Supplementary Material for
On Compact Codes for Spatially Pooled Features

1. Relationship between K’ and C’

We briefly prove the bound on K we presented in the
paper:
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Recall that K = CCT and K’ = C'C’'T, and since
C and C’ are symmetric, K = C? and K’ = C’2.
Note that the Frobenius norm satisfies subadditivity
and submultiplicativity properties (Meyer, 2001), i.e.,
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Thus, we have
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where all the ||.|| are the Frobenius norms, and where
in the last line we assumed that ||(C — C')|| is suffi-
ciently small and ||C|| is constant w.r.t. ¢. Thus, we
can expect that the approximation quality of K’ will
be similar than C’, and we know that the quality of the
kernel approximation K’ will determine the accuracy
of the final classifier, which we will also empirically
show in the experiments.

2. Note on the Metric in the Coding
Space

In our derivation linking recent coding strategies
(Coates & Ng, 2011) to Nystrom sampling, we noted
that the approach taken when considering doing sub-
sampling of the coding matrix C to form a new code
matrix to which we want to apply linear SVM is given
by:
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where E is a matrix with the coded feature vector
stacked as rows, and covers various encoding tech-
niques. However, most of the work in the literature
does not consider the square matrix A which arises
when derivating the new kernel matrix from a Nystrom
sampling point of view. This is a square ¢ X ¢ matrix,
where c is the dictionary size. Furthermore, the matrix
is symmetric and PSD, which means that we can inter-
pret it as a metric in the ¢ dimensional coding space.
This could also be interpreted as an skewed regulariza-
tion term for the classifiers, and with enough training
data, the effect of this regularization term may be ig-
norable.

We further note that, if the selected columns when
doing Nystrom sampling are orthogonal, A is going
to be diagonal, and as a consequence the effect of
not considering it will be negligible, as it would act
as a per dimension standard deviation normalization,
which is typically done before the linear SVM regard-
less. Even though uniformly sampling columns of the
original coding matrix C (that is, to randomly select
samples from our training set as dictionary elements)
yields good performance (Coates & Ng, 2011), meth-
ods such as Orthogonal Matching Pursuit perform bet-
ter, specially for small values of ¢. This can now be
partially explained by the fact that, since most of these
methods did not consider A, the gap between the im-
plementation of Nystrom sampling and methods with-
out A is artificially closed by selecting samples that
were dissimilar, yielding a closer to diagonal A ma-
trix.

3. Dataset Description

We describe the experimental settings on the four
classification benchmarks: CIFAR-10, STL-10, TIMIT
and WSJ. The CIFAR-10 dataset and the STL dataset
both contain image data, with the former focusing on
large labeled examples and the latter on large unsuper-
vised images with a small amount of labeled examples.
TIMIT is a speech database consisting of read digits
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that contains two orders of magnitude more training
samples than the other datasets, and the largest out-
put label space as it has phone states as the output,
and WSJ is a corpus with roughly five times more data
than TIMIT, and consists of read sentences of the Wall
Street Journal corpus.

CIFAR-10 and STL-10 The two datasets both con-
tain 10 object classes. We rescale the STL-10 dataset
so that the image sizes for both datasets are 32 x 32,
and then follow the state-of-the-art pipeline defined
in Coates & Ng (2011): dense 6x6 local patches with
ZCA whitening are extracted with stride 1, and thresh-
olding coding with a = 0.25 is adopted for encoding.
The codebook is trained with OMP-1. The features
are then average-pooled on a 2 x 2 grid to form the
global image representation.

TIMIT The TIMIT data is collected from speech
streams using a 25-ms Hamming window with a 10-
ms fixed frame rate. We represent the speech using
first- to 12th-order Mel frequency cepstral coefficients
(MFCCs) and energy, along with their first and sec-
ond temporal derivatives. The training set consists of
462 speakers, with a total number of frames in the
training data of size 1.1 million. The development set
contains 50 speakers, with a total of 120K frames, and
is used for cross validation. Results are reported using
the standard 24-speaker core test set consisting of 192
sentences with 7333 phone tokens and 57920 frames.

The data is normalized to have zero mean and unit
variance. All experiments used a context window of
11 frames. This gives a total of 39 x 11 = 429 ele-
ments in each feature vector. We used 183 target class
labels (i.e., three states for each of the 61 phones),
which are typically called “phone states”, with a one-
hot encoding.

The pipeline adopted is otherwise unchanged from the
previous dataset. However, we did not apply pooling,
and instead coded the whole 429 dimensional vector
with a dictionary found with OMP-1, with the same
parameter « as in the vision tasks. The competitive
results with a framework known in vision adapted to
speech has been recently reported in Vinyals & Deng
(2012).

WSJ All experiments were conducted on the 5000-
word speaker independent WSJO (5k-WSJ0) task
(Paul & Baker, 1992). The training material from
the SI84 set (7077 utterances, or 15.3 hours of speech
from 84 speakers) is separated into a 6877-utterance
training set and a 200-sentence cross-validation (CV)
set. Evaluation was carried out on the Nov92 evalu-
ation data with 330 utterances from 8 speakers. The

features and pipeline is exactly the same as we used
for TIMIT. However, the phone labels were derived
from the forced alignments generated using a 2818 8-
mixture tied-state cross-word tri-phone GMM-HMM
speech recognition system trained with maximum like-
lihood criterion.
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