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Abstract

In this paper we develop new dependence and
conditional dependence measures and pro-
vide their estimators. An attractive prop-
erty of these measures and estimators is that
they are invariant to any monotone increas-
ing transformations of the random variables,
which is important in many applications in-
cluding feature selection. Under certain con-
ditions we show the consistency of these es-
timators, derive upper bounds on their con-
vergence rates, and show that the estimators
do not suffer from the curse of dimensionality.
However, when the conditions are less restric-
tive, we derive a lower bound which proves
that in the worst case the convergence can be
arbitrarily slow similarly to some other esti-
mators. Numerical illustrations demonstrate
the applicability of our method.

1. Introduction

Measuring dependencies and conditional dependencies
are of great importance in many scientific fields in-
cluding machine learning, and statistics. There are
numerous problems where we want to know how large
the dependence is between random variables, and how
this dependence changes if we observe other random
variables. Correlated random variables might become
independent when we observe a third random variable,
and the opposite situation is also possible where inde-
pendent variables become dependent after observing
other random variables.

Thanks to the wide potential application range (e.g.,
in bioinformatics, pharmacoinformatics, epidemiol-
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ogy, psychology, econometrics), finding efficient depen-
dence and conditional dependence measures has been
an active research area for decades. These measures
have been used, for example, in causality detection,
feature selection, active learning, structure learning,
boosting, image registration, independent component
and subspace analysis. Although the theory of these
estimators is actively researched, there are still several
fundamental open questions.

The estimation of certain dependence and conditional
dependence measures is easy in a few cases: For ex-
ample, (i) when the random variables have discrete
distributions with finitely many possible values, (ii)
when there is a known simple relationship between
them (e.g., a linear model describes their behavior),
or (iii) if they have joint distributions that belong to
a parametric family that is easy to estimate (e.g. nor-
mal distributions). In this paper we consider the more
challenging nonparametric estimation problem when
the random variables have continuous distributions,
and we do not have any other information about them.

Numerical experiments indicate, that a recently pro-
posed kernel measure based on normalized cross-
covariance operators (DHS) appears to be very pow-
erful in measuring both dependencies and conditional
dependencies (Fukumizu et al., 2008). Nonetheless,
even this method has a few drawbacks and several
open fundamental questions. In particular, lower and
upper bounds on the convergence rates of the estima-
tors are not known. It is also not clear if the DHS

measure or its existing estimator �DHS are invariant
to any invertible transformations of the random vari-
ables. This kind of invariance property is so impor-
tant that Schweizer & Wolff (1981) even put it into
the axioms of dependence. One reason for this is that
in many scenarios we need to compare the estimated
dependencies. If certain variables are measured on dif-
ferent scales, the dependence can be much different in
absence of this invariance property. As a result, it
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might happen that in a dependence based feature se-
lection algorithm different features would be selected if
we measured a quantity e.g. in grams, kilograms, or if
we used log-scale. This is an odd situation that can be
avoided with dependence measures that are invariant
to invertible transformations of the variables.

Main contributions: The goal of this paper is to
provide new theoretical insights in this field. Our con-
tributions can be summarized in the following points:
(i) We prove that the dependence and conditional de-
pendence measures (DHS) are invariant to any invert-
ible transformations, but its estimator �DHS does not
have this property. (ii) Under some conditions we de-
rive an upper bound on the rate of convergence of
�DHS . (iii) We show that if we apply �DHS on the
empirical copula transformed points, then the result-
ing estimator �DC will be invariant to any monotone
increasing transformations. (iv) We show that under
some conditions the estimator is consistent and derive
an upper bound on the rate. (v) We prove that if
the conditions are less restrictive, then convergence of
both �DHS and �DC can be arbitrarily slow. (vi) We
also generalize these dependence measures as well as
their estimators to sets of random variables and pro-
vide an upper bound on the convergence rate of the
estimators.

