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Supplementary Material

A. Proof of Theorem 2

Proof. We will prove the general case of conditional dependence measure since the other case follows trivially
as a special case when Z = ∅. The kernel-free property of the dependence measures is used to prove the result.
The proof essentially uses change of variables formulas for transformation of random variables. From Theorem
1, we have
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Let U = ΓX(X), V = ΓY (Y ) and W = ΓZ(Z). Let JX = |det(
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We can similarly calculate the joint probability and marginal distributions of other variables. Furthermore,
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Using the above relations, we have
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B. Proof of Theorem 3

Proof. We will first prove the convergence of ��V (m)
Y X

− VY X�HS . It is easy to see that

����V (m)
Y X

− VY X

���
HS

≤

����V (m)
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.

From Lemma 3 (in the supplementary material), we know
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To prove the second part, consider the complete orthogonal systems {ξi}
∞

i=1 and {ψi}
∞

i=1 for HX and HY such
that ΣXXξi = λiξi with an eigenvalue λi ≥ 0 and ΣY Y ψi = γiψi with an eigenvalue γi ≥ 0 respectively. Now
consider the second term,
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���
2

HS

=
��� (ΣY Y + �mI)−1/2 ΣY X (ΣXX + �mI)−1/2
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The first transition follows from the definition of HS norm. Using arithmetic-geometric-harmonic mean inequality,
we get
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Assuming �m � λ1 and �m � γ1, we have
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m

λiγj
≤

2�m(λ1 + γ1)

λiγj
.

Using the above inequality, it is easy to see that,
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The last step is obtained by finiteness of

1
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which follows from our assumption that Σ−3/4
Y Y

ΣY XΣ−3/4
XX

is Hilbert-Schmidt. Therefore,

��V (m)
Y X

− VY X�HS = Op(�
−3/2
m
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m

).

The convergence rate of �DHS(X,Y ) follows from the above result by using triangle inequality and the fact that

��V (m)
Y X

�HS ≤ 1.

Proof of Theorem 4

Proof. We have,
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Y X|Z

− VY X|Z�HS

≤ ��V (m)
Y X� − VY X��HS + ��V (m)

Y Z
�V (m)
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The first term can be bounded using Theorem 3. The second term can be upper bounded by
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Using the fact that ��V (m)
Y Z

�HS ≤ 1 and Theorem 3, we have

��V (m)
Y X|Z

− VY X|Z�HS = Op(�
−3/2
m

m−1/2 + �1/4
m

).

The convergence rate of �DHS(X,Y |Z) follows from the above result by using triangle inequality, the fact that

��V (m)
Y X

�HS , ��V (m)
Y Z

�HS and ��V (m)
ZX

�HS are bounded and the operators are Hilbert-Schmidt.

Proof of Theorem 5

Proof. For simplicity we will sketch the proof only for the 2-dimensional case (P = PX,Y (x, y)). The higher
dimensional case can be treated similarly. When the marginal distributions PX and PY are uniform, then
DHS(X,Y ) has a very simple form:

DHS(X,Y ) =

��

X×Y

(p(x, y)− 1)2 dxdy

=

��

X×Y

p2(x, y) dxdy − 1.

Ritov & Bickel (1990) proved that for 1-dimensional distributions there is a subset of distributions such that the
uniform convergence rate for estimating

�
p2(x)dx can be arbitrarily slow (Theorem 11).

All we have to show is that this theorem can be extended to the set of 2-dimensional continuous distributions
that have uniform marginal distributions. For simplicity, let us denote

��
X×Y

p2(x, y)dxdy by
�
p2. For one

dimensional case, this is
�
X
p2(x)dx.

The main idea in the proof of Ritov & Bickel (1990) is to reduce the
�
p2 estimation problem to a Bayesian two

class classification problem. First, for each sample size n they construct a finite set of random densities P0n in
a specific way. The distribution of the random density p ∈ P0n is denoted by πn(p).

The first class consists of densities p ∈ P0n such that
�
p2 = 1+ 9

12an. In the second class we have distributions
p ∈ P0n such that

�
p2 = 1 + 3an. The densities in P0n are constructed such a way such that for the posterior

probabilities we will have

πn

��
p2 = 1 +

9

12
an|X1, . . . , Xn

�
= 1/2 + oπn(1),

πn

��
p2 = 1 + 3an|X1, . . . , Xn

�
= 1/2 + oπn(1)

This implies that even after having n samples, the probability to predict whether
�
p2 = 1 + 9

12an or
�
p2 =

1 + 1 + 3an is close to 1/2. From this it follows that

inf
θn

P (|θn −

�
p2| > an|X1, . . . , Xn) →πn

1

2
,

and thus
�
P [|θn −

�
p2| > an]πndP → 1/2, which will prove that

lim inf
n

sup
P0

P

�
|θn −

�
p2| > an

�
≥ 1/2 > 0.

