
Differentially Private Kernel Learning

A. Interactive Model

A.1. Privacy Guarantee

We restate a version of the privacy theorem by (Gupta
et al., 2011) in the context of this paper.

Theorem 9 (Theorem 4.1 from Gupta et al. (2011)).
Let T be the total number of queries and B be the
number of updates allowed in Algorithm 1, let ε0 =

ε
200
√
BS log(4/δ)

and σ = 4
ε0

log(2T/β), where S is the

maximum change in the output of a query (using w∗)
when any one entry in the underlying data set is ar-
bitrarily modified. Let (ε, δ) be the privacy parameters
and β be the failure probability in Algorithm 1. Under
this setting, Algorithm 1 is (ε, δ)-differentially private.

We now provide privacy proof of our PINP algorithm
(Algorithm 1).

Proof of Theorem 2. The proof proceeds in two
stages. In the first stage, we show that prediction func-
tion is relatively insensitive to change in the dataset.
Specifically, we bound |

〈
w∗G , φ(z)

〉
−
〈
w∗G′ , φ(z)

〉
|,

where z ∈ X and G,G′ are two datasets differing in
exactly one data point. Here w∗G and w∗G′ represent
optimal solution to regularized ERM (2) when the un-
derlying datasets are G and G′, respectively. In the sec-
ond stage, we invoke Theorem 9 with sensitive bound
|
〈
w∗G , φ(z)

〉
−
〈
w∗G′ , φ(z)

〉
| to complete the proof.

W.l.o.g. we can assume that the datasets G and G′
differ in the n-th data point, i.e., (xn, yn) ∈ G and
(x′n, y

′
n) ∈ G′. Now, using optimality of w∗G and w∗G′

for (2) (with dataset G and G′ respectively) and strong
convexity of the ERM (2):
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Hence,
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Adding the above two equations and using Lipschitz
continuity of `:

‖w∗G −w∗G′‖2 ≤
2LRφ
λn

. (3)

Finally, using Cauchy-Schwarz inequality and the
above inequality, we have,

|
〈
w∗G , φ(z)

〉
−
〈
w∗G′ , φ(z)

〉
| ≤

2LR2
φ

λn
.

With this bound in hand, we invoke Theorem 9 (The-
orem 4.1 by (Gupta et al., 2011)) to complete the
proof.

A.2. Utility Guarantee

In the following we restate a version of Theorem 5.2
from (Gupta et al., 2011) in the context of this paper.
Setting the parameters as in Theorem 3 gives us the
desired utility guarantee.

Theorem 10 (Theorem 5.2 from Gupta et al. (2011)).
Let T be the total number of queries and B be the
number of updates allowed in Algorithm 1, let ε0 =

ε
200
√
BS log(4/δ)

and σ = 4
ε0

log(2T/β), where S is the

maximum change in the output of a query (using w∗)
when any one entry in the underlying data set is ar-
bitrarily modified. Let (ε, δ) be the privacy parameters
and β be the failure probability in Algorithm 1. As long
as the variable counter in Algorithm 1 is less than B,
for each query zt, with probability at least 1 − β, the
following is true.

|v̂t − 〈φ(zt),w
∗〉 | = O

(
S
√
B log(1/δ) log(T/β)

ε

)

B. Test Data Dependent Learner
(Semi-interactive model)

B.1. Privacy Guarantee of Test Data
Dependent Learner

Proof of Theorem 4. From (3), we know that for any
two training data sets G and G′ differing in exactly one
entry, the following is true:

‖w∗G −w∗G′‖2 ≤
2LRφ
λn

.

Therefore by Cauchy-Schwarz inequality, for any z ∈
X we have

|
〈
w∗G , φ(z)

〉
−
〈
w∗G′ , φ(z)

〉
| ≤

2LR2
φ

λn
.

Theorem now follows by using the above given bound
with the following composition theorem.
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Theorem 11 (Composition Theorem from (Dwork
et al., 2010)). Let ε′, δ′ > 0. The class of
ε-differentially private mechanisms satisfy (ε′, δ′)-
differential privacy under k-fold adaptive composition
for:

ε′ =
√

2k log(1/δ′)ε+ kε(eε − 1).

B.2. Utility Guarantee of Test Data
Dependent Learner

Proof of Theorem 5. Let,

J(w) =
1

T

T∑
t=1

(〈w, φ(zt)〉 − 〈w∗, φ(zt)〉 − bt)2
.

