
Unfolding Latent Tree Structures using 4th Order Tensors

Mariya Ishteva mariya.ishteva@vub.ac.be
ELEC, Vrije Universiteit Brussel, 1050 Brussels, Belgium

Haesun Park, Le Song {hpark,lsong}@cc.gatech.edu
College of Computing, Georgia Institute of Technology, Atlanta, GA 30332, USA

Abstract

Discovering the structures of latent vari-
able models whose conditional independence
structures are trees is an important yet chal-
lenging learning task. Existing approaches
for this task often require the unknown num-
ber of hidden states as an input. In this pa-
per, we propose a quartet based approach
which is agnostic to this number. The key
contribution is a novel rank characterization
of the tensor associated with the marginal
distribution of a quartet. This characteri-
zation allows us to design a nuclear norm
based test for resolving quartet relations. We
then use the quartet test as a subroutine in
a divide-and-conquer algorithm for recover-
ing the latent tree structure. We also de-
rive the conditions under which the algo-
rithm is consistent and its error probability
decays exponentially with increasing sample
size. We demonstrate that the proposed ap-
proach compares favorably to alternatives. In
a real world stock dataset, it also discovers
meaningful groupings of variables, and pro-
duces a model that fits the data better.

1. Introduction

Discovering the latent structures from many ob-
served variables is an important yet challenging
learning task. The discovered structures can help
better understand the domain and lead to poten-
tially better predictive models. Many local search
heuristics based on maximum parsimony and maxi-
mum likelihood methods have been proposed to ad-
dress this problem (Semple & Steel, 2003; Zhang,
2004; Heller & Ghahramani, 2005; Teh et al., 2008;
Harmeling & Williams, 2010). Their common draw-
back is the lack of consistency guarantees. Further-

Proceedings of the 30 th International Conference on Ma-
chine Learning, Atlanta, Georgia, USA, 2013. JMLR:
W&CP volume 28. Copyright 2013 by the author(s).

more, the number of hidden states often needs to be
determined in advance or estimated by time consum-
ing cross-validations.

We focus on latent variables models whose condi-
tional independence structures are trees (called latent
tree models; an example for stock data is shown in
Fig. 1). For these models, efficient algorithms with
provable performance guarantees have been explored
in the phylogenetic tree reconstruction community.
One popular algorithm is the neighbor-joining (NJ)
algorithm (Saitou & Nei, 1987), where pairs of vari-
ables are joined recursively according to a certain dis-
tance measure. The NJ algorithm is consistent when
the distance measure satisfies the path additive prop-
erty (Mihaescu et al., 2009). For discrete random vari-
ables, the additive distance is defined using the deter-
minant of the joint probability table of a pair of vari-
ables (Lake, 1994). However, this definition only ap-
plies when the observed and the latent variables have
the same number of states. If the latent variables rep-
resent simpler factors with smaller number of states,
the NJ algorithm can perform poorly.

Another family of provably consistent methods is
the quartet-based methods (Semple & Steel, 2003;
Erdös et al., 1999). These methods first resolve a set
of latent relations for quadruples of observed variables
(quartets), and subsequently, stitch them together to
form a latent tree. A good quartet test plays an essen-
tial role in these methods, as it is called repeatedly by
the stitching algorithms. Recently, Anandkumar et al.
(2011) proposed a quartet test using the leading k sin-
gular values of the joint probability table, where k is
the number of hidden states. This approach allows
k to be different from the number of observed states.
However, it still requires k to be given in advance.

Our goal is to design a latent structure discovery al-
gorithm which is agnostic to the number of hidden
states, since in practice we rarely know this number.
The proposed approach is quartet based, where the
quartet relations are resolved based on rank prop-
erties of 4th order tensors associated with the joint

Unfolding Latent Tree Structures using 4th Order Tensors

Figure 1. Latent tree structure estimated from stock data. The price of each stock is considered as a variable and these
variables are connected via other latent variables in a graphical model with tree structure.

probability tables of quartets. The key insight is that
rank properties of the tensor reveal the latent struc-
ture behind a quartet. Similar observations have been
reported in the phylogenetic community (Eriksson,
2005; Allman & Rhodes, 2006), but they are con-
cerned about the cases where the number of hid-
den states is larger or equal to the number of ob-
served states. We focus instead on the cases where
the number of hidden states is smaller, representing
simpler factors. Furthermore, if the joint probability
tensor is only approximately given (due to sampling
noise) the main rank condition has to be modified.
In Allman & Rhodes (2006) such condition is missing
and in Eriksson (2005) the condition is heuristically
translated to the distance of a matrix to its best rank-
k approximation. In contrast, we propose a novel nu-
clear norm relaxation of the rank condition, discuss
its advantages, and provide recovery conditions and
finite sample guarantees. Our quartet test is easy to
compute since it only involves singular value decom-
position of unfolded 4th order tensors.

Using the proposed quartet test as a subroutine, the
latent tree structure can be recovered in a divide-and-
conquer fashion (Pearl & Tarsi, 1986). For d observed
variables, the computational complexity of the algo-
rithm is O(d log d), making it scalable to large prob-
lems. Under mild conditions, the tree construction
algorithm using our quartet test is consistent and sta-
ble to estimate given a finite number of samples. In
simulations, we compared to alternatives in terms of
resolving quartet relations and building the entire la-
tent trees. The proposed approach is among the best
performing ones while being agnostic to the number of
hidden states k. The latter is an important improve-
ment, since cross validation for finding k is expensive
while leading to similar final results. We also applied
the new approach to a stock dataset, where it discov-
ered meaningful grouping of stocks according to indus-
trial sectors, and led a latent variable model that fits
the data better than the competitors.

