ ︸
(I)

+ L̂Vn

(
t̂
)
− L̂Vn (t∗)︸ ︷︷ ︸

(II)

+ L̂Vn
(t∗)− L̂

(
β̂t∗

)
︸ ︷︷ ︸

(III)

+ L̂
(
β̂t∗

)
− L̂

(
β̂tn

)
︸ ︷︷ ︸

(IV )

+ L̂
(
β̂tn

)
− L

(
β̂tn

)
︸ ︷︷ ︸

(V )

+L
(
β̂tn

)
− L (βtn)︸ ︷︷ ︸

(V I)

.

For any t ∈ Tn, L̂Vn

(
t̂
)
− L̂Vn

(t) ≤ 0. Therefore,
as t∗ ∈ Tn, (II) ≤ 0. Also, by the discussion in Sec-
tion 2.2,

L̂
(
β̂t

)
=

L̂
(
β̂t

)
if t < tmax

L̂
(
β̂tmax

)
if t ≥ tmax.

To see this, note that for any t ≥ tmax, β̂t is a least
squares solution. Therefore, by the definition of t∗,

L̂
(
β̂t∗

)
= L̂

(
β̂tn

)
and hence (IV ) = 0.

To bound the remaining terms, we rewrite them as
quadratic forms (Section 4.1) and present three lem-
mas (Section 4.2). The actual proofs are contained in
Section 4.3.

4.1. Squared-error loss and quadratic forms

We can rewrite the notation from Section 2 as
quadratic forms. Define the parameter to be γ> :=
(−1, β>), with associated estimator γ̂>t := (−1, β̂>t ).
We can rewrite equation (2) as

L (β) = EFn

[
(Y − X>β)2

]
= γ>Σnγ (9)

where Σn := EFn
[ZZ>]. Analogously, equation (3)

has the following form

L̂ (β) =
1

n

n∑
i=1

(Yi −X>i β)2 = γ>Σ̂nγ,

where Σ̂n = n−1
∑n
i=1 ZiZ

>
i . Lastly, we rewrite equa-

tion (4) as

L̂Vn
(t) =

1

Kn

∑
v∈Vn

(γ̂
(v)
t )T Σ̂vγ̂

(v)
t , (10)

where Σ̂v = |v|−1
∑
r∈v ZrZ

>
r , (γ̂

(v)
t )> :=

(−1, (β̂
(v)
t )>), and

β̂
(v)
t := argmin

β∈Bt

γ>Σ̂(v)γ,

with Σ̂(v) := (n− |v|)−1
∑
r/∈v ZrZ

>
r .

With this notation, each part of the decomposition can
be written as the difference of quadratic forms. Careful
modifications will allow us to use the following lemmas
to prove bounds for each part.

4.2. Supporting lemmas

Several times in our proof of the main results we need
to bound a quadratic form given by a symmetric ma-
trix and an estimator indexed by a tuning parameter.
To this end, we state and prove the following simple
lemma.

Lemma 4.1. Suppose a ∈ Rp and A ∈ Rp×p. Then

a>Aa ≤ ||a||21 |||A|||∞ ,

where |||A|||∞ := maxi,j |Aij | is the entry-wise max
norm.

Proof of Lemma 4.1.

a>Aa ≤ ||a||1 ||Aa||∞
≤ ||a||1 max

ij
{|Aij |} ||a||1

= ||a||21 |||A|||∞ ,

where the first inequality follows by Hölder’s inequal-
ity.

Additionally, we include Nemirovski’s inequality for
completeness. See Nemirovski (2000) or Dümbgen
et al. (2010) for details.

Lemma 4.2 (Nemirovski’s inequality). Let ξ1, . . . , ξn
be independent random vectors in Rd, for d ≥ 3
with E[ξi] = 0 and E[||ξi||22] < ∞. Then for every
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s ∈ [2,∞], and index set v, there exists an absolute

constant C̃ (independent of s, n, d, v, and the distri-
bution of the ξi’s) such that

E

∣∣∣∣∣
∣∣∣∣∣∑
i∈v

ξi

∣∣∣∣∣
∣∣∣∣∣
2

s

 ≤ C̃ min(s, log d)
∑
i∈v

E
[
||ξi||2s

]
,

where ||·||s is the `s norm.

Finally, we will use Lemma 4.2 to find the rate of con-
vergence for the sample covariance matrix to the pop-
ulation covariance.

Lemma 4.3. Let Vn = {v1, . . . , vKn} be a set of vali-
dation sets satisfying Condition 2. Then,

E

(
1

Kn

∑
v∈Vn

∣∣∣∣∣∣∣∣∣Σ̂v − Σn

∣∣∣∣∣∣∣∣∣
∞

)2

= O

(
log n

cn

)
.