Related work: Since the literature on dependence
measure is huge, we only mention few prominent exam-
ples here. The most well-known dependence measure
is probably the Shannon mutual information, which
has been generalized to the Rényi-α (Rényi, 1961) and
Tsallis-α mutual information (Tsallis, 1988). Other
interesting dependence measures are the maximal cor-
relation coefficient (Rényi, 1959), kernel mutual infor-
mation (Gretton et al., 2003), the generalized variance
and kernel canonical correlation analysis (Bach, 2002),
the Hilbert-Schmidt independence criterion (Gretton
et al., 2005), the Schweizer-Wolff measure (Schweizer
& Wolff, 1981), maximum-mean discrepancy (MMD)
(Borgwardt et al., 2006; Fortet & Mourier, 1953),
Copula-MMD (Póczos et al., 2012), and the distance
based correlation (Székely et al., 2007). Some of these
measures, e.g. the Shannon mutual information, are
invariant to any invertible transformations of the ran-
dom variables. The Copula-MMD and Schweizer-
Wolff measures are invariant to monotone increasing
transformations, while the MMD and many other de-
pendence measures are not invariant to any of these
transformations. The conditional dependence estima-
tion is an even more challenging problem, and only
very few dependence measures have been generalized
to the conditional case (Fukumizu et al., 2008; Poczos

& Schneider, 2012).

Notation: We useX ∼ P to denote that the random
variable X has probability distribution P . The symbol
X ⊥⊥ Y |Z indicates the conditional independence of X
and Y given Z. Let Xi:j denote the tuple (Xi, . . . , Xj).
E[X] stands for the expectation of random variable X.
The symbols µX and BX denote measure and Borel
σ−field on X respectively. We use D(Xi, . . . , Xj) to
denote the dependence measure of set of random vari-
ables {Xi, . . . , Xj}. With slight abuse of notation, we
will use D(X,Y ) to denote the dependence measure
between sets of the random variables X and Y . {Aj}

denotes the set {A1, . . . , Ak} where k will be clear from
the context. The null space and range of an operator
L are denoted by N (L) and R(L) respectively, and A
stands for the closure of set A.

2. Dependence Measure using

Hilbert-Schmidt Norm

In this section, we review the theory behind the Hilbert
Schimdt (HS) norm and its use in defining depen-
dence measures. Suppose (X,Y ) is a random vari-
able on X × Y. Let HX = {f : X → R} be a repro-
ducing kernel Hilbert Space (RKHS) associated with
X, feature map φ(x) ∈ HX (x ∈ X ) and kernel
kX(x, y) = �φ(x), φ(y)�HX (x, y ∈ X ). The kernel sat-
isfies the property f(x) = �f, kX(x, .)�HX for f ∈ HX ,
which is called the reproducing property of the kernel.
We can similarly define RKHS HY and kernel kY as-
sociated with Y . Let us define a class of kernels known
as universal kernels, which are critical to this paper.

Definition 1. A kernel kX : X × X → R is called

universal whenever the associated RKHS HX is dense

in C(X ) — the space of bounded continuous functions

over X — with respect to the L∞ norm.

Gaussian and Laplace kernels are two popular kernels
which belong to the class of universal kernels.

The cross-covariance operators on these RKHSs cap-
ture the dependence of random variables X and Y
(Baker, 1973). In order to ensure existence of these
operators, we assume that E [kX(X,X)] < ∞ and
E [kY (Y, Y )] < ∞. We also assume that all the ker-
nels defined in this paper satisfy the above assump-
tion. The cross-covariance operator (COCO) ΣY X :
HX → HY is an operator such that

�g,ΣY Xf�HY = EXY [f(X)g(Y )]−EX [f(X)]EY [g(Y )]

holds for all f ∈ HX and g ∈ HY . Existence and
uniqueness of such an operator can be shown using the
Riesz representation theorem (Reed & Simon, 1980).
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If X and Y are identical, then the operator ΣXX is
called the covariance operator. Both operators above
are natural generalizations of the covariance matrix in
Euclidean space to Hilbert space. Analogous to cor-
relation matrix in the Euclidean space, we can define
operator VY X ,

VY X = Σ−1/2
Y Y

ΣY XΣ−1/2
XX

,

where R(VY X) ⊂ R(ΣY Y ) and N (VY X)⊥ ⊂ R(ΣXX).
This operator is called the normalized cross-covariance
operator (NOCCO). Similar to ΣY X , the existence of
NOCCO can be proved using Riesz representation the-
orem. Intuitively, the normalized cross-covariance op-
erator captures the dependence of random variables X
and Y discounting the influence of the marginals. We
would like to point out that the notation we adopted
leads to a few technical difficulties which can easily be
addressed (refer (Grünewälder et al., 2012)).

We also define the conditional covariance operators
which will be useful to capture conditional indepen-
dence. Suppose we have another random variable Z
on Z with RHKS HZ and kernel kZ . The normalized
conditional cross-covariance operator is defined as:

VY X|Z = VY X − VY ZVZX .