2. Latent Tree Graphical Models

We focus on discrete latent variable models whose con-
ditional independence structures are trees. We assume
all d observed variables, {X1, . . . , Xd}, are leaves of the
tree, having the same number of states, n. We also as-

sume all dh hidden variables, {Xd+1, . . . , Xd+dh
}, have

the same, but unknown, number of states, k, (k ≤ n).1

We use uppercase letters for random variables (e.g.,
Xi) and lowercase letters their instantiations (e.g., xi).

Factorization of distribution. The joint distribu-
tion of all d + dh variables in a latent tree model is a
multi-way table (tensor) P of order d+ dh. Although
the tensor has O(ndkdh) entries, they can be computed
from just a polynomial number of parameters due to
the latent tree structure. That is, P(x1, . . . , xd+dh

) =∏d+dh

i=1 P (xi|xπi
), where each P (Xi|Xπi

) is a condi-
tional probability table (CPT) of a variable Xi and
its parent Xπi

in the tree.2 This factorization leads
to a significant saving in terms of representation pa-
rameters: we can represent exponential number of en-
tries by just O(dhk2+dnk) parameters from the CPTs.
Throughout the paper, we assume that (A1) all CPTs
have full column rank, k, and the marginal distribu-
tions of all variables have full support. This assump-
tion is needed for the identifiability of the latent vari-
able models, and is common in latent tree recovery
literature (Anandkumar et al. (2011)). Furthermore,
it is needed only for the later rank conditions but not
for the nuclear norm relaxation.

Structure learning. Determining the tree topol-
ogy is an important and challenging learning problem.
The goal is to discover the latent structure based just
on samples of observed variables. For simplicity and
uniqueness of the topology (Pearl, 1988), we assume
that (A2) every latent variable has exactly 3 neigh-
bors. This assumption can potentially be relaxed (§5).

Quartet. A quadruple of observed variables from a
latent tree T is called a quartet (Fig. 2(a)). Given
condition (A2), there are 3 ways to connect a quar-
tet, X1, X2, X3, X4, using 2 latent variables H and G
(Fig. 2(b)). However, only one of the 3 quartet re-
lations is consistent with T . The mapping between
quartets and the tree topology T is captured in the
following theorem (Buneman, 1971):

1Our results can be generalized to the case where hidden
variables have different states (see discussion in §A13). For
simplicity of presentation, we assume their states are equal.

2In a latent tree, we can select a latent node as root, and
reorient all edges away from it, inducing consistent parent-
child relations. For the root Xr, P (Xr|Xπr) = P (Xr).

Unfolding Latent Tree Structures using 4th Order Tensors

Xi1

Xi2

Xi3

Xi4

Hi Gi
X1

X2

X3

X4

H G

X1

X3

X2

X4

H G

X1

X4

X2

X3

H G

P1|H

P2|H

IH PHG IG

P4|G

P3|G

(a) Quartet (X1, X2, X3, X4) (b) {{1, 2}, {3, 4}} {{1, 3}, {2, 4}} {{1, 4}, {2, 3}} (c) Tensor P(X1, X2, X3, X4)

Figure 2. (a) A quartet from a tree. (b) Three fixed ways to connect X1, X2, X3 and X4 with two latent variables. (c)
Schematic diagram of the factorization of tensor P(X1, X2, X3, X4)).

Theorem 1 The set of all quartet relations QT is
unique to a latent tree T , and furthermore, T can be
recovered from QT in polynomial time.

Quartet-based tree reconstruction. Motivated by
Theorem 1, a family of latent tree recovery algorithms
has been designed based on resolving quartet relations.
These algorithms first determine one of the 3 ways how
4 variables are connected, and then join together all
quartet relations to form a consistent latent tree. For a
model with d observed variables, there are O(d4) quar-
tet relations in total (taking all possible combinations
of 4 variables). However, we do not necessarily need
to resolve all these quartet relations in order to recon-
struct the latent tree. A small set of size O(d log d)
will suffice for the tree recovery, which makes quartet
based methods efficient even for problems with large
d (Pearl & Tarsi, 1986; Pearl, 1988). In this paper, we
design a new quartet based method. Our main con-
tribution compared to previous approaches is that our
method is agnostic to the number of hidden states, k,
which is usually unknown in practice.

3. Resolving Quartet Relations without
Having the Number of Hidden States

In this section, we develop a test for resolving the la-
tent relation of a quartet when the number of hidden
states is unknown. Our approach uses information
from the joint probability table of a quartet, which
is a 4th order tensor. Suppose the quartet relation of
X1, X2, X3 and X4 is {{1, 2}, {3, 4}}, then the tensor’s
entries are specified by P(x1, x2, x3, x4) =

∑
h,g

P (x1|h)P (x2|h)P (h, g)P (x3|g)P (x4|g). (1)

This factorization suggests that there exist some low
rank structures in the 4th order tensor. To study
the rank properties of P(X1, X2, X3, X4), we first re-
late it to the conditional probability tables, P (X1|H),
P (X2|H), P (X3|G), P (X4|G), and the joint probabil-
ity table, P (H,G) (we abbreviate them as P1|H , P2|H ,
P3|G, P4|G and PHG, respectively). Using tensor alge-
bra, we have P(X1, X2, X3, X4) = 〈T1, T2〉3,

with
T1 = IH ×1 P1|H ×2 P2|H ,
T2 = IG ×1 P3|G ×2 P4|G ×3 PHG,

where IH and IG are 3rd order diagonal tensors of size
k× k× k with diagonal elements equal to 1. The mul-

tiplication ×i denotes a tensor-matrix multiplication
with respect to the i-th dimension of the tensor and
the rows of the matrix, and 〈·, ·〉3 denotes tensor-tensor
multiplication along the third dimension of both ten-
sors3 (see illustration in Fig. 2(c)). Next we will char-
acterize the rank properties of P and then exploit them
to design a quartet test for latent structure discovery.