Proof of Lemma 4.3. First, note that

E

(∑
v∈Vn

∣∣∣∣∣∣∣∣∣Σ̂v − Σn

∣∣∣∣∣∣∣∣∣
∞

)2

=
∑

u6=v∈Vn

E
∣∣∣∣∣∣∣∣∣Σ̂v − Σn

∣∣∣∣∣∣∣∣∣
∞

E
∣∣∣∣∣∣∣∣∣Σ̂u − Σn

∣∣∣∣∣∣∣∣∣
∞

+

+
∑
v∈Vn

E
∣∣∣∣∣∣∣∣∣Σ̂v − Σn

∣∣∣∣∣∣∣∣∣2
∞

by independence and disjoint elements of v. Let
ξr ∈ R(p+1)2 be the vectorized version of the zero-mean
matrix 1

cn
(ZrZ

>
r − EZZ>). Then,

E
∣∣∣∣∣∣∣∣∣Σ̂v − Σn

∣∣∣∣∣∣∣∣∣
∞
≤
√
E
∣∣∣∣∣∣∣∣∣Σ̂v − Σn

∣∣∣∣∣∣∣∣∣2
∞

=

√√√√E

∣∣∣∣∣
∣∣∣∣∣∑
r∈v

ξr

∣∣∣∣∣
∣∣∣∣∣
2

∞

by Jensen’s inequality. Using Lemma 4.2 with s = ∞
and d = (p+ 1)2, we find

E

∣∣∣∣∣
∣∣∣∣∣∑
r∈v

ξr

∣∣∣∣∣
∣∣∣∣∣
2

∞

≤ C̃ log
(
(p+ 1)2

)∑
r∈v

E ||ξr||2∞

. log(4n2α)
1

c2n

∑
r∈v

E
[

max
0≤j,k≤p

|ZrjZrk − EZjZk|2
]

≤ log(4n2α)
1

c2n

∑
r∈v

C .
log n

cn
.

where second to last inequality follows by Defini-
tion 3.1 with associated constant C. Therefore,

E

(
1

Kn

∑
v∈Vn

∣∣∣∣∣∣∣∣∣Σ̂v − Σn

∣∣∣∣∣∣∣∣∣
∞

)2

.
1

K2
n

 ∑
u,v∈Vn

log n

cn

 =
log n

cn
.

4.3. Proof of theorems

We break this section into parts based on the decom-
position of equation (6).

Final predictor and cross-validation risk (I)
Note that by equation (9) and equation (10)

L
(
β̂ t̂

)
− L̂Vn

(
t̂
)

= γ̂>
t̂

Σn γ̂t̂ −
1

Kn

∑
v∈Vn

(γ̂
(v)

t̂
)>Σ̂vγ̂

(v)

t̂

=
[
γ̂>
t̂

Σn γ̂t̂ − γ̂
>
t̂

(
Σ̂n

)
γ̂t̂

]
+[

γ̂>
t̂

(
Σ̂n

)
γ̂t̂ −

1

Kn

∑
v∈Vn

(γ̂
(v)

t̂
)>Σ̂vγ̂

(v)

t̂

]

Addressing each of the terms in order,

[
γ̂>
t̂

Σn γ̂t̂ − γ̂
>
t̂

(
Σ̂n

)
γ̂t̂

]
= γ̂>

t̂

(
Σn − Σ̂n

)
γ̂t̂

≤ sup
t∈Tn

sup
β∈Bt

||γt||21
∣∣∣∣∣∣∣∣∣Σn − Σ̂n

∣∣∣∣∣∣∣∣∣
∞

≤
∣∣∣∣∣∣∣∣∣Σn − Σ̂n

∣∣∣∣∣∣∣∣∣
∞

sup
t∈Tn

(1 + t)2

=
∣∣∣∣∣∣∣∣∣Σn − Σ̂n

∣∣∣∣∣∣∣∣∣
∞

(1 + tmax)2.

The first inequality follows by Lemma 4.1 while the
second inequality is by the definition of Bt, and the
equality in the last line follows by the definition Tn.
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Likewise,[
γ̂>
t̂

(
Σ̂n

)
γ̂t̂ −

1

Kn

∑
v∈Vn

(γ̂
(v)

t̂
)>Σ̂vγ̂

(v)

t̂

]

=

(
γ̂>
t̂

Σ̂nγ̂t̂ −
1

Kn

∑
v∈Vn

(γ̂
(v)

t̂
)>Σ̂nγ̂

(v)

t̂

)
+

+

(
1

Kn

∑
v∈Vn

(γ̂
(v)

t̂
)>Σ̂nγ̂

(v)

t̂
− 1

Kn

∑
v∈Vn

(γ̂
(v)

t̂
)>Σ̂vγ̂

(v)

t̂

)

=
1

Kn

∑
v∈Vn

(
γ̂>
t̂

Σ̂nγ̂t̂ − (γ̂
(v)

t̂
)>Σ̂nγ̂

(v)

t̂

)
+

+
1

Kn

∑
v∈Vn

(γ̂
(v)

t̂
)>
(

Σ̂n − Σ̂v

)
γ̂
(v)

t̂

≤ 1

Kn

∑
v∈Vn

(γ̂
(v)

t̂
)>
(

Σ̂n − Σ̂v

)
γ̂
(v)

t̂
.