Similar to the cross-covariance operator, the condi-
tional cross-covariance operator is a natural extension
of conditional covariance matrix to Hilbert space. An
interesting aspect of the normalized conditional cross-
covariance operator is that it can be expressed in terms
of simple products of normalized cross-covariance op-
erators (Fukumizu et al., 2008).

It is not surprising that covariance operators described
above can be used for measuring dependence between
random variables since they capture the dependence
between them. While one can use ΣY X or VY X in
defining the dependence measure (Gretton et al., 2005;
Fukumizu et al., 2008), we will use the latter in this
paper. Let the variable X � denote (X,Z), which will
be useful for defining conditional dependence mea-
sures. We define the HS norm of a linear operator
L : HX → HY as follows.

Definition 2. (Hilbert-Schmidt Norm) The Hilbert-

Schmidt norm of L is defined as

�L�2
HS

=
�

i,j

�vj , Lui�
2
HY

,

where {ui} and {vj} are an orthonormal bases of HX

and HY respectively, provided the sum converges.

The HS norm is a generalization of the Frobenius norm
on matrices and is independent of the choice of the

orthonormal bases. An operator is called Hilbert-
Schmidt if its HS norm is finite. The covariance oper-
ators defined in this paper are assumed to be Hilbert-
Schmidt Operators. Fukumizu et al. (2008) define the
following dependence measures:

DHS (X,Y ) = �VY X�
2
HS

,

DHS (X,Y |Z) = �VY X�|Z�
2
HS

.

Note that the measures above are defined for a pair
of random variables X and Y . In Section 5 we will
generalize this approach and provide dependence and
conditional measures with estimators that operate on
sets of random variables. Theorem 10 (in the supple-
mentary material) justifies the use of the above depen-
dence measures. The result can be equivalently stated
in terms of HS norm of the covariance operators since
HS norm of an operator is zero if and only if the oper-
ator itself is a null operator. At first it might appear
that these measures are strongly linked to the kernel
used in constructing the measure but Fukumizu et al.
(2008) show a remarkable property that the measures
are independent of the kernels, which is captured by
the following result. Let EZ [PX|Z ⊗ PY |Z(A × B)] =�
E[ B(Y )|Z = z]E[ A(X)|Z = z]dPZ(z) for A ∈ BX

and B ∈ BY .

Theorem 1. (Kernel-Free property) Assume that the

probabilities PXY and EZ [PX|Z ⊗ PY |Z ] are absolutely

continuous with respect to µX × µY with probability

density functions pXY and pX⊥⊥Y |Z , respectively, then

we have

DHS(X,Y |Z) =

��

X×Y

�
pXY (x, y)

pX(x)pY (y)
−

pX⊥⊥Y |Z(x, y)

pX(x)pY (y)

�2

pX(x)pY (y)dµXdµY .

Suppose Z = ∅, we have

DHS(X,Y ) =
��

X×Y

�
pXY (x, y)

pX(x)pY (y)
− 1

�2

pX(x)pY (y)dµXdµY .

The above result shows that these measures bear an
uncanny resemblance to mutual information and might
possibly inherit some of its desirable properties. We
show that this intuition is, in fact, true by proving an
important consequence of the above result. In partic-
ular, the following result holds when the assumptions
stated in Theorem 1 are satisfied.

Theorem 2. (Invariance of dependence measure) As-

sume that the probabilities PXY and EZ [PX|Z ⊗ PY |Z ]
are absolutely continuous. Let X ⊂ Rd

, and let
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ΓX : X → Rd
be a differentiable injective function.

Let ΓY and ΓZ be defined similarly. Under the above

assumptions, we have

DHS(X,Y |Z) = DHS(ΓX(X),ΓY (Y )|ΓZ(Z)).

As a special case of Z = ∅, we have

DHS(X,Y ) = DHS(ΓX(X),ΓY (Y )).