3.1. Unfolding the 4th Order Tensor

Now we consider 3 different reshapings A, B and C
of the tensor into matrices (“unfoldings”). These un-
foldings contain exactly the same entires as P but
in different order. A corresponds to the grouping
{{1, 2}, {3, 4}} of the variables, i.e., the rows of A cor-
respond to dimensions 1 and 2 of P , and its columns
to dimensions 3 and 4. B corresponds to the grouping
{{1, 3}, {2, 4}} and C - to the grouping {{1, 4}, {2, 3}}.
Using Matlab’s notation (see §A8 for further expla-
nation),

A = reshape(P , n2, n2); (2)

B = reshape(permute(P , [1, 3, 2, 4]), n2, n2); (3)

C = reshape(permute(P , [1, 4, 2, 3]), n2, n2). (4)

Next we present useful characterizations of A, B and
C, essential for understanding their connection with
the latent structure of a quartet. The Kronecker prod-
uct of two matrices M and M ′ is denoted as M ⊗M ′,
and if they have the same number of columns, their
Khatri-Rao product (column-wise Kronecker product),
is denoted as M &M ′. Then (see §A9 for proof),

Lemma 2 Assume that {{1, 2}, {3, 4}} is the correct
latent structure. The matrices A, B and C can be
factorized respectively as (see Fig. 3 for illustration)

A =
(

P2|H ! P1|H

)

PHG

(

P4|G ! P3|G

)!
, (5)

B =
(

P3|G ⊗ P1|H

)

diag(PHG(:))
(

P4|G ⊗ P2|H

)!
, (6)

C =
(

P4|G ⊗ P1|H

)

diag(PHG(:))
(

P3|G ⊗ P2|H

)!
. (7)

(

((

(P2|HP1|HPHG P4|GP3|G
! (

((

(P3|GP1|H diag(PHG(:))P4|GP2|H
!

(a) A (b) B

Figure 3. Schematic diagrams of the unfoldings A and B.

The factorization of A is very different from those of
B and C. First, in A, P2|H & P1|H is a matrix of size

3For formal definitions of tensor notations see §A8.

Unfolding Latent Tree Structures using 4th Order Tensors

n2 × k, and the columns of P2|H interact only with
their corresponding columns in P1|H . However, in B,
P3|G ⊗ P1|H is a matrix of size n2 × k2, and every
column of P1|H interacts with every column of P3|G
respectively (similarly for C). Second, in A, the middle
factor PHG has size k× k, whereas in B, the entires of
PHG appear as the diagonal of a matrix of size k2×k2

(similarly for C). These differences result in different
rank properties of A, B and C which we will exploit
to discover the latent structure of a quartet.

3.2. Rank Properties of the Unfoldings

Given condition (A1) that all CPTs have full column
rank, the factorization ofA, B and C in (5), (6) and (7)
respectively suggest that (see §A9 for more details)

rank(A) = rank(PHG) = k

≤ rank(B) = rank(C) = nnz(PHG), (8)

where nnz(·) denotes the number of nonzero elements.
We note that the equality is attained if and only if the
relationship between the hidden variables G and H is
deterministic, i.e., there is a single nonzero element
in each row and in each column of PHG. In this case,
the grouping of variables in a quartet can be arbitrary,
and we will not consider this case in the paper. More
specifically, we have

Theorem 3 Assume PHG has a few zero entries, then
k ' k2 ≈ nnz(PHG) and thus

rank(A)' rank(B) = rank(C). (9)

The above theorem reveals a useful difference between
the correct grouping of variables and the two incor-
rect ones. Furthermore, this condition can be easily
verified: Given P we can check the rank of its ma-
trix representations A, B and C and thus discover the
latent structure of the quartet.

3.3. Nuclear Norm Relaxation

In practice, due to sampling noise, all three matri-
ces A, B and C would be full rank, so the rank
condition cannot be applied directly. To deal with
this, we relax the rank condition using nuclear norm
‖M‖∗ =

∑n
i=1 σi(M), which is the sum of all singular

values of an (n × n) matrix M . Instead of compar-
ing the ranks of A, B and C, we look for the matrix
with the smallest nuclear norm and declare the latent
structure corresponding to it. This simple quartet al-
gorithm is summarized in Algorithm 1.

Note that Algorithm 1 works even if the number of hid-
den states, k, is a priori unknown. This is an important
advantage over the idea of learning the structure based
on additive distance (Lake, 1994), where k is assumed
to be the same as the number of states, n, of the ob-
served variables, or over a recent approach based on

Algorithm 1 i∗ = Quartet(X1, X2, X3, X4)

1: Estimate P̂(X1, X2, X3, X4) from a set of
m i.i.d. samples {(xl

1, x
l
2, x

l
3, x

l
4)}ml=1.

2: Unfold P̂ in three different ways into matrices Â,
B̂ and Ĉ, and compute their nuclear norms

a1 = ‖Â‖∗, a2 = ‖B̂‖∗ and a3 = ‖Ĉ‖∗.
3: Return i∗ = argmini∈{1,2,3} ai.

quartet test (Anandkumar et al., 2011), where k needs
to be specified in advance.

