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Appendix

8. Properties and Notations used

Nuclear and Frobenius norms:

• Let σi be the singular values of A. Then

‖A‖∗ =
∑

i

σi , ‖A‖2F =
∑

i

σ2
i and ‖A‖F ≤ ‖A‖∗ . (13)

• (Nuclear and Frobenius norms are unitarily invariant) For any orthogonal Q we have

‖A‖∗ = ‖QA‖∗ = ‖AQ‖∗ ,

‖A‖F = ‖QA‖F = ‖AQ‖F .
(14)

•
‖AB‖∗ ≤ ‖A‖F ‖B‖F ≤ ‖A‖∗‖B‖∗ . (15)

• Let σi be the singular values of X and σ̃i be the singular values of X̃ = X + E. Then

‖diag(σ̃i − σi)‖∗ ≤ ‖X̃ −X‖∗ . (16)

Kronecker and Khatri-Rao products:

(A⊗B)" = A" ⊗B" (17)

(A+B)⊗ C = A⊗ C +B ⊗ C (18)

AB ⊗ CD = (A⊗ C)(B ⊗D) (19)

AB % CD = (A⊗ C)(B %D) (20)

‖A⊗B‖F = ‖A‖F ‖B‖F
rank(A⊗B) = rank(A) rank(B)

Tensor operations:

We use the following tensor-matrix products of a tensor A ∈ RI1×I2×I3 with matrices M (n) ∈ RJn×In , n = 1, 2, 3:

mode-1 product: (A •1 M (1))j1i2i3 =
∑I1

i1=1
ai1i2i3m

(1)
j1i1

,

mode-2 product: (A •2 M (2))i1j2i3 =
∑I2

i2=1
ai1i2i3m

(2)
j2i2

,

mode-3 product: (A •3 M (3))i1i2j3 =
∑I3

i3=1
ai1i2i3m

(3)
j3i3

,

where 1 ≤ in ≤ In, 1 ≤ jn ≤ Jn. These products can be considered as a generalization of the left and right
multiplication of a matrix A with a matrix M. The mode-1 product signifies multiplying the columns (mode-1
vectors) of A with the rows of M (1) and similarly for the other tensor-matrix products.

The contracted product C of two tensors A ∈ RI×J×M and B ∈ RK×L×M along their third modes is a 4th order
tensor denoted by C = 〈A,B〉3. C ∈ RI×J×K×L and its entries C(i, j, k, l), 1 ≤ i ≤ I; 1 ≤ j ≤ J ; 1 ≤ k ≤ K; 1 ≤
l ≤ L are defined as

C(i, j, k, l) =
∑M

m=1
aijm bklm.

It can be interpreted as taking inner products of the mode-3 vectors of A and B and storing the results in C.

The 3 different reshapings A, B and C (2)–(4) of the tensor P contain exactly the same entires as P but in
different order.
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• A corresponds to the grouping {{1, 2}, {3, 4}} of the variables. The rows of A correspond to dimensions 1 and
2 of P , and its columns to dimensions 3 and 4. Suppose all observed variables take values from {1, . . . , n},
then entry of A at (x1 + n(x2 − 1))-th row and (x3 + n(x4 − 1))-th column is equal to P(x1, x2, x3, x4);

• B corresponds to the grouping {{1, 3}, {2, 4}}, and its entry at (x1+n(x3−1))-th row and (x2+n(x4−1))-th
column is equal to P(x1, x2, x3, x4);

• C corresponds to the grouping {{1, 4}, {2, 3}}, and its entry at (x1+n(x4−1))-th row and (x2+n(x3−1))-th
column is equal to P(x1, x2, x3, x4).