The proof is in the supplementary material. Though
we proved the result for Euclidean spaces, it can be
generalized to certain measurable spaces under mild
conditions (Hewitt & Stromberg, 1975). We now look
at the empirical estimators for the dependence mea-
sures defined above. Let X1:m, Y1:m and Z1:m be

i.i.d samples from the joint distribution. Let �µ(m)
X

=
1
m

�
m

i=1 kX (·, Xi) and �µ(m)
Y

= 1
m

�
m

i=1 kY (·, Yi) de-
note the empirical mean maps respectively. The em-
pirical estimator of ΣY X is

�Σ(m)
Y X

=
1

m

m�

i=1

�
kY (·, Yi)− �µ(m)

Y

�
�kX (·, Xi)−�µ(m)

X
, ·�HX

The empirical covariance operators �Σ(m)
XX

and �Σ(m)
Y Y

can
be defined in a similar fashion. The empirical normal-
ized cross-covariance operator VY X is

�V (m)
Y X

=
�
�Σ(m)
Y Y

+ �mI
�−1/2 �Σ(m)

Y X

�
�Σ(m)
XX

+ �mI
�−1/2

,

where �m > 0 is the regularization constant (Bach,
2002; Fukumizu et al., 2004). In the later sections, we
look at a particular choice of �m which provides good
convergence rates. The empirical conditional cross-
covariance operator is

�V (m)
Y X|Z

= �V (m)
Y X

− �V (m)
Y Z

�V (m)
ZX

.

Let GX be the centered gram matrix such that
GX,ij = �kX (·, Xi) − �µX , kX (·, Xj) − �µX�HX and

RX = GX (GX +m�mI)−1. Similarly, we can define
GY , GZ and RY , RZ for random variables Y and Z.
The empirical dependence measures are then

�DHS (X,Y ) = ��V (m)
Y X

�
2
HS

= Tr [RY RX ] ,

�DHS (X,Y |Z) = ��V (m)
Y X�|Z�

2
HS

= Tr[RY RX�

− 2RY RX�RZ +RY RZRX�RZ ].

Fukumizu et al. (2008) show the consistency of the
above estimators. We now provide an upper bound on
the convergence rates of these estimators under certain
assumptions.

Theorem 3. (Consistency of operators) Assume

Σ−3/4
Y Y

ΣY XΣ−3/4
XX

is Hilbert-Schmidt. Suppose �m sat-

isfies �m → 0 and �3
m
m → ∞. Then, we have conver-

gence in probability in HS norm i.e

��V (m)
Y X

− VY X�HS

P
−→ 0.

An upper bound on convergence rate of ��V (m)
Y X

−

VY X�HS is Op(�
−3/2
m m−1/2 + �1/4m ).

Proof Sketch (refer supplementary for complete proof).

We can upper bound ��V (m)
Y X

− VY X�HS by

����V (m)
Y X

− (ΣY Y + �mI)−1/2 ΣY X (ΣXX + �mI)−1/2
���
HS

+
��� (ΣY Y + �mI)−1/2 ΣY X (ΣXX + �mI)−1/2

− VY X

���
HS

.

The first term can be shown to be Op

�
�−3/2
m m−1/2

�

using Lemma 3 (in the supplementary material). To
prove the second part, consider the complete orthogo-
nal systems {ξi}

∞

i=1 and {ψi}
∞

i=1 for HX and HY with
an eigenvalue λi ≥ 0 and γi ≥ 0 respectively. Using
the definition of Hilbert-Schimdt norm, we can bound
the square of second term by

∞�

i,j=1

�
�mλi + �mγj + �2

m

λiγj(λi + �m)(γj + �m)

�
�ψj ,ΣY Xξi�

2 .

Using AM-GM inequality, and assuming �m � λ1,

�m � γ1 and that Σ−3/4
Y Y

ΣY XΣ−3/4
XX

is Hilbert-
Schmidt, the theorem follows.

Theorem 4. (Consistency of estimators) As-

sume Σ−3/4
Y Y

ΣY X�Σ−3/4
X�X� , Σ−3/4

ZZ
ΣZX�Σ−3/4

X�X� and

Σ−3/4
Y Z

ΣY ZΣ
−3/4
ZZ

are Hilbert-Schmidt. Suppose �m
satisfies �m → 0 and �3

m
m → ∞. Then, we have

�DHS(X,Y )
P
−→ DHS(X,Y ),

�DHS(X,Y |Z)
P
−→ DHS(X,Y |Z).

An upper bound on convergence rate of the estimator

�DHS(X,Y |Z) is Op(�
−3/2
m m−1/2 + �1/4m ).

The proof is in the supplementary material. The as-
sumptions used in Theorems 3 and 4 depend on the
probability distribution and the kernel. A natural
question arises if such assumptions are necessary for
estimating these measures. The following result an-
swers this question affirmatively. The crux of the re-
sult lies in the fact that these dependence measures
are intricately connected to functionals of probability
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distributions that are typically hard to estimate. In
particular, we have

DHS(X,Y ) =

� �

X×Y

�
p2
XY

(x, y)

pX(x)pY (y)
− 1

�
dµXdµY .