In our current context, nuclear norm has a few use-
ful properties. First, it is the tightest convex lower
bound of the rank of a matrix (Fazel et al., 2001).
This is why4 it is meaningful to compare nuclear
norms instead of ranks. Second, it is easy to com-
pute: a standard singular value decomposition will do
the job. Third, it is robust to estimate. The nu-
clear norm of a probability matrix Â based on sam-
ples is nicely concentrated around its population quan-
tity (Rosasco et al., 2010). Given a confidence level
1− 2e−τ , an estimate based on m samples satisfies

|‖A‖∗ − ‖Â‖∗| =∣∣∣
∑

i
σi(A) −

∑
i
σi(Â)

∣∣∣ ≤ 2
√
2τ/
√
m. (10)

Fourth, the nuclear norm can be viewed as a measure
of dependence between two pairs of variables. For
instance, A corresponds to grouping {{1, 2}, {3, 4}},
and ‖A‖∗ measures the dependence between the com-
pound variables {X1, X2} and {X3, X4}. In the com-
munity of kernel methods, A is treated as a cross-
covariance operator between {X1, X2} and {X3, X4},
and its spectrum has been used to design various de-
pendence measures, such as Hilbert-Schmidt Indepen-
dence Criterion, which is the sum of squares of all sin-
gular values (Gretton et al., 2005a), and kernel con-
strained covariance, which only takes the largest singu-
lar value (Gretton et al., 2005b). Intuitively, our quar-
tet test says that: if we group the variables correctly,
then cross group dependence should be low, since the
groups are separated by two latent variables; however
if we group the variables incorrectly, then cross group
dependence should be high, since similar variables ex-
ist in the two groups.

4. Recovery Conditions and Finite
Sample Guarantee for Quartets

Since nuclear norm is just a convex lower bound of
the rank, there might be situations where the nuclear

4Note that A, B and C contain the same elements so
their Frobenius norms are the same, i.e., the 3 matrices are
equally “normalized”.

Unfolding Latent Tree Structures using 4th Order Tensors

norm does not satisfy the same relation as the rank.
That is, it might happen that rank(A) ≤ rank(B) but
‖A‖∗ ≥ ‖B‖∗. Next, we present sufficient conditions
under which nuclear norm returns successful test.

When latent variables H and G are indepen-
dent, rank(PHG) = 1, since PHG = PHP%

G (P (h, g) =
P (h)P (g)). Let {{1, 2}, {3, 4}} be the correct quar-
tet relation. We can obtain simpler characterizations
of the 3 unfoldings of P(X1, X2, X3, X4), denoted as
A⊥, B⊥ and C⊥ respectively. Using Lemma 2 and the
independence of H and G (see appendix, (27)–(28)),

A⊥ = (P2|H & P1|H) PHP%
G (P4|G & P3|G)

%

= P12(:) P34(:)%,
(11)

B⊥ = (P3|G ⊗ P1|H)(diag(PG)⊗ diag(PH))(P4|G ⊗ P2|H)%

= P34 ⊗ P12, (12)
and rank(A⊥) = 1 ' rank(B⊥) which is consistent
with Theorem 3. Furthermore, since A⊥ has only one
nonzero singular value, we have ‖A⊥‖∗ = ‖A⊥‖F =
‖B⊥‖F ≤ ‖B⊥‖∗ (using ‖M‖F ≤ ‖M‖∗ for any matrix
M). Similarly, C⊥ = P43 ⊗ P12 and ‖A⊥‖∗ ≤ ‖C⊥‖∗.
Then we know for sure that the nuclear norm quartet
test will return the correct topology.

When latent variables H and G are not inde-
pendent, we treat it as perturbation ∆ away from the
independent case, i.e., P̃HG = PHP%

G + ∆. The size
of ∆ quantifies the strength of dependence between
H and G. Obviously, when ∆ is small, e.g., ∆ = 0,
we are back to the independence case and it is easy
to discover the correct quartet relation; when it is
large, e.g., ∆ = I − PHP%

G , H and G are determin-
istically related and the different groupings are indis-
tinguishable. The question is how large can∆ be while
still allowing the nuclear norm quartet test to find the
correct latent relation.

First, from the definition of ∆, we have ∆1 = 0,
and ∆%1 = 0, where 1 and 0 are vectors of all ones
and all zeros. Thus, the perturbation ∆ does not
affect the marginal distributions PH and PG, since
P̃H = P̃HG1 = PHP%

G 1 + ∆1 = PH . Assuming
{{1, 2}, {3, 4}} is the correct quartet relation, ∆ does
not affect the pairwise marginal distribution P12 nei-
ther, since P12 = P1|H diag(PH)P%

2|H and the marginal
PH is the same before and after the perturbation. Sim-
ilar reasoning also applies to P34 = P3|G diag(PG)P%

4|G.

We define excessive dependence of the correct and in-
correct groupings as

θ := min{‖B⊥‖∗ − ‖A⊥‖∗, ‖C⊥‖∗ − ‖A⊥‖∗}.
It quantifies the changes in dependence when we
switch from incorrect groupings to the correct one (in

the case when H and G are independent). Note that
θ is measured only from pairwise marginals (11)-(12),
P12 and P34. Using matrix perturbation analysis we
can show that (see appendix §11 for proof)

Lemma 4 If ‖∆‖F ≤
θ

k2+k
, the minimum of ‖A‖∗,

‖B‖∗ and ‖C‖∗ will reveal the correct quartet relation.

Thus, if the excessive dependence θ is large compared
to the number of hidden states, the size of the al-
lowable perturbation can be correspondingly larger.
In other words, if the dependence between variables
within the same group is strong enough compared to
the dependence across groups, we allow for larger ∆
and stronger dependence between hidden variables H
and G (which is closer to the indistinguishable case).
It is difficult to directly compare our recovery con-
ditions with previous work, since we are addressing
the more difficult case where latent state k is un-
known. Our recovery condition constrains the corre-
lation between hidden variables based on observable
quantity θ and the number of latent states k, while
those of Anandkumar et al. (2011) assume the unob-
served correlation ρ between latent variables is given.