9. Matrix Representations A, B, C of P
From P to A, B, C:

Let X ∈ Rm×k, Y ∈ Rk×l, Z ∈ Rn×l, X = (x1, . . . , xk) and Z = (z1, . . . , zl). A useful property that we will use
in our derivations is the following

X Y Z" =
∑

i,j

xi yij z
"
j . (21)

We can derive the formula for A starting from the element-wise formula (1)

P(x1, x2, x3, x4) =
∑

h,g

P (x1|h)P (x2|h)P (h, g)P (x3|g)P (x4|g)

and placing all entries in the matrix A in the correct order. Note that given h and g we only need one column
of each P1|H , P2|H , P3|G and P4|G, which we will denote by (P1|H)h, (P2|H)h, (P3|G)g and (P4|G)g. In order to
obtain a matrix such that X1 and X2 are mapped to rows and X3 and X4 are mapped to columns, we need to
map all possible products of single element of (P1|H)h and single element of (P2|H)h to rows and and similarly,
we need to map all possible products of single element of (P3|G)g and single element of (P4|G)g to columns. This
can be done using Khatri-Rao products in the following way

A =
∑

h,g

(
(P2|H)h % (P1|H)h

)
(PHG)hg

(
(P4|G)g % (P3|G)g

)"

(21)
=

(
P2|H % P1|H

)
PHG

(
P4|G % P3|G

)"
.

The matrix B is unfolding of P , such that the rows of B correspond to X1 and X3 and the columns of B
correspond to X2 and X4. We have

B =
∑

h,g

(
(P3|G)g % (P1|H)h

)
(PHG)hg

(
(P4|G)g % (P2|H)h

)"

(17)
=

∑

h,g

(
(P3|G)g ⊗ (P1|H)h

)
(PHG)hg

(
(P4|G)

"
g ⊗ (P2|H)"h

)

(19)
=

∑

h,g

(PHG)hg
(
(P3|G)g(P4|G)

"
g

)
⊗
(
(P1|H)h(P2|H)"h

)

(18)
=

∑

h

(∑

g

(PHG)hg(P3|G)g(P4|G)
"
g

)
⊗
(
(P1|H)h(P2|H)"h

)

(21)
=

∑

h

(
P3|G diag((PHG)h)P

"
4|G

)
⊗
(
(P1|H)h(P2|H)"h

)

(19)
=

∑

h

(
P3|G ⊗ (P1|H)h

)
diag((PHG)h)

(
P"
4|G ⊗ (P2|H)"h

)

block−(21)
=

(
P3|G ⊗ P1|H

)
diag(PHG(:))

(
P"
4|G ⊗ P"

2|H
)

(17)
=

(
P3|G ⊗ P1|H

)
diag(PHG(:))

(
P4|G ⊗ P2|H

)"
.

The expression for C is derived in a similar way.

Other representations of A, B, C:
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Using the properties in Section 8 and the formulas (5)–(7) for the matrix unfoldings A, B and C, we can derive
the following additional formulas,

A =
(
P2|H % P1|H

)
PHG

(
P4|G % P3|G

)"

=
(
In P2|H % P1|H IH

)
PHG

(
In P4|G % P3|G IG

)"

(20)
=

(
In ⊗ P1|H

) (
P2|H % IH

)
PHG

(
P4|G % IG

)" (
In ⊗ P3|G

)"

=





P1|H

. . .

P1|H









p(1,1)2|H

p(1,2)2|H. . .

p(2,1)2|H
...

. . .





PHG





p(1,1)4|G

p(1,2)4|G. . .

p(2,1)4|G
...

. . .





"



P3|G

. . .

P3|G





"

,

(22)

B =
(
P3|G ⊗ P1|H

)
diag(PHG(:))

(
P4|G ⊗ P2|H

)"

=
(
P3|G IG ⊗ In P1|H

)
diag(PHG(:))

(
P4|G IG ⊗ In P2|H

)"

(19),(17)
=

(
P3|G ⊗ In

) (
IG ⊗ P1|H

)
diag(PHG(:))

(
IG ⊗ P2|H

)" (
P4|G ⊗ In

)"

=





(
p(1,1)3|G

)
· · ·

(
p(2,1)3|G

)

...









P1|H

. . .

P1|H




diag(PHG(:))





P2|H

. . .

P2|H





"



(
p(1,1)4|G

)
· · ·

(
p(2,1)4|G

)

...





"

,

(23)

where (p(i,j)) is a diagonal block of size (n× n) with all diagonal elements equal to p(i,j).

The formula for C can be obtained from the ones for B by swapping the positions of P3|G and P4|G.