Since estimation of these functionals is tightly coupled
with smoothness assumptions on probability distribu-
tions of the random variables, it is reasonable to as-
sume that our assumptions have a similar effect. We
prove the result for the special case where X ,Y ⊂ Rd

and Z = ∅. Let P denote the set of all distributions
in [0, 1]d.

Theorem 5. Let �Dn denote an estimator of DHS on

sample size n. For any sequence of estimates { �Dn}

and any sequence {an} converging to 0, there exists a

compact subset P0 ⊂ P for which the uniform rate of

convergence is slower than {an}. In other words,

lim inf
n

sup
P0

P
�
| �Dn −D| ≥ an

�
> 0.

where D = DHS(X,Y ).

The proof is in the supplementary material. An impor-
tant point to note is that while the dependence mea-
sures themselves are invariant to invertible transfor-
mations, the estimators do not possess this property.
It is often desirable to have this invariance property for
the estimators as well since we generally deal with fi-
nite sample estimators. This property can be achieved
using copula transformation, which is our focus in the
next section. Along with the theoretical analysis, we
also provide a compelling justification for using cop-
ula transformation from a practical point of view in
Section 6.

3. Copula Transformation

We review important properties of the copula of mul-
tivariate distributions in this section. The use of the
transformation will be clear in the later sections. The
copula plays an important role in the study of depen-
dence among random variables. They not only cap-
ture the dependence between random variables but
also help us construct dependence measures which are
invariant to any strictly increasing transformation of
the marginal variables.

Sklar’s theorem is central to the theory of copulas. It
gives the relationship between a multivariate random
variable and its univariate marginals. Suppose X =�
X1, . . . , Xd

�
∈ Rd is a d-dimensional multivariate

random variable. Let us denote the marginal cumu-
lative distribution function (cdf) of Xj by F j

X
: R →

[0, 1]. In this paper, we assume that the marginals
F j

X
are invertible. The copula is defined by Sklar’s

theorem as follows:

Theorem 6. (Sklar’s theorem). Let H (x1, . . . , xd) =
Pr

�
X1 ≤ x1, . . . , Xd ≤ xd

�
be the multivariate cumu-

lative distribution function with continuous marginals�
F j

X

�
. Then there exists a unique copula C such that

H(x1, . . . , xd) = C(F 1
X
(x1), . . . , F

d

X
(xd)). (1)

Conversely, if C is a copula and

�
F j

X

�
are marginal

cdfs, then H given in Equation (1) is the joint distri-

bution with marginals

�
F j

X

�
.

Let TX =
�
T 1
X
, . . . , T d

X

�
denote the transformed vari-

ables where TX= FX (X) =
�
F 1
X
(X1), . . . , F d

X
(Xd)

�
∈

[0, 1]d. Here, FX is called copula transformation. The
above theorem gives a one-to-one correspondence be-
tween the joint distribution of X and TX . Further-
more, it provides a way to construct dependence mea-
sures over the transformed variables since we have
information about the copula distribution. An in-
teresting consequence of the copula transformation is
that we can get invariance of dependence measures to
any strictly increasing transformations of the marginal
variables.

4. Hilbert-Schmidt Dependence

Measure using Copulas

Consider random variables X =
�
X1, . . . , Xd

�
, Y =�

Y 1, . . . , Y d
�
and Z =

�
Z1, . . . , Zd

�
. We focus on the

problem of defining dependence measure DC (X,Y )
and conditional dependence measure DC (X,Y |Z) us-
ing copula transformation. The next section gener-
alizes the dependence measure to any set of random
variables. Note that we have assumed that the ran-
dom variables X, Y and Z are all d−dimensional for
simplicity, but our results hold for random variables
with different dimensions.

Let TX , TY and TZ be the copula transformed vari-
ables of X,Y and Z respectively. With slight abuse
of notation, we use kX , kY and kZ to denote the ker-
nels over transformed variables TX , TY and TZ respec-
tively. In what follows, the kernels are functions of the
form [0, 1]d × [0, 1]d → R since they are defined over
the transformed random variables. We define the de-
pendence among random variables X and Y as:

DC (X,Y ) = DHS (TX , TY ) = �VTY TX�
2
HS

.