Since ŵ = arg min
w∈C

J(w) and by assumption w∗ ∈ C,
the following holds:

T∑
t=1

(〈ŵ, φ(zt)〉 − 〈w∗, φ(zt)〉)2 ≤ 2

T∑
t=1

〈ŵ −w∗, φ(zt)〉 bt.

Let b = 〈b1, · · · , bT 〉. Using Cauchy-Schwarz inequal-

ity and the fact that ‖v‖1 ≤
√
T‖v‖2, we get:

T∑
t=1

| 〈ŵ, φ(zt)〉 − 〈w∗, φ(zt)〉 | ≤ 2
√
T‖b‖2.

Since ν is the scaling parameter for the Laplace dis-
tribution from which each bt are drawn, therefore by
the tail property of Laplace distribution it follows that
w.p. ≥ 1− β,

T∑
t=1

| 〈ŵ, φ(zt)〉 − 〈w∗, φ(zt)〉 | ≤ 2
√

2Tν log(T/β)

Plugging in the value of ν = O

(
LRφ

2
√
T log(1/δ)

λnε

)
, we

have

T∑
t=1

| 〈ŵ, φ(zt)〉 − 〈w∗, φ(zt)〉 | =

O

(
T 3/2LR2

φ log(T/β)
√

log(1/δ)

nελ

)
. (4)

Now, define g(w; zt) = | 〈w −w∗, φ(zt)〉 |; note that
g(w; zt) is a convex cost functions in w. Now, using
Theorem 1 from (Shalev-Shwartz et al., 2009) (stated
below) we obtain the following:.

Ez∼P [g(ŵ; z)] ≤ 1

T

T∑
t=1

|g(ŵ; zt)|+O

(
‖C‖2Rφ

√
log(1/β)√
T

)
.

(5)

Therefore, using (4) and (5), we get (w.p. ≥ 1− β):

Ez∼P [g(ŵ; z)] ≤
C1

√
TLR2

φ log(T/β)
√

log(1/δ)

nελ
+

C2‖C‖2Rφ
√

log(1/β)√
T

,

where C1, C2 > 0 are global constants.

Theorem now follows by setting T as mentioned in the
theorem along with using Lipschitz property of `.

Theorem 12 (Theorem 1 from (Shalev-Shwartz et al.,
2009)). Let C = {w : ‖w‖2 ≤ B} be a convex set, let
φ : X → Rdφ be a feature map with the image of φ
has L2-norm of at most Rφ, and let f : R × X → R
be a Lf -Lipschitz continuous convex cost function in
its first parameter. Then for any P over the domain
X , and for Z = {z1, · · · , zT } drawn i.i.d. from P, the
following is true with probability at least 1− β.

sup
w∈C

∣∣∣∣∣Ez∼P [f(〈w, φ(z)〉 ; z)]− 1

T

T∑
t=1

[f(〈w, φ(zt)〉 ; zt)]

∣∣∣∣∣
≤ O

(√
B2(RφLf )2 log(1/β)

T

)

B.3. Generalization Bound for Test Data
Dependent Learner

Theorem 13 (Error Bound over Test Distribution).
Let P be a fixed test distribution and let Z =
{z1, · · · , zT } be sampled uniformly from P. If T =

O

(
‖C‖2nελ

LRφ
√

log(1/δ)

)
and w∗ ∈ C in Algorithm 2, then

w.p. 1− β,

Ez∼P [`(〈ŵ, φ(qi)〉 ; yqi)] = Ez∼P [`(〈w∗, φ(qi)〉 ; yqi)]

+O

 (LRφ)3/2
√
‖C‖2 log1/2(1/δ) log(T/β)
√
nελ

 .