Rank properties of A, B, C:

In this section we prove the rank properties used in Section 3.2 of the paper.

Lemma. If X ∈ Rm×n, Y ∈ Rn×k, Z ∈ Rl×m, Y has full row rank, and Z has full column rank, then

rank(XY ) = rank(X),

rank(ZX) = rank(X).

We assume that all CPTs have full column (or row) rank. Then the first two matrices in (22) also have full
column rank. The last two matrices have full row rank. From the lemma, it follows that

rank(A) = rank(PHG) = k (24)

Analogously, the first two matrices in (23) have full column rank. The last two matrices have full row rank.
From the lemma, it follows that

rank(B) = nnz(PHG), (25)
i.e., generically,

rank(B) = k2.



Unfolding Latent Tree Structures using 4th Order Tensors

10. Algorithms

Algorithm 3 Tnext = QuartetTree(T1, T2, T3, X4)

Require: Leaf(T ): leaves of a tree T ;
1: for j = 1 to 3 do
2: Xi ← Randomly choose a variable from Leaf(Ti)
3: end for
4: i∗ ← Quartet(X1, X2, X3, X4), Tnext ← Ti∗

Algorithm 4 T = Insert(T , T̃ , Xi)

Require: Left(T ) and Right(T ): left and right child branch of the root respectively; T + T ′: return a new tree
connecting the root of two trees by an edge and use the root of T as the new root

1: if |Leaf(T )| = 1 then
2: T ← Form a tree with root R connecting Leaf(T ) and Xi.
3: else
4: Tnext ← QuartetTree(Left(T ), Right(T ), T̃ , Xi)
5: if Tnext = Left(T ) then
6: T ← Insert(Tnext, Right(T ) + T̃ , Xi)
7: else if Tnext = Right(T ) then
8: T ← Insert(Tnext, Left(T ) + T̃ , Xi)
9: end if

10: end if
11: T ← T + T̃

Algorithm 5 T = BuildTree({X1, . . . , Xd})
1: Randomly choose X1, X2, X3 and X4

2: i∗ ← Quartet(X1, X2, X3, X4)
3: T ← Form a tree with two connecting hidden variables H and G, where H joins Xi∗ and X4, while G joins

variables in {X1, X2, X3} \ {Xi∗}
4: for i = 5 to d do
5: Pick a root R from T which split it to three branches of equal sizes, and Tnext ← QuartetTree(Left(T ),

Right(T ), Middle(T ), Xi)
6: if Tnext = Left(T ) then
7: T ← Insert(Tnext, Right(T ) + Middle(T ), Xi)
8: else if Tnext = Right(T ) then
9: T ← Insert(Tnext, Left(T ) + Middle(T ), Xi)

10: else if Tnext = Middle(T ) then
11: T ← Insert(Tnext, Right(T ) + Left(T ), Xi)
12: end if
13: end for

11. Recovery Conditions for Quartet

Latent variables H and G are independent. In this case, rank(PHG) = 1, since P (h, g) = P (h)P (g).
Applying the relation in Equation 8, we have that rank(A) = 1+ rank(B). Furthermore, since A has only one
nonzero singular value, we have ‖A‖∗ = ‖A‖F = ‖B‖F ≤ ‖B‖∗, since ‖M‖F ≤ ‖M‖∗ for any M. In this case,
we know for sure that the nuclear norm quartet test will return the correct topology.
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Latent variables H and G are not independent. We analyze this case by treating it as perturbation ∆
away from the PHG in the independent case. We want to characterize how large ∆ can be while still allowing
the nuclear norm quartet test to find the correct latent relation. Suppose A⊥ and B⊥ are the unfolding matrices
in the case where H and G are independent. Suppose we add perturbation ∆ to PHG, then A⊥ =

(
P2|H %

P1|H
)
PHG

(
P4|G % P3|G

)"
and its perturbed version is A =

(
P2|H % P1|H

)
(PHG +∆)