The conditional dependence measure is defined as:

DC (X,Y |Z) = DHS (TX , TY |TZ) = �VTY TX� �
2
HS

,
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where TX� = (TX , TZ). By Theorem 10 (in supplemen-
tary) and the fact that the marginal cdfs are invert-
ible, it is easy to see that DC (X,Y ) = 0 ⇔ X ⊥⊥ Y
and DC (X,Y |Z) = 0 ⇔ X ⊥⊥ Y |Z. Our goal is
to estimate the dependence measures DC (X,Y ) and
DC (X,Y |Z) using the i.i.d samples X1:m, Y1:m and
Z1:m. Suppose we have the copula transformed vari-
ables TX , TY and TZ , then we can use the estimators

�DC (X,Y ) = ��V (m)
TY TX

�
2
HS

,

�DC (X,Y |Z) = ��V (m)
TY TX� �

2
HS

for dependence and conditional dependence measures
respectively. However, we only have i.i.d samples
X1:m, Y1:m, Z1:m, and the marginal cdfs are unknown
to us. We have to get the empirical copula trans-
formed variables through these samples by estimating

the marginals distribution functions
�
F j

X

�
,
�
F j

Y

�
and

�
F j

Z

�
. These distribution functions can be estimated

efficiently using the rank statistics. For x ∈ R and
xj ∈ R for 1 ≤ j ≤ d, let

�F j

X
(x) =

1

m

���
�
i : 1 ≤ i ≤ m,x ≤ Xj

i

� ���,

�FX

�
x1, . . . , xd

�
=

�
�F 1
X
(x1), . . . , �F d

X
(xd)

�
.

�FX is called the empirical copula transforma-

tion of X. The samples
�
�TX1, . . . , �TXm

�
=

�
�FX(X1), . . . , �FX(Xm)

�
, called the empirical copula,

are estimates of true copula transformation. We can
similarly define empirical copula transformations and
empirical copula for random variables Y and Z. It
should be noted that the samples of empirical cop-

ula
�
�TX1, . . . , �TXm

�
are not independent even though

X1:m are i.i.d samples. We can now use the depen-
dence estimators in (Fukumizu et al., 2008) using em-

pirical copula
�
�TX1, . . . , �TXm

�
instead of the samples

(X1, . . . , Xm) . Lemma 2 (in supplementary) shows
that the empirical copula is a good approximation of
i.i.d. samples (TX1, . . . , TXm).

It is important to note the relationship between mea-
sures DHS and DC . The copula transformation can
also be viewed as an invertible transformation and
hence, by Theorem 2 we have DHS = DC . Though the
measures are identical, their corresponding estimators
�DHS and �DC are different. At this point, we should
also emphasize the difference between our work and
Póczos et al. (2012). Although both these works use
copula trick to obtain invariance, in contrast to Póczos
et al. (2012), we essentially get the same measure even

after copula transformation. In other words, the cop-
ula transformation in our case does not change the de-
pendence measure and therefore, provides an invariant
finite sample estimator to DHS . Thus, we provide a
compelling case to use copulas for DHS . Moreover, the
invariance property extends naturally to conditional
dependence measure in our case.

We now focus on the consistency of the proposed esti-
mators �DC (X,Y ) and �DC (X,Y |Z). We assume that
the kernel functions kX , kY and kZ are bounded ker-
nel functions and are Lipschitz continuous on [0, 1]d i.e
there exists a B > 0 such that

|kX(x1, x)− kX(x2, x)| ≤ B�x1 − x2�,

for all x, x1, x2 ∈ [0, 1]d. The gaussian kernel is one of
the popular kernels which is not only universal but also
bounded and Lipschitz continuous. In what follows, we
assume that conditions required for Theorem 3 and 4
hold for the transformed variables as well. We now
show the consistency of the dependence estimators and
provide upper bounds on their rates of convergence.

Theorem 7. (Consistency of copula dependence es-

timators) Assume kernels kX , kY and kZ are bounded

and Lipschitz continuous. Suppose �m satisfies �m → 0
and �3

m
m → ∞, then

(i) �DC (X,Y )
P
−→ DC (X,Y ).

(ii) �DC (X,Y |Z)
P
−→ DC (X,Y |Z).

An upper bound on convergence rate of estimators

�DC (X,Y ) and �DC (X,Y |Z) is Op(�
−3/2
m m−1/2+�1/4m ).

Proof Sketch (refer supplementary for complete proof).