Last, under the recovery condition in Lemma 4, and
givenm i.i.d. observations, we can obtain the following
guarantee for the quartet test (see appendix, §14 for
proof). Let α = min {‖B‖∗ − ‖A‖∗, ‖C‖∗ − ‖A‖∗}.
Lemma 5 With probability 1−8e− 1

32
mα2

, Algorithm 1
returns the correct quartet relation.

5. Building Latent Tree from Quartets

We can use the resolved quartet relations (Algo-
rithm 1) to discover the structure of the entire
tree via an incremental divide-and-conquer algo-
rithm (Pearl & Tarsi, 1986; Pearl, 1988), summarized
in Algorithm 2 (further details in appendix §10). Join-
ing variable Xi+1 to the current tree of i leaves can be
done with O(log i) tests. This amounts to performing
O(d log d) quartet tests for building an entire tree of d
leaves, which is efficient even if d is large. Moreover,
this algorithm is consistent (Pearl & Tarsi, 1986).

Tree recovery conditions and guarantees. When
a quartet is taken from a latent tree, each edge of
the quartet corresponds to a path in the tree in-
volving a chain of variables (Fig. 2(a)). We need to
bound the perturbation to each single edge of the
tree such that joint path perturbations satisfy edge
perturbation conditions from Lemma 4. For a quar-
tet q = {{i1, i2}, {i3, i4}} corresponding to a single
edge between H and G, denote the excessive depen-
dence by θq. By adding perturbation ∆q of size

smaller than θq
k2+k to PHP%

G we can still correctly

Unfolding Latent Tree Structures using 4th Order Tensors

Algorithm 2 T = BuildTree(X1, . . . , Xd)

1: Connect any 4 variables X1, X2, X3, X4 with 2
latent variables in a tree T using Algorithm 1.

2: for i = 4, 5, . . . , d−1 do {insert (i+1)-th leafXi+1}
3: Choose root R that splits T into sub-trees

T1, T2, T3 of roughly equal size.
4: Choose any triplet (Xi1 , Xi2 , Xi3) of leaves from

different sub-trees.
5: Test which sub-tree should Xi+1 be joined to:

i∗ ← Quartet(Xi+1, Xi1 , Xi2 , Xi3).
6: Repeat recursively from step 3 with T := Ti∗ .

This will eventually reduce to a tree with a single
leaf. Join Xi+1 to it via hidden variable.

7: end for

recover q. Let θmin := minquartet q θq. If we re-
quire ‖∆q‖F ≤ θmin

k2+k , all such quartet relations will
be recovered successfully. If we further restrict the
size of the perturbation by the smallest value in a
marginal probability distribution of a hidden variable,
γmin := minhidden node H mini=1...k PH(i), we can guar-
antee that all quartet relations corresponding to a path
between H and G can also be successfully recovered by
the nuclear norm test (see appendix §12). The intu-
itive interpretation of γmin is that if a hidden state
rarely occurs (small probability), samples for the ob-
served variables contain very little information about
the hidden variable. It becomes harder to identify the
latent structure in this case and hence smaller pertur-
bation away from independence is allowed. Therefore,
we assume that (A3) ‖∆q‖F ≤ min{ θmin

k2+k
, γmin} for

all quartets q in a tree.

Theorem 6 Given condition (A1)–(A3) and poplu-
ation quantities, algorithm 2 returns the correct tree
topology.

The recovery conditions guarantee that all quartet re-
lations can be resolved correctly and simultaneously.
Then a consistent algorithm using a subset of the quar-
tet relations should return the correct tree structure.
We note that condition (A2) could be relaxed to allow
hidden variables to have more than 3 neighbors. In this
case, instead of using the minimum of the the nuclear
norm of A, B and C for quartet tests, we may need to
consider their differences, e.g., ‖A‖∗−‖B‖∗, to decide
whether to join the observed variables with one or with
two variables, as in Anandkumar et al. (2011). This
is left as our future work. Last, given m i.i.d. sam-
ples, we have the following statistical guarantee for
the Algorithm 2 (see appendix, §15 for proof). Let
αmin := minquartet q αq, and a constant c,

Theorem 7 Given condition (A1)–(A3) and m
samples, Algorithm 2 recovers the correct tree topol-
ogy, with probability 1− 8 · c · d log d · e− 1

32
mα2

min .

We note that the conditions needed for our re-
sults are stronger than those used by previous work
(Anandkumar et al. (2011)). This is partly due to
the fact that our method deals with a more difficult
case where we do not know the number of hidden
states. Another reason is that our analysis relies on
the simple reconstruction algorithm by Pearl & Tarsi
(1986). There are better quartet based algorithms for
building latent trees with stronger statistical guaran-
tees, e.g. Erdös et al. (1999). We can adapt our nu-
clear norm based quartet test to those algorithm as
well. However, this is not the main focus of the paper.
We choose the divide-and-conquer algorithm due to its
simplicity, ease of analysis and it illustrates well how
our quartet recovery guarantee can be translated into
a guarantee for latent tree reconstruction.

6. Experiments

We compared our algorithm with the neighbor-
joining algorithm (NJ) (Saitou & Nei, 1987), a quar-
tet based algorithm of Anandkumar et al. (2011)
(Spectral@k), the Chow-Liu neighbor Joining algo-
rithm (CLNJ) (Choi et al., 2011), and an algorithm
of Harmeling & Williams (2010) (HW).