(
P4|G % P3|G

)"
. We

want to bound the difference | ‖A⊥‖∗ − ‖A‖∗|. We have

| ‖A⊥‖∗ − ‖A‖∗| =
∣∣∣
∑

i
σi(A⊥)−

∑

i

σi(A)
∣∣∣

≤
∑

i
|σi(A⊥)− σi(A)|

(16)
≤ ‖A⊥ −A‖∗
≤
∥∥(P2|H % P1|H

)
∆

(
P4|G % P3|G

)"∥∥
∗

(15)
≤

∥∥P2|H % P1|H
∥∥
F
‖∆‖F

∥∥P4|G % P3|G
∥∥
F

≤ k ‖∆‖F ,

since P2|H % P1|H and P4|G % P3|G are CPTs with k columns each, and thus
∥∥P2|H % P1|H

∥∥2
F
≤ k and

∥∥P4|G %
P3|G

∥∥2
F
≤ k.

Analogously, B⊥ =
(
P3|G ⊗ P1|H

)
diag(PHG(:))

(
P4|G ⊗ P2|H

)"
and its perturbed version is B =

(
P3|G ⊗

P1|H
)

diag(PHG(:) +∆(:))
(
P4|G ⊗ P2|H

)"
. We want to bound the difference |‖B⊥‖∗ − ‖B‖∗|. We have

|‖B⊥‖∗ − ‖B‖∗| =
∣∣∣
∑

i
σi(B⊥)−

∑

i

σi(B)
∣∣∣

≤
∑

i
|σi(B⊥)− σi(B)|

(16)
≤ ‖B⊥ −B‖∗
≤
∥∥(P3|G ⊗ P1|H

)
diag(∆(:))

(
P4|G ⊗ P2|H

)"∥∥
∗

(15)
≤

∥∥P3|G ⊗ P1|H
∥∥
F

∥∥ diag(∆(:))
∥∥
F

∥∥P4|G ⊗ P2|H
∥∥
F

≤ k2 ‖diag(∆(:))‖F

= k2 ‖∆‖F ,

since P3|G⊗P1|H and P4|G⊗P2|H are CPTs with k2 columns, and thus
∥∥P3|G⊗P1|H

∥∥2

F
≤ k2 and

∥∥P4|G⊗P2|H
∥∥2
F
≤

k2.

Therefore, we get the following upper and lower bound:

‖A‖∗ ≤ ‖A⊥‖∗ + k ‖∆‖F ,

‖B‖∗ ≥ ‖B⊥‖∗ + k2 ‖∆‖F .

If we require that

‖A⊥‖∗ + k ‖∆‖F ≤ ‖B⊥‖∗ + k2 ‖∆‖F ,

then we will have ‖A‖∗ ≤ ‖B‖∗.

We can derive similar condition for the relationship ‖A‖∗ ↔ ‖C‖∗. Let
θ := min{‖B⊥‖∗ − ‖A⊥‖∗, ‖C⊥‖∗ − ‖A⊥‖∗}.
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We thus obtain an upper bound on the allowed perturbation:

‖∆‖F ≤
θ

k2 + k
. (26)

12. Recovery Conditions for Latent Tree

When latent variables H and G are independent, we have that PHG = PHP"
G . In this case,

‖B⊥‖∗ =
∥∥(P3|G ⊗ P1|H)(diag(PG)⊗ diag(PH))(P4|G ⊗ P2|H)"

∥∥
∗

=
∥∥∥(P3|G diag(PG)P"

4|G)⊗ (P1|H diag(PH)P"
2|H)

∥∥∥
∗

= ‖P34 ⊗ P12‖∗
≥ ‖P34 ⊗ P12‖F

(27)

and
‖A⊥‖∗ =

∥∥(P2|H % P1|H) PHP"
G (P4|G % P3|G)

"
∥∥
∗

=
∥∥P12(:)P34(:)"

∥∥
∗

=
∥∥P12(:)P34(:)"

∥∥
F

= ‖P34 ⊗ P12‖F

(28)

and thus

‖A⊥‖∗ ≤ ‖B⊥‖∗ .

Suppose now that H and G are not independent and thus we have PHG = PHP"
G +∆. The goal is to characterize

all ∆s, such that ‖A‖∗ ≤ ‖B‖∗ still holds for any quartet. From the above formulas it follows that the upper
bound on ∆ depends only on pairwise marginal distributions.