We first show ��V (m)
�TY

�TY
− VTY TX�HS

P
−→ 0. Consider

the following upper bound of ��V (m)
�TY

�TY
− VTY TX�HS :

��V (m)
�TY

�TX
− �V (m)

TY TX
�HS + ��V (m)

TY TX
− VTY TX�HS . (2)

From Theorem 3, it is easy to see that the second

term converges with Op(�
−3/2
m m−1/2 + �1/4m ). The first

term can be proved to be bounded by C�−3/2
m ��Σ(m)

�TY
�TX

−

�Σ(m)
TY TX

�HS on similar lines as Lemma 3. We then

prove that ��Σ(m)
�TY

�TX
− �Σ(m)

TY TX
�HS converges Op(m−1/2)

(refer Lemma 1 in the supplementary material),

thereby proving the overall rate to be Op(�
−3/2
m m−1/2).

The convergence of the dependence estimators follows
from the convergence of the operators.
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The above result shows that by using copula trans-
formation, we can ensure that the invariance property
holds for finite sample estimators without loss in statis-
tical efficiency. It should be noted that slightly better
rates of convergence can be obtained by more restric-
tive assumptions. It is also noteworthy that under
the conditions assumed in this paper, the estimators
do not suffer from the curse of dimensionality, and
hence, can be used in high dimensions. Moreover, the
estimators only use rank statistics rather than the ac-
tual values of X1:m,Y1:m and Z1:m. This provides us
with robust estimators since an arbitrarily large outlier
sample cannot affect the statistics badly. In addition,
this also makes the estimators invariant to monotone
increasing transformations.

Let us call the dependence measure defined above as
pairwise dependence since it measures dependence be-
tween two random variables. Now, the question arises
if this approach can be generalized to measure depen-
dence amongst a set of random variables rather than
just two random variables. We answer this question
affirmatively in the next section.

5. Generalized Dependence Measures

Suppose S = {S1, . . . , Sn} is a set of random variables.
Similar to our previous assumptions, we assume that
random variables {Sj} are d-dimensional. We would
like to measure the dependence amongst the set of ran-
dom variables. Recall Si:j represents the random vari-
able (Si, . . . , Sj). Note that Si:j is a random variable
of (j − i)d dimensions. With slight abuse of notation,
the kernel ki:j corresponding to variable Si:j is defined
appropriately. We now express the generalized depen-
dence measure as a sum of pairwise dependence mea-
sures. For simplicity, we denote DC (S1, . . . , Sn) by
DC(S). The dependence measures are defined as:

DC(S) =
n−1�

j=1

DC(Sj , Sj+1:n), (3)

DC(S|Z) =
n−1�

j=1

DC(Sj , Sj+1:n|Z). (4)

Note that the set dependence measure is a sum of n−1
pairwise dependence measures. The following result
justifies the use of these dependence measures.

Theorem 8. (Generalized dependence measure) If the

product kernels kjkj+1:n for j = {1, . . . , n − 1} are

universal, we have (i) DC(S) = 0 ⇔ (S1, . . . , Sn) are

independent. (ii) DC(S|Z) = 0 ⇔ (S1, . . . , Sn) are

independent given Z.

The proof is in the supplementary material. We can

now use the pairwise dependence estimators for esti-
mating set dependence. The following estimators are
used for measuring dependence

�DC (S) =
n−1�

j=1

�DC(Sj , Sj+1:n), (5)

�DC (S|Z) =
n−1�

j=1

�DC(Sj , Sj+1:n|Z). (6)

Let us assume that the conditions required for The-
orem 7 are satisfied. The following theorem states
the consistency of the dependence estimators proposed
above, and provides an upper bound on their rates of
convergence.

Theorem 9. (Consistency of generalized estimators)

Suppose the kernels defined above are bounded and Lip-

schitz continuous, then

(i) �DC (S)
P
−→ DC (S).

(ii) �DC (S|Z)
P
−→ DC (S|Z).

An upper bound on convergence rate of �DC (S) and

�DC (S|Z) is Op(n�
−3/2
m m−1/2 + n�1/4m ).

Proof. The theorem follows easily from Theorem 7 and
Equations (3), (4), (5) and (6).

6. Experimental Results

In this section, we empirically illustrate the theoreti-
cal contributions of the paper. We compare the perfor-
mance of DHS(X,Y ) and DHS(X,Y |Z) (referred to as
NHS) with DC(X,Y ) and DC(X,Y |Z) (referred to as
CHS), that is with and without copula respectively. In
the following experiments, we choose gaussian kernels
and choose σ by median heuristic. We fix �m = 10−6

for our experiments.