In Ritov & Bickel (1990), the main idea of the construction of the random densities is to split the [0, 1] support
uniformly to m = n3 disjunct parts that is [ i−1

m
, i

m
] (i = 1, . . . ,m), and define the random densities in each of

these parts independently from each other such that for the density p either
�
p2 = 1 + 9

12an or
�
p2 = 1 + 3an

holds, and when there is only one observation in the [(i − 1)/m, i/m] interval, then it will not provide any
information about whether the random density p belongs to the first or the second class. It is easy to see
that this construction can be generalized to two (and even higher dimensions) such a way that the marginal
distributions can be kept uniform.
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C. Proof of Theorem 7

Proof. In order to prove the consistency of the �DC (X,Y ), we need to show
����V (m)

�TY
�TY

−VTY TX

���
HS

P
−→ 0. Consider

the decomposition,
����V (m)

�TY
�TX

− �V (m)
TY TX

���
HS

+
����V (m)

TY TX
− VTY TX

���
HS

. (7)

From Theorem 3, it is easy to see that the second term
����V (m)

TY TX
− VTY TX

���
HS

P
−→ 0

and it converges with Op(�
−3/2
m m−1/2 + �1/4m ). Now consider the first term,

����V (m)
�TY

�TX
− �V (m)

TY TX

���
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���
�
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�TY
�TY

+ �mI
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�
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�TX

+ �mI
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�
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+ �mI
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�
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+ �mI
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.

This can be upper bounded by the following:
���
��
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�TY
+ �mI

�−1/2
−

�
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TY TY

+ �mI
��
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�
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+ �mI
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+
���
�
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+ �mI
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��
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�TX
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+ �mI
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+
���
�
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+ �mI
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��
�Σ(m)
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+ �mI
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�
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TXTX
+ �mI

�−1/2 ����
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The first term (8) in the above expression can be rewritten as

���
��
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�TY

�TY
+ �mI

�−1/2 ��
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TY TY

+ �mI
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�
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+ �mI
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+
�
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�TY
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��
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�
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�TY

+ �mI
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�TX

�
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+ �mI
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Using the facts
���
�
�Σ(m)

�TY
�TY

+ �mI
�−1/2 ���
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≤
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√
�m
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���
�
�Σ(m)
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�TY

+ �mI
�−1/2 �Σ(m)

�TY
�TX

�
�Σ(m)

�TX
�TX

+ �mI
�−1/2 ���
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≤ 1

and Lemma 4, the above term can be upper bounded by

1

�m

� 3
√
�m

max
�
��Σ(m)

TY TY
+ �mI�1/2

HS
, ��Σ(m)

�TY
�TY

+ �mI�1/2
HS

�
+ 1

�
��Σ(m)

�TY
�TY

− �Σ(m)
TY TY
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We similarly bound the third term (10). Again using the fact
���
�
�Σ(m)

�TY
�TY

+ �mI
�−1/2 ���

HS

≤
1

√
�m

and
���
�
�Σ(m)

�TX
�TX

+ �mI
�−1/2 ���

HS

≤
1

√
�m

, we can easily see that the second term is bounded by 1
�m

��Σ(m)
�TY

�TX
−�Σ(m)

TY TX
�HS .

Let us prove the following lemma which will be useful in completing the proof.

Lemma 1. Suppose kernels kX , kY and kZ are bounded and Lipschitz continuous, then ��Σ(m)
�TY

�TX
−�Σ(m)

TY TX
�HS

P
−→ 0

and its convergence rate is Op(m−1/2).

Proof. We have

��Σ(m)
�TY

�TX
− �Σ(m)

TY TX
�HS =

���
1

m

m�

i=1

��
kY (·, �TY i)− �µ(m)

�TY

��
kX(·, �TXi)− �µ(m)

�TX
, ·
�

HX

−

�
kY (·, TY i)− �µ(m)

TY

��
kX(·, TXi)− �µ(m)

TX
, ·
�

HX

����
HS

.



Scale Invariant Conditional Dependence Measures

This can be upper bounded by using the following:

���
1

m

m�

i=1

��
kY (·, �TY i)− �µ(m)

�TY

�
−

�
kY (·, TY i)− �µ(m)

TY

���
kX(·, �TXi)− �µ(m)

�TX
, ·
�

HX

���
HS

+
���
1

m

m�

i=1

�
kY (·, �TY i)− �µ(m)

�TY

���
kX(·, �TXi)− �µ(m)

�TX
, ·
�

HX

−

�
kX(·, TXi)− �µ(m)

TX
, ·
�

HX

����
HS

.

Using triangle inequality, the first term of the above expression upper bounded by the following decomposition

1

m

m�

i=1

���
��

kY (·, �TY i)− �µ(m)
�TY

�
−

�
kY (·, TY i)− �µ(m)

TY

���
kX(·, �TXi)− �µ(m)

�TX
, ·
�

HX

���
HS

. (11)

Observe that each i = {1, . . . ,m}, we have

���
��

kY (·, �TY i)− �µ(m)
�TY

�
−

�
kY (·, TY i)− �µ(m)

TY

���
kX(·, �TXi)− �µ(m)

�TX
, ·
�

HX

���
2

HS

≤

���
�
kY (·, �TY i)− �µ(m)

�TY

�
−

�
kY (·, TY i)− �µ(m)

TY

����
2

HY

���kX(·, �TXi)− �µ(m)
�TX

���
2

HX

.