Since the perturbed version of PHP"
G remains a joint probability table, all entries of the perturbation matrix ∆

have to sum to 0, i.e., 1"∆(:) = 0. We further assume that each column sum and each row sum of ∆ is also
equal to 0, i.e., 1"∆ = 0 and ∆1 = 0. In this case, 1"∆(:) = 0 is satisfied automatically.

The recovery conditions for latent trees can be derived in two steps. The first step is to provide recovery
conditions for those quartet relations corresponding to a single edge H − G in the tree (Fig. 6, left). In the
second step we study quartet relations corresponding to paths H −M1 −M2 − · · ·−Ml −G in the tree (Fig. 6,
right). We provide a condition under which the recovery condition of such quartets is reduced to the recovery
condition on quartets from step 1. That is, we provide a condition under which the perturbation on the path is
guaranteed to be smaller than the maximum allowed perturbation on an edge.

Xi1

Xi2

Xi3

Xi4

H G

Xi1

Xi2

Xi3

Xi4

H M1 M2 Ml G

Figure 6. Topologies of quartets corresponding to a single edge H −G and to a path H −M1 −M2 − · · ·−Ml −G.

Let

δ := max
H−G an edge

‖∆HG‖F .

Our goal is to obtain conditions on δ, under which recovery of any quartet relation is guaranteed.
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12.1. Quartets Corresponding to a Single Edge

The first step is readily obtained from §11 if we assume that all CPTs (including PXi1
|H , PXi2

|H , PXi3
|G, PXi4

|G)
have full rank. Let θmin = minquarter q θq. From (26), we have

δ ≤ min
‖B⊥‖∗ − ‖A⊥‖∗

k2 + k
=

θmin

k2 + k
. (29)

12.2. Quartets Corresponding to a Path

Path of independent latent variables. For the second step, we start again from the fully factorized case
(independent case). The joint probability table PHG of the two end points in a path H−M1−M2− · · ·−Ml−G
is

PHG = PH|M1
PM1|M2

· · ·PMl|GPG

= PHM1
diag(PM1

)−1PM1M2
diag(PM2

)−1 · · ·diag(PMl
)−1PMlG

= PHP"
M1

diag(PM1
)−1PM1

P"
M2

diag(PM2
)−1 · · · diag(PMl

)−1PMl
P"
G

= PH(P"
M1

diag(PM1
)−1)PM1

(P"
M2

diag(PM2
)−1) · · · diag(PMl

)−1PMl
P"
G

= PH1"PM1
1" · · ·1"PMl

P"
G

= PHP"
G ,

where we have used P"
Mi

diag(PMi
(:))−1 = 1".

Path of dependent latent variables. Next, we add perturbation matrices to the joint probability tables
associated with each edge Mi −Mj in the tree and assume that the resulting joint probability table PMiMj

=
PMi

P"
Mj

+∆ij has full rank. Furthermore, we assume that the resulting joint probability table PHG of the two
end points in a path H −M1 −M2 · · ·Ml −G also has full rank. We have

PHG = PH|M1
PM1|M2

· · ·PMl|GPG

= PHM1
diag(PM1

)−1PM1M2
diag(PM2

)−1 · · · diag(PMl
)−1PMlG

= (PHP"
M1

+∆1) diag(PM1
)−1(PM1

P"
M2

+∆2) diag(PM2
)−1 · · · diag(PMl

)−1(PMl
P"
G +∆l)

= PHP"
M1

diag(PM1
)−1PM1

P"
M2

diag(PM2
)−1 · · · diag(PMl

)−1PMl
P"
G

+ 0 (terms not involving all the ∆s will all be zero)

+∆1 diag(PM1
)−1∆2 diag(PM2

)−1 · · ·diag(PMl
)−1∆l

= PHP"
G +∆1 diag(PM1

)−1∆2 diag(PM2
)−1 · · · diag(PMl

)−1∆l . (30)

The reason why we do not need to perturb the term diag(PMi
)−1 is that if P̃Mi

is the perturbed PMi
,

P̃Mi
= P̃MiMj

1 = (PMi
P"
Mj

+∆ij)1 = PMi
P"
MJ

1+ 0 = PMi
,

since ∆ij 1 = 0. And the reason why terms not involving all the ∆s will all be zero is that such terms contain
either 1"∆ = 0" or ∆1 = 0.