The last inequality follows as γ̂t̂ is chosen to minimize

γ̂>
t̂

Σ̂nγ̂t̂ over Bt̂, and so for any v ∈ Vn, γ̂>
t̂

Σ̂nγ̂t̂ ≤
(γ̂

(v)

t̂
)>Σ̂nγ̂

(v)

t̂
.

Continuing and using Lemma 4.1,

1

Kn

∑
v∈Vn

(γ̂
(v)

t̂
)>
(

Σ̂n − Σ̂v

)
γ̂
(v)

t̂

≤ 1

Kn

∑
v∈Vn

sup
t∈Tn

sup
β∈Bt

||γ||22
∣∣∣∣∣∣∣∣∣Σ̂n − Σ̂v

∣∣∣∣∣∣∣∣∣
∞

≤ 1

Kn

∑
v∈Vn

sup
t∈Tn

sup
β∈Bt

||γ||21
∣∣∣∣∣∣∣∣∣Σ̂n − Σ̂v

∣∣∣∣∣∣∣∣∣
∞

≤ (1 + tmax)2
1

Kn

∑
v∈Vn

∣∣∣∣∣∣∣∣∣Σ̂n − Σ̂v

∣∣∣∣∣∣∣∣∣
∞

≤ (1 + tmax)2
(

1

Kn

)
·∑

v∈Vn

(∣∣∣∣∣∣∣∣∣Σ̂n − Σn

∣∣∣∣∣∣∣∣∣
∞

+
∣∣∣∣∣∣Σn − Σ{r}

∣∣∣∣∣∣
∞

)
= (1 + tmax)2·(∣∣∣∣∣∣∣∣∣Σn − Σ̂n

∣∣∣∣∣∣∣∣∣
∞

+
1

Kn

∑
v∈Vn

∣∣∣∣∣∣Σn − Σ{r}
∣∣∣∣∣∣
∞

)
.

Combining these results together, we obtain the fol-
lowing upper bound for (I)

L
(
β̂ t̂

)
− L̂Vn

(
t̂
)

≤ (1 + tmax)2·(
2
∣∣∣∣∣∣∣∣∣Σn − Σ̂n

∣∣∣∣∣∣∣∣∣
∞

+
1

Kn

∑
v∈Vn

∣∣∣∣∣∣∣∣∣Σn − Σ̂v

∣∣∣∣∣∣∣∣∣
∞

)
.

By Lemma 4.3 with Vn = {{1, . . . , n}} and cn = n,

E
∣∣∣∣∣∣∣∣∣Σn − Σ̂n

∣∣∣∣∣∣∣∣∣2
∞

= O

(
log n

n

)
.

Additionally, by Lemma 4.3 with Vn = {v1, . . . , vKn},

E

(
1

Kn

∑
v∈Vn

∣∣∣∣∣∣∣∣∣Σn − Σ̂v

∣∣∣∣∣∣∣∣∣
∞

)2

= O

(
log n

cn

)
.

Furthermore, E
[
(1 + tmax)4

]
� E

[
(tmax)4

]
implies

E
[
(1 + tmax)4

]
� (t4n). Combining these three bounds

together, we get

E|(I)|

≤
√
E [(1 + tmax)4]E

∣∣∣∣∣∣∣∣∣Σn − Σ̂n

∣∣∣∣∣∣∣∣∣2
∞

+

+

√√√√√E [(1 + tmax)4]E

( 1

Kn

∑
v∈Vn

∣∣∣∣∣∣∣∣∣Σn − Σ̂v

∣∣∣∣∣∣∣∣∣2
∞

)2


= o

(√
t4n

log n

n

)
+ o

(√
t4n

log n

cn

)
= o

(
t2n

√
log n

cn

)
.

Hence,

E
(
L
(
β̂ t̂

)
− L̂Vn

(
t̂
))

= o

(
t2n

√
log n

cn

)
for any Vn.

Cross-validation risk and empirical risk (III)

Recall that Σ̂(v) = 1
n−cn

∑
r/∈v ZrZ

>
r .