NJ proceeds by recursively joining two variables that
are closest according to an additive distance defined as
dij =

1
2 log det diagPi−log | detPij |+ 1

2 log det diagPj ,
where “det” denotes determinant, “diag” is a diago-
nalization operator, Pij denotes the joint probability
table P (Xi, Xj), and Pi and Pj the probability vector
P (Xi) and P (Xj) respectively (Lake, 1994). When
Pij has rank k < n, log | detPij | is not defined, NJ can
perform poorly. Spectral@k uses singular values of
Pij to design a quartet test (Anandkumar et al.,
2011). For instance, if the true quartet configu-
ration is {{1, 2}, {3, 4}} as in Fig. 2(b), then the

quartet needs to satisfy
∏k

s=1 σs(P12)σs(P34) >

max{
∏k

s=1 σs(P13)σs(P24),
∏k

s=1 σs(P14)σs(P23)}.
Based on this relation, a confidence interval based
quartet test is designed and used as a subroutine for a
tree reconstruction algorithm. Spectral@k can handle
cases with k < n, but still requires k as an input. We
will show in later experiments that its performance
is sensitive to the choice of k. CLNJ first applies
Chow-Liu algorithm (Chow & Liu, 1968) to obtain
a fully observed tree and then proceeds by adding
latent variables using neighbor joining algorithm. The
HW algorithm is a greedy algorithm to learn binary
trees by iteratively joining two nodes with a high
mutual information. The number of hidden states is
automatically determined in the HW algorithm and
can be different for different latent variables.

Unfolding Latent Tree Structures using 4th Order Tensors

500 1000 1500 2000
0.4

0.5

0.6

0.7

0.8

0.9

1

sample size

pe
rc

en
ta

ge
 o

f c
or

re
ct

 re
co

ve
ry

nj
spectral@2
spectral@4
spectral@8
tensor

(a) k = {2, 4}, µ = 0.5

500 1000 1500 2000

0.5

0.6

0.7

0.8

0.9

1

sample size

pe
rc

en
ta

ge
 o

f c
or

re
ct

 re
co

ve
ry

(b) k = {2, 8}, µ = 0.5

500 1000 1500 2000
0.4

0.5

0.6

0.7

0.8

0.9

1

sample size

pe
rc

en
ta

ge
 o

f c
or

re
ct

 re
co

ve
ry

(c) k = {4, 4}, µ = 0.5

500 1000 1500 2000
0.4

0.5

0.6

0.7

0.8

0.9

sample size

pe
rc

en
ta

ge
 o

f c
or

re
ct

 re
co

ve
ry

(d) k = {2, 4}, µ = 1

500 1000 1500 2000
0.4

0.5

0.6

0.7

0.8

0.9

sample size

pe
rc

en
ta

ge
 o

f c
or

re
ct

 re
co

ve
ry

(e) k = {2, 8}, µ = 1

500 1000 1500 2000
0.4

0.5

0.6

0.7

0.8

0.9

sample size

pe
rc

en
ta

ge
 o

f c
or

re
ct

 re
co

ve
ry

(f) k = {4, 4}, µ = 1

Figure 4. (a)-(f) Quartet recovery results.

6.1. Resolving Quartet Relations

We compared our method to NJ and Spectral@k in
terms of their ability to recover the quartet relation
among four variables. We used quartet with three dif-
ferent configurations for the hidden states: (1) kH = 2,
kG = 4 (small difference); (2) kH = 2, kG = 8 (large
difference); and (3) kH = kG = 4 (no difference). In
all cases, the number of observed states was fixed to
n = 10. We always started from PHG corresponding
to H ⊥ G, but PXi|H corresponding to deterministi-
cally related Xi and H (similarly for PXi|G), and per-
turbed them using the following formula P (a = i|b) =

P (a=i|b)+ui∑
i P (a=i|b)+ui

, where all ui are i.i.d. random variables

drawn from Uniform[0, µ]. We then drew random sam-
ple from the quartet according to these CPTs. We
studied the percentage of correctly recovered quartet
relations as we varied the sample size across S = {50,
100, 200, 300, 400, 500, 750, 1000, 1500, 2000} and un-
der two different levels of perturbation (µ = {0.5, 1}).
We randomly initialized each experiment 1000 times
and report the average quartet recovery performance
and the standard error in Fig. 4.

The proposed method compares favorably to NJ and
Spectral@k. The performance of Spectral@k varies a
lot depending on the chosen number of singular val-
ues k. Our method is free from tuning parameters

500 1000 1500 2000

10

20

30

40

50

sample size

R
ob

in
so

n−
Fo

ul
ds

 m
et

ric

nj
spectral@2
spectral@6
spectral@8
tensor
harmeling
choiCLNJ

(a) µ = 0.2, β = 0.5

500 1000 1500 2000
10

20

30

40

50

sample size

R
ob

in
so

n−
Fo

ul
ds

 m
et

ric

(b) µ = 0.5, β = 0.5

500 1000 1500 2000
25

30

35

40

45

50

sample size

R
ob

in
so

n−
Fo

ul
ds

 m
et

ric

(c) µ = 1, β = 0.5

500 1000 1500 2000

20

30

40

50

sample size

R
ob

in
so

n−
Fo

ul
ds

 m
et

ric

(d) µ = 0.2, β = 0.2

500 1000 1500 2000

20

30

40

50

sample size

R
ob

in
so

n−
Fo

ul
ds

 m
et

ric

(e) µ = 0.5, β = 0.2

500 1000 1500 2000

30

35

40

45

50

sample size

R
ob

in
so

n−
Fo

ul
ds

 m
et

ric

(f) µ = 1, β = 0.2

Figure 5. (a)-(f) Tree recovery results.

and often stays among the top performing ones. Es-
pecially when the number of hidden states are very
different from each other (kH = 2 and kG = 8),
our method is leading the second best by a large
gap (Fig. 4(b) and 4(e)). When both hidden states
are the same (kH = kG = 4), the Spectral@k achieves
the best performance when the chosen number of sin-
gular values k is the same as kH . Note that allowing
Spectral@k to use different k resembles using cross val-
idations for finding the best k. It is expensive while
our approach performs almost indistinguishable from
Spectral@k even it choose the best k.