C. Test Data Independent Learner
(Non-interactive model)

Proof sketch of Theorem 7. For a given dataset G, let

f(G) =
(
ε0nλ
8LR2

φ
| 〈φ(z),wt −w∗(G)〉 |

)
. Using the fact

that ‖w∗(G)−w∗(G′))‖2 ≤ 2LRφ
nλ for any two datasets

G and G′ differing in exactly one entry (see Theorem 2
from Section 5), it directly follows that |f(G)−f(G′)| ≤
ε0
4 . Hence, it follows that each iteration of Line 3 in

Algorithm 3 is ε0/2-differentially private. Now from
the analysis of Theorem 2 (from Section 5), it follows
that Algorithm 3 is (ε, δ)-differentially private.
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Proof of Theorem 8. Intuition: The proof of this
theorem goes via the following key insight: if we can
make almost every round of Algorithm 3 an update
round, then the iterates wt will become representative
of w∗ as time t progresses. This can be formalized via
a simple potential argument. (See (Gupta et al., 2011)
for the exact formalization.) The way we ensure that
each iteration is an update round is by finding a z (via
exponential mechanism) such that it can distinguish
between ŵt and w∗ with high probability, (i.e., the
value of 〈φ(z), ŵ −w∗〉 is greater than σ

4 ).

Main Proof: We apply exponential mechanism to a
finite set S = {z : z is the center of the ν-net}, where
ν is as given in the Theorem. That is, we divide the
entire space into (overlapping) L2 balls of radius ν and
S is the collection of centers of all such balls. Also, it

is known that |S| =
(

4
ν

)d
.

Now, using the exponential distribution specified in
Step 3 of Algorithm 3, we get:

Pr[ z s.t. | 〈φ(z),wt −w∗〉 | ≤ OPTν − γ] ≤ |S|e−Λγ ,

where OPTν = maxz∈S | 〈φ(z),wt −w∗〉 | and Λ =
ε0nλ
8LR2

φ
. Hence, w.p. at least 1− β, a z is sampled s.t.,

| 〈φ(z),wt −w∗〉 | ≥ OPTν −
ln(|S|/β)

Λ
.

Now, let OPT ∗ be the maximum value of
| 〈φ(z),wt −w∗〉 | over the input space X , i.e.,
OPT ∗ = maxz∈X | 〈φ(z),wt −w∗〉 |. Also, ‖z∗ −
zν‖2 ≤ 2ν where zν = arg maxz∈S | 〈φ(z),wt −w∗〉 |
is the optimal over S. Hence, using Lipschitz continu-
ity of the mapping φ, we obtain a sample z w.p. at
least 1− β s.t.:

| 〈φ(z),wt −w∗〉 | ≥ OPT ∗ − ln(|S|/β)

Λ
− 2νLφRφL

λ
.

Hence, selecting ν =
dRφ
ε0nLφ

, we get

| 〈φ(z),wt −w∗〉 | ≥ OPT ∗ − Ω
(
dLR2

φ ln(Lφ) ln(1/β)

λε0n

)
.

Now, using Theorem 7.3 of (Gupta et al., 2011) (see
Theorem 14), we get,

| 〈φ(z),wt −w∗〉 | ≤ σ

= max

(
‖w∗‖Rφ

2σε
,
dL2R6

φ ln(Lφ) ln 1
β ‖w

∗‖2

σ2λ2n2ε

)
,

for all z ∈ Rd and ‖z‖2 ≤ 1. Hence, minimizing over
σ, we get

| 〈φ(z),wt −w∗〉 |

= O

(
‖w∗‖R2

φd
1/3L2/3 lnLφ log2 1/δ ln(1/β)

(λn)2/3
√
ε

)
,

for all z ∈ Rd and ‖z‖2 ≤ 1. The theorem now follows
using Lipschitz continuity of the loss function ` and
using the bound ‖w∗‖2 ≤ 2LRφ/λ.

Theorem 14 (Modified Theorem 7.3 from (Gupta
et al., 2011)). If the distinguisher in Line 3 of
Algorithm 3 outputs a z (with ‖z‖2 ≤ 1) at
each step t ∈ {1, · · · , B} such that with prob-
ability at least 1 − β (over all the B-steps),
| 〈w∗ −wt, φ(z)〉 | = max

z1∈X ,‖z1‖2≤1
| 〈w∗ −wt, φ(z1)〉 |−

Ω
(
dLR2

φ ln(Lφ) ln(1/β)

λε0n

)
, then for all z ∈ Rd with

‖z‖2 ≤ 1, with probability at least 1 − β (over all
the B-steps), | 〈φ(z),wt −w∗〉 | ≤ µ, where µ =

max

(
‖w∗‖Rφ

2σε ,
dL2R6

φ ln(Lφ) ln 1
β ‖w

∗‖2

σ2λ2n2ε

)
.