6.1. Synthetic Dataset

In the first simulation, we constructed the
following random variables: X1 ∼ U [0, 4π],
X2 = (500 V1, 1000 tanh(V2), 500 sinh(V3)), where
V1, V2, V3 ∼ U [0, 1], and Y = 1000 tanh(X1). 200
sample points are generated using the distributions
specified above. The task in this experiment was to
choose a feature between X1 and X2 that contains
the most information about Y . Note that Y is a
deterministic function of X1 and independent of X2.
Therefore, we expect the dependence for (X1, Y ) to
be high and that of (X2, Y ) to be low. Figure 1 shows
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dependence measure (DM) comparison of NHS and
CHS. It can be seen that while CHS chooses the
correct feature X1, NHS chooses the incorrect feature
X2.
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Figure 1. Columns (A) and (B) represent the dependence

of (X1, Y ) and (X2, Y ) as measured by NHS while

Columns (C) and (D) represent the dependence of (X1, Y )

and (X2, Y ) as measured by CHS.

The next simulation is designed to prove the signif-
icance of invariance property on finite samples. As
mentioned earlier, though NHS is invariant to invert-
ible transformation, its estimators do not retain this
property. Thanks to copula transformation, CHS does
not suffer from this issue. Let X ∼ U [0, 4π], Y = 50 X
and Z = 10 tanh(Y/100). Note that Z is an invertible
transformation of Y . The dependence of (X,Z) under
CHS is not reported here as CHS is invariant to any
monotone increasing transformations. We now demon-
strate the asymptotic nature of the invariance property
of NHS on the same data. Figure 2 clearly shows that
while both methods have almost the same dependence
measure for (X,Y ), this dependence measured by NHS
is reduced significantly when Y is transformed to Z.
We can clearly see that NHS requires a large sample
before it exhibits the invariance property. This prob-
lem furthur amplifies as we move to higher dimensions,
making it undesirable for higher dimensional tasks.
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Figure 2. DM with varying number of samples.

We demonstrate the performance of conditional de-
pendence measures in the following experiment. Let
X, V ∼ U [0, 4π], Y = 50 sin(V ) and Z = log(X + Y ).
Observe that though X and Y are independent, they

become dependent when conditioned on Z. The results
in Figure 3 clearly indicate that NHS fails to detect the
dependence between X and Y when conditioned on Z
while CHS successfully captures this dependence.
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Figure 3. Columns (A) and (B) represent the dependence

of (X,Y ) and (X,Y )|Z as measured by NHS while

Columns (C) and (D) represent the dependence of (X,Y )

and (X,Y )|Z as measured by CHS.

6.2. Housing Dataset

We evaluate the performance of the dependence mea-
sures on the Housing dataset from the UCI repository.
The importance of scale invariance on real-world data
is demonstrated through this experiment. This dataset
consists of 506 sample points each of which has 12 real
valued and 1 integer valued attributes. We will only
consider the real value attributes for this experiment
and discard the integer attribute. Our aim is to pre-
dict the median value of owner-occupied homes based
on other attributes like per capital crime, percentage
of lower status of the population etc. This dataset is
particularly interesting since it contains features of dif-
ferent nature and scale. In this experiment, we would
like to predict the single most relevant feature for pre-
dicting the median value. Features 13 and 6 achieve
the least prediction errors amongst all features using
linear regressors (see supplementary material for more
details). While CHS predicts these two features as the
most relevant features, NHS performs poorly by se-
lecting features 1 and 6 as the most relevant features.

7. Conclusion

In this paper we developed new dependence and con-
dition dependence measures and estimators which are
invariant to any monotone increasing transformations
of the variables. We showed that under certain condi-
tions the convergence rates of the estimators are poly-
nomial, but when the conditions are less restrictive,
then similarly to other existing estimators the conver-
gence can be arbitrarily slow. We generalized these
measures and estimators to sets of variables as well,
and illustrated the applicability of our method with a
few numerical experiments.



Scale Invariant Conditional Dependence Measures

References

Bach, Francis R. Kernel independent component anal-
ysis. JMLR, 3:1–48, 2002.

Baker, Charles R. Joint measures and cross-covariance
operators. Transactions of the American Mathemat-

ical Society, 186:pp. 273–289, 1973.

Borgwardt, K., Gretton, A., Rasch, M., Kriegel, H.,
Schölkopf, B., and Smola, A. Integrating structured
biological data by kernel maximum mean discrep-
ancy. Bioinformatics, 22(14):e49–e57, 2006.

Fortet, R. and Mourier, E. Convergence de
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