6.2. Discovering Latent Tree Structure

We used different tree topologies and sample sizes in
this experiment. We generated tree topologies by ran-
domly splitting 16 observed variables recursively into
two groups. The recursive splitting stops when there
are only two nodes left in a group. We introduced
a hidden variable to join the two partitions in each
recursion and this gives a latent tree structure. The
topology of the tree is controlled by a single splitting
parameter β which controls the relative size of the first
partition versus the second. If β is close to 0 or 1, we
obtain trees of skewed shape, with long path of hidden
variables. If β is close to 0.5, the resulting latent trees
are more balanced. In our experiments, we experi-
mented with skewed latent trees β = 0.2 and balanced

Unfolding Latent Tree Structures using 4th Order Tensors

Table 1. Negative log-likelihood (×105) on test data.
Tensor Spectral@k Choi (CLNJ) Neighbor-joining Harmeling Chow-Liu

k = 2 4.4101 ± 0.0014 4.4415 ± 0.0035 4.4299 ± 0.0009 4.4258 ± 0.0015

4.3134 ± 0.0028 4.4067 ± 0.0028
k = 4 4.3041 ± 0.0017 4.3464 ± 0.0038 4.3345 ± 0.0020 4.3294 ± 0.0026
k = 6 4.2835 ± 0.0017 4.3473 ± 0.0041 4.3162 ± 0.0016 4.3111 ± 0.0022
k = 8 4.2829 ± 0.0019 4.3526 ± 0.0037 4.3162 ± 0.0018 4.3104 ± 0.0028
k = 10 4.2854 ± 0.0022 4.3706 ± 0.0023 4.3185 ± 0.0018 4.3111 ± 0.0023

trees β = 0.5. We first generate different random k
between 2 and 8 for the hidden states, and then gen-
erate the probability models for each tree using the
same scheme as in our previous experiment. Here we
experimented with perturbation level µ = {0.2, 0.5, 1}.

We varied the sample size across S =
{50, 100, 200, 500, 1000, 2000}, and measured the
error of the constructed tree using Robinson-Foulds
metric (Robinson & Foulds, 1981). This measure is a
metric over trees of the same number of leaves. It is
defined as (a+ b) where a is the number of partitions
of variables implied by the learned tree but not by
the true tree and b is the number of partitions of
the variables implied by the true tree but not by the
learned tree (similar spirit to precision and recall).

The tree recovery results are shown in Fig. 5(a)-5(f).
Again we can see that our proposed method com-
pares favorably to existing algorithms. Throughout
the 6 experimental conditions, the tensor approach
and spectral@2 performed the best with sufficiently
large sample sizes. Note that we tried out different
k for Spectral@k which resembles using cross valida-
tions for finding the best k. Even in this case, our
approach works comparably without having to know
k. Harmeling-William’s algorithm performed well in
small sample sizes, while CLNJ does not perform well
in these experimental conditions.

6.3. Understanding Latent Relations of Stocks

We applied our algorithm to discover a latent tree
structure from a stock dataset. Our goal is to under-
stand how stock prices Xi are related to each other.
We acquired closing prices of 59 stocks from 1984 to
2011 (from www.finance.yahoo.com), which provides
us 6800 samples. The daily change of each stock price
is discretized into 10 values, and we applied our al-
gorithm to build a latent tree. A visualization of the
learned tree topologies and discovered groupings are
shown in Fig. 1.

We see nice groupings of stocks according to their in-
dustrial sectors. For instance, companies related to
petroleum, such as CVX (Chevron), XOM (Exxon
Mobil), APA (Apache), COP (ConocoPhillips), SLB
(Schlumberger) and SUN (Sunoco), are grouped into
a subtree. Pharmaceutical companies, such as MRK
(Merck), PFE (Pfizer), BMY (Bristol Myers Squibb),

LLY (Eli Lilly), ABT (Abbott Laboratories), JNJ
(Johnson and Johnson) and BAX (Baxter Interna-
tional), are all grouped into a subtree.

We also compared different algorithms in terms of
held-out likelihood. We first randomized the data 10
times, and each time used half for training and half for
computing the held-out likelihood. Then we estimated
the latent binary tree structures using different algo-
rithms. Finally, we fit latent variable models to the
discovered structures. The number of the states for all
hidden variables, k, were the same in each latent vari-
able model. We experimented with k = 2, 4, 6, 8, 10
to simulate the process of using cross validation to se-
lect the best k. The results are presented in Table 1.
Note that Harmeling-William’s algorithm automati-
cally discovers k, so it does not use the experimental
parameter k. The Chow-Liu tree does not contain any
hidden variables and hence just one number in the ta-
ble. CLNJ and Neighbor-joining assume the states for
the hidden and observed variables are the same during
structure learning. However, in parameter fitting, we
can still use different number of hidden states k. In
this experiment, the structure produced by our tensor
approach produced the best held-out likelihood.

7. Conclusion

We propose a quartet-based method for discovering
the tree structures of latent variable models. The prac-
tical advantage of the new method is that we do not
need to pre-specify the number of the hidden states,
a quantity usually unknown in practice. The key idea
is to view the joint probability tables of quadruple of
variables as 4th order tensors and then use the spectral
properties of the unfolded tensors to design a quartet
test. We provide conditions under which the algorithm
is consistent and its error probability decays exponen-
tially with increasing the sample size. In both simu-
lated and a real dataset, we demonstrated the useful-
ness of our methods for discovering latent structures.
While in this study we focus on the properties of the
4th order tensor and its various unfoldings, we believe
that properties of tensors and methods and algorithms
from multilinear algebra will allow to address many
other problems arising from latent variable models.