Then,

L̂Vn
(t∗)− L̂

(
β̂t∗

)
=

1

Kn

∑
v∈Vn

(γ̂
(v)
t∗ )>Σ̂vγ̂

(v)
t∗ − γ̂

>
t∗Σ̂nγ̂t∗

=
1

Kn

∑
v∈Vn

(
(γ̂

(v)
t∗ )>Σ̂vγ̂

(v)
t∗ − (γ̂

(v)
t∗ )>Σ̂(v)γ̂

(v)
t∗

)
+

+
1

Kn

∑
v∈Vn

(
(γ̂

(v)
t∗ )>Σ̂(v)γ̂

(v)
t∗ − γ̂

>
t∗Σ̂nγ̂t∗

)
≤ 1

Kn

∑
v∈Vn

(1 + t∗)
2
∣∣∣∣∣∣∣∣∣Σ̂v − Σ̂(v)

∣∣∣∣∣∣∣∣∣
∞

≤ (1 + t∗)
2·

1

Kn

∑
v∈Vn

(∣∣∣∣∣∣∣∣∣Σn − Σ̂(v)

∣∣∣∣∣∣∣∣∣
∞

+
∣∣∣∣∣∣∣∣∣Σn − Σ̂v

∣∣∣∣∣∣∣∣∣
∞

)
.

The second-to-last inequality follows by Lemma 4.1

and the fact that γ̂
(v)
t∗ is chosen to minimize
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(γ̂
(v)
t∗ )>Σ̂(v)γ̂

(v)
t∗ , which implies (γ̂

(v)
t∗ )>Σ̂(v)γ̂

(v)
t∗ ≤

γ̂>t∗Σ̂(v)γ̂t∗ .

Using a straight-forward adaptation of Lemma 4.3

E

(
1

Kn

∑
v∈Vn

∣∣∣∣∣∣∣∣∣Σn − Σ̂(v)

∣∣∣∣∣∣∣∣∣
∞

)2

= O

(
log n

n− cn

)
.

As n > cn, by assumption, we see

E

(
1

Kn

∑
v∈Vn

∣∣∣∣∣∣∣∣∣Σn − Σ̂(v)

∣∣∣∣∣∣∣∣∣
∞

)2

= O

(
log n

n

)
.

Therefore, following the analogous steps established in
the proof of (I), we get

E
(
L̂Vn

(t∗)− L̂
(
β̂t∗

))
= o

(
t2n

√
log n

cn

)
.

Empirical risk and expected risk (V, VI) The
proof of these results follows from the results estab-
lished in Greenshtein & Ritov (2004). We include a
somewhat different proof for completeness. Observe
the following bounds

L
(
β̂tn

)
− L̂

(
β̂tn

)
≤ sup
β∈Btn

∣∣∣L (β)− L̂ (β)
∣∣∣

and

L
(
β̂tn

)
− L (βtn)

= L
(
β̂tn

)
− L̂

(
β̂tn

)
+ L̂

(
β̂tn

)
− L (βtn)

≤ 2 sup
β∈Btn

∣∣∣L (β)− L̂ (β)
∣∣∣ .

Therefore, both (V ) and (V I) follow since

E sup
β∈Btn

∣∣∣L (β)− L̂ (β)
∣∣∣

= E sup
β∈Btn

∣∣∣γ>Σnγ − γ>Σ̂nγ
∣∣∣

= E sup
β∈Btn

∣∣∣γ>(Σn − Σ̂n)γ
∣∣∣

≤ E sup
β∈B(tn)

(1 + ||β||1)2
∣∣∣∣∣∣∣∣∣Σ̂n − Σn

∣∣∣∣∣∣∣∣∣
∞

≤ (1 + tn)2E
∣∣∣∣∣∣∣∣∣Σ̂n − Σn

∣∣∣∣∣∣∣∣∣
∞

= o

(
t2n

√
log n

n

)

by Lemma 4.3.

This completes the proof of Theorem 3.2. In particu-
lar, we have shown that

P
(
L
(
β̂t̂

)
− L (βtn) > δ

)
≤ o

(
t2n

√
log n

cn

)
+ o

(
t2n

√
log n

n

)

= o

(
t2n

√
log n

cn

)
.

5. Conclusion

A common practice in data analysis is to estimate the
coefficients of a linear model via lasso and choose the
regularization parameter via cross-validation. Unfor-
tunately, no theoretical results existed as to the ef-
fect of choosing the tuning parameter in this data-
dependent way.

In this paper, we demonstrate that the lasso with tun-
ing parameter chosen by cross-validation is persistent.
This is the first step in a establishing a broader un-
derstanding of the interaction between the lasso and
a data-dependent tuning parameter. In particular, by
imposing an eigenvalue type condition on the design
matrix, we can achieve the same risk-consistency re-
sults with a data-dependent tuning parameter as with
the optimal tuning parameter. We feel that this paper
provides some theoretical justification for the received
wisdom that cross-validation is a useful tool for the
applied researcher in the context of the lasso.
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