Now, from (30) it follows that the perturbation corresponding to the path H −M1 −M2 − · · ·−Ml −G is

∆ := ∆1 diag(PM1
)−1∆2 diag(PM2

)−1 · · ·diag(PMl
)−1∆l. (31)

Bounding the perturbation on the path. We still need to show under which condition ∆ from (31) will
satisfy ‖∆‖F ≤ δ. Assume that the smallest entry in a marginal distribution of an internal node is bounded from
below by γmin, i.e.,

γmin := min
hidden node H

min
i

PH(i) . (32)
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Then we have

‖∆‖F =
∥∥∆1 diag(PM1

)−1∆2 diag(PM2
)−1 · · ·∆l

∥∥
F

≤
∥∥∆1 diag(PM1

)−1
∥∥
F

∥∥∆2 diag(PM2
)−1

∥∥
F
· · · ‖∆l‖F

≤
δl

γl−1
min

.

The perturbation ∆ on the path H −M1 −M2 · · ·Ml −G is bounded by δ if δl

γl−1

min

≤ δ, i.e., if

δ ≤ γmin. (33)

From (29) and (33) we arrive at the condition for successful quartet test for all quartets

δ ≤ min

{
θmin

k2 + k
, γmin

}
.

Intuitively, it means that the size of the perturbation δ away from independence can not be too large. In
particular, it has to be small compared to the smallest marginal probability γmin of a hidden state; it also has
to be small compared to the smallest excessive dependence θmin.

13. Recovery Conditions in Case of Different Number of Hidden States

13.1. Simple quartets in case of violated (A1)

Let us first revisit the rank conditions in case (A1) is violated. Let the (simple) quartet relation of 4 variables,
X1, X2, X3 and X4, be {{1, 2}, {3, 4}}, and the connecting hidden variables be H and G (see Fig. 2(b), left).
Further, let rank(PHG) = k0, rank(P1|H) = k1, rank(P2|H) = k2, rank(P3|G) = k3, rank(P4|G) = k4. Based on
equations (5), (6) and (7), we can conclude that

rank(A) ≤ rank(PHG) = k0

and generically
rank(B) = min(k1k3, k2k4),

rank(C) = min(k1k4, k2k3).
Thus

rank(A) < min(rank(B), rank(C)) if k0 < min(k1k3, k2k4, k1k4, k2k3). (34)

13.2. General quartets with hidden variables having different number of states

Suppose now that (A1) holds but the hidden variables have different number of states. Let the smallest number
be kmin and let (A4) all hidden variables have less than k2min states.

In a general quartet from the tree (as in Fig. 2(a)), each combined CPT corresponding to a path (e.g., Hi− . . .−
Xi1) may have low rank, although each CPT of adjacent variables has full rank. Thus we can think of resolving
a general quartet relation in case of different number of hidden states as resolving a simple quartet relation in
case (A1) is violated (see Section 13.1). Generically, the rank of a combined CPT corresponding to a path is
equal to the minimal rank of a single CPT corresponding to an edge in the path. Now, under assumption (A4),
the condition in (34) is satisfied for any quartet form the tree and thus rank(A) < min(rank(B), rank(C)) holds.

Condition (A4) is sufficient but not necessary, as it can be seen from the following special case.

Remark 8 As it is natural to assume that the hidden variables are simpler than the observed ones (k ≤ n),
extending this intuition to the relations between hidden variables, it is meaningful to assume that the hidden
variables get simpler when we move away from the observed variables. In this case (using the notation from
Section 13.1 but this time for general quartets), k0 < k1 and k0 < k2 (or otherwise k0 < k3 and k0 < k4) and
the condition in (34) is satisfied for any quartet form the. Thus rank(A) < min(rank(B), rank(C)) holds.
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13.3. Rank vs. nuclear norm condition

This being said, note that the rank condition only motivates our approach but the test is based only on nuclear
norm comparisons rather than on rank comparisons. Thus, if ‖A‖∗ < min(‖B‖∗, ‖C‖∗), then our test will
succeed even if rank(A) ≥ min(rank(B), rank(C)).