The previous step is obtained by using the definition of the HS norm. Since the kernelKY is Lipschitz Continuous,
we know ���KY (., TY i)−KY (., �TY i)

���
HY

≤ B
��� �TY i − TY i

���

for some constant B. Moreover, the term
���kX(·, �TXi)− �µ(m)

�TX

���
2

HX

is bounded since the kernel KX is bounded. Using the Lipschitz Continuity and bounded properties of kernel, it
is easy to see that the expression (11) can bounded by

c
1

m

m�

i=1

��� �TY i − TY i

���,

where c is some constant. Thanks to Lemma 2, it is easy to see that the above term is Op(m−1/2). By using a
similar analysis, we can show that the second term is Op(m−1/2).

Using the above lemma, it is easy to see that both the terms of 7 are Op(�
−3/2
m m−1/2). Hence the overall

convergence rate is Op(�
−3/2
m m−1/2 + �1/4m ). Therefore,

� �TY − VTY TX�HS = Op(�
−3/2
m

m−1/2).

To prove the consistency and convergence rate of the dependence measures, we follow similar procedure as in
Theorem 4 by using triangle inequality, and the facts that the operators are Hilbert-Schmidt and the HS norm
of the estimators is bounded by 1.

D. Proof of Theorem 8

Proof. Suppose S1, . . . , Sn are independent then it is easy to see that DC (S1, . . . , Sn) = 0. Now, consider the
case when DC (S1, . . . , Sn) = 0. Then each term

DC(Sj , Sj+1:n) = 0, for j = {1, . . . , n− 1},

since they are non-negative. By product rule of probability

P (S1, . . . , Sn) =
n−1�

j=1

P (Sj |Sj+1, . . . , Sn).
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Since D(Sj , Sj+1:n) is 0, P (Sj |Sj+1, . . . , Sn) = P (Sj) for j = {1, . . . , n− 1}. Therefore,

P (S1, . . . , Sn) =
n−1�

j=1

P (Sj).

Hence (S1, . . . , Sn) are independent. The conditional dependence case can be proven similarly.

E. Theorems & Lemmas used in this paper

In order to prove the results in our paper, we need the following theorems and lemmas (refer (Fukumizu et al.,
2005; 2008; Ritov & Bickel, 1990) for details on these results).

Theorem 10. (i) If the product kXkY is a universal kernel on X × Y, then we have

VY X = O ⇔ X ⊥⊥ Y.

(ii) If the product kX�kY is a universal kernel on (X × Z)× Y and kZ is universal, then

VY X� = O ⇔ X ⊥⊥ Y |Z.

Theorem 11. Let an ∈ R be a sequence converging to 0. Let θn = θn(X1, . . . , Xn) a sequence of estimators for

D =
�
p2, where {Xi} is an i.i.d. series of random variables. Then there exists P0 ⊂ P, a compact subset of

continuous distributions on [0, 1] such that the uniform rate of convergence of θn is slower than an:

lim inf
n

sup
P0

P
�
| �Dn −D| ≥ an

�
> 0.

Lemma 2. Let X1:m be an i.i.d sample from a probability distribution over Rd
with marginal cdfs

�
F j

X

�
. Let

FX and �FX be e copula and empirical copula as defined above. Then, for any � ≥ 0,

Pr

�
sup
x∈Rd

�FX(x)− �FX(x)�2

�
≤ 2d exp

�
−
2m�2

d

�
.

Lemma 3. Suppose VY X is Hilbert-Schmidt and �m → 0 as m → ∞. Then we have

��V (m)
Y X

− (ΣY Y + �mI)−1/2 ΣY X (ΣXX + �mI)−1/2
� = Op(�

−3/2
m

m−1/2).

Lemma 4. Suppose A and B are positive, self-adjoint, Hilbert-Schmidt operators on a Hilbert space. Then,

�A3/2
−B3/2

�HS ≤ 3 (max{�A�, �B�)1/2 �A−B�HS .

F. Experiment Details
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We evaluate the performance of the dependence measures on the Housing dataset from the UCI repository.
The importance of scale invariance on real-world data is demonstrated through this experiment. As already
mentioned, our goal in the experiment was to predict the median value of owner-occupied homes based on other
attributes. We used 300 instances for training and the rest of the data for testing. We trained linear regressors
on each features in order to determine their explanatory strength. The prediction errors on the test are shown
in Figure 4. The dependence measure estimates of NHS and CHS for all features are reported in Figures 5 and 6
respectively. It can be seen in these illustrations that CHS gives high dependence measures for most relevant
features while NHS does not prefer the most relevant features.