Acknowledgments: Research supported by ERC

Grant 258581; Belgian Network DYSCO - IAP VII; US gov-
ernment; NSF IIS1218749; Georgia Tech Startup Fund.

Unfolding Latent Tree Structures using 4th Order Tensors

References

Allman, E. S. and Rhodes, J. A. The identifiability
of tree topology for phylogenetic models, including
covarion and mixture models. Journal of Computa-
tional Biology, 13(5):1101–1113, 2006.

Anandkumar, A., Chaudhuri, K., Hsu, D., Kakade,
S., Song, L., and Zhang, T. Spectral methods for
learning multivariate latent tree structure. In Neural
Information Processing Systems, 2011.

Buneman, P. The recovery of trees from measures of
dissimilarity. In Hodson, F.R., Kendall, D.G., and
Tautu, P. (eds.), Mathematics in the archaeological
and historical sciences, pp. 387–395. Edinburgh Uni-
versity Press, 1971.

Carroll, J. and Chang, J. Analysis of individual differ-
ences in multidimensional scaling via an N-way gen-
eralization of “Eckart-Young” decomposition. Psy-
chometrika, 35(3):283–319, 1970.

Choi, M., Tan, V., Anandkumar, A., and Willsky, A.
Learning latent tree graphical models. Journal of
Machine Learning Research, 12:1771–1812, 2011.

Chow, C., and Liu, C. Approximating discrete prob-
ability distributions with dependence trees. IEEE
Transactions on Information Theory, 14:462–467,
1968.

Erdös, P. L., Székely, L. A., Steel, M. A., andWarnow.,
T. J. A few logs suffice to build (almost) all trees:
Part II. Theoretical Computer Science, 221:77–118,
1999.

Eriksson, N. Tree construction using singular value de-
composition. In Pachter, L. and Sturmfels, B. (eds.),
Algebraic Statistics for Computational Biology, pp.
347–358. Cambridge University Press, 2005. URL
http://dx.doi.org/10.1017/CBO9780511610684.

Fazel, Maryam, Hindi, Haitham, and Boyd, Stephen P.
A rank minimization heuristic with application to
minimum order system approximation. In American
Control Conference, pp. 4734–4739, 2001.

Grasedyck, L. Hierarchical singular value decomposi-
tion of tensors. SIAM J. Matrix Anal. Appl., 31(4):
2029–2054, 2010.

Gretton, A., Bousquet, O., Smola, A. J., and
Schölkopf, B. Measuring statistical dependence with
Hilbert-Schmidt norms. In Jain, S., Simon, H. U.,
and Tomita, E. (eds.), Proceedings of the Interna-
tional Conference on Algorithmic Learning Theory,
pp. 63–77. Springer-Verlag, 2005a.

Gretton, A., Herbrich, R., Smola, A. J., Bousquet, O.,
and Schölkopf, B. Kernel methods for measuring in-
dependence. Journal of Machine Learning Research,
6:2075–2129, 2005b.

Harmeling, S. and Williams, C. Greedy learning of
binary latent trees. IEEE Transactions on Pattern
Analysis and Machine Intelligence, pp. 1087–1097,
2010.

Harshman, R. A. Foundations of the PARAFAC pro-
cedure: Model and conditions for an “explanatory”
multi-mode factor analysis. UCLA Working Papers
in Phonetics, 16(1):1–84, 1970.

Heller, K. A. and Ghahramani, Z. Bayesian hier-
archical clustering. In Proceedings of the Interna-
tional Conference on Machine Learning, pp. 297–
304, 2005.

Lake, J.A. Reconstructing evolutionary trees from dna
and protein sequences: paralinear distances. Pro-
ceedings of the National Academy of Sciences, 91
(4):1455, 1994.

Mihaescu, R., Levy, D., and Pachter, L. Why
neighbor-joining works. Algorithmica, 54(1):1–24,
2009.

Oseledets, I. V. Tensor-train decomposition. SIAM
Journal on Scientific Computing, 33:2295–2317,
2011.

Parikh, A., Song, L., and Xing, E. P. A spectral al-
gorithm for latent tree graphical models. In Pro-
ceedings of the International Conference on Machine
Learning, 2011.

Pearl, J. Probabilistic Reasoning in Intelligent Sys-
tems: Networks of Plausible Inference. Morgan
Kaufman, 1988.

Pearl, J. and Tarsi, M. Structuring causal trees. Jour-
nal of Complexity, 2(1):60–77, 1986.

Robinson, D.F. and Foulds, L.R. Comparison of phy-
logenetic trees. Mathematical Biosciences, 53(1-2):
131–147, 1981.

Rosasco, L., Belkin, M., and Vito, E.D. On learning
with integral operators. Journal of Machine Learn-
ing Research, 11:905–934, 2010.

Saitou, N. and Nei, M. The neighbor-joining method:
a new method for reconstructing phylogenetic trees.
Molecular Biology and Evolution, 4(4):406–425,
1987.

Semple, C. and Steel, M.A. Phylogenetics, volume 24.
Oxford University Press, USA, 2003.

Teh, Yee Whye, Daume, Hal, and Roy, Daniel.
Bayesian agglomerative clustering with coalescents.
In Advances in Neural Information Processing Sys-
tems 22, 2008.

Zhang, N. L. Hierarchical latent class models for clus-
ter analysis. Journal of Machine Learning Research,
5:697–723, 2004.