When two hidden variables H and G have different numbers of states, k and g respectively, the condition of
Lemma 4 becomes

‖∆‖F <=
θ

kg +
√
kg

. (35)

In our analysis in Section 12, we have used stronger than necessary assumptions to make the presentation as
clear as possible. However, full rank condition for the combined CPTs is not necessary for the correctness of the
proofs and they are thus valid for the case of different number of hidden states as well.

Remark 9 There is a minimal representation of each single CPTs and thus also of the marginal probabilities of
each hidden variable. Thus, for γmin in (32) we should have γmin > 0 and (A3) is still meaningful even in case
of different number of hidden states.

14. Statistical Guarantee for the Quartet Test

Based on the concentration result for nuclear norm in (10), we have that, given m samples, the probability that

the finite sample nuclear norm deviates from its true quantity by ε := 2
√
2τ√
m

is bounded

P

{
‖Â‖∗ ≥ ‖A‖∗ + ε

}
≤ 2e−

mε2

8 and P

{
‖B̂‖∗ ≤ ‖B‖∗ − ε

}
≤ 2e−

mε2

8 , (36)

where we have used τ = mε2

8 . Now we can derive the probability of making an error for individual quartet test.
First, let q = {{i1, i2}, {i3, i4}} and

α = min {‖B(q)‖∗ − ‖A(q)‖∗, ‖C(q)‖∗ − ‖A(q)‖∗} .
Then, for sufficiently large m, we can bound the error probability by

P {Quartet test returns incorrect result}

= P

{
‖Â‖∗ ≥ ‖B̂‖∗ or ‖Â‖∗ ≥ ‖Ĉ‖∗

}

≤ P

{
‖Â‖∗ ≥ ‖B̂‖∗

}
+ P

{
‖Â‖∗ ≥ ‖Ĉ‖∗

}
(union bound)

= P

{
‖Â‖∗ − ‖A‖∗ + ‖B‖∗ − ‖B̂‖∗ ≥ ‖B‖∗ − ‖A‖∗

}

+ P

{
‖Â‖∗ − ‖A‖∗ + ‖C‖∗ − ‖Ĉ‖∗ ≥ ‖C‖∗ − ‖A‖∗

}

≤ P

{
‖Â‖∗ − ‖A‖∗ ≥

‖B‖∗ − ‖A‖∗
2

}
+ P

{
‖B‖∗ − ‖B̂‖∗ ≥

‖B‖∗ − ‖A‖∗
2

}

+ P

{
‖Â‖∗ − ‖A‖∗ ≥

‖C‖∗ − ‖A‖∗
2

}
+ P

{
‖C‖∗ − ‖Ĉ‖∗ ≥

‖C‖∗ − ‖A‖∗
2

}

≤ P

{
‖Â‖∗ − ‖A‖∗ ≥

α

2

}
+ P

{
‖B‖∗ − ‖B̂‖∗ ≥

α

2

}

+ P

{
‖Â‖∗ − ‖A‖∗ ≥

α

2

}
+ P

{
‖C‖∗ − ‖Ĉ‖∗ ≥

α

2

}

≤ 8e−
mα2

32

15. Statistical Guarantee for the Tree Building Algorithm

Let αq = min {‖B(q)‖∗ − ‖A(q)‖∗, ‖C(q)‖∗ − ‖A(q)‖∗}. We define

αmin = min
quartet q

αq.
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For a latent tree with d observed variables, the tree building algorithm described in the paper requires O(d log d)
calls to the quartet test procedure. The probability that the tree is constructed incorrectly is bounded by the
probability that either one of these quartet tests returns incorrect result. That is

P {The latent tree is constructed incorrectly}
≤ P {Either one of the O(d log d) quartet tests returns incorrect result}
≤ c · d log d · P {quartet test returns incorrect result} (union bound)

≤ 8c · d log d · e−
mα2

32 ,

which implies that the probability of constructing the tree incorrectly decreases exponentially fast as we increase
the number of samples m.


