
On the Generalization Ability of Online Learning Algorithms for Pairwise Loss Functions

A. Proof of Lemma 1

Lemma 9 (Lemma 1 restated). Let h1, . . . , hn−1 be an
ensemble of hypotheses generated by an online learning
algorithm working with a bounded loss function ` : H×
Z × Z → [0, B]. Then for any δ > 0, we have with
probability at least 1− δ,

1

n− 1

n∑
t=2

L(ht−1) ≤ 1

n− 1

n∑
t=2

L̂t(ht−1)

+
2

n− 1

n∑
t=2

Rt−1(` ◦ H) + 3B

√
log n

δ

n− 1
.

Proof. As a first step, we decompose the excess risk
in a manner similar to (Wang et al., 2012). For any
h ∈ H let

L̃t(h) := E
zt

r
L̂t(h)

∣∣∣Zt−1z .
This allows us to decompose the excess risk as follows:

1

n− 1

n∑
t=2

L(ht−1)− L̂t(ht−1)

=
1

n− 1

 n∑
t=2

L(ht−1)− L̃t(ht−1)︸ ︷︷ ︸
Pt

+ L̃(ht−1)− L̂t(ht−1)︸ ︷︷ ︸
Qt

 .

By construction, we have E
zt

q
Qt|Zt−1

y
= 0 and hence

the sequence Q2, . . . , Qn forms a martingale difference
sequence. Since |Qt| ≤ B as the loss function is
bounded, an application of the Azuma-Hoeffding in-
equality shows that with probability at least 1− δ

1

n− 1

n∑
t=2

Qt ≤ B

√
2 log 1

δ

n− 1
. (4)

We now analyze each term Pt individually. By lin-
earity of expectation, we have for a ghost sample
Z̃t−1 = {z̃1, . . . , z̃t−1},

L(ht−1) = E
Z̃t−1

t
1

t− 1

t−1∑
τ=1

E
z

J`(ht−1, z, z̃τ)K

|

. (5)

The expression of L(ht−1) as a nested expectation is
the precursor to performing symmetrization with ex-
pectations and plays a crucial role in overcoming cou-
pling problems. This allows us to write Pt as

Pt = E
Z̃t−1

t
1

t− 1

t−1∑
τ=1

E
z

J`(ht−1, z, z̃τ)K

|

− L̃t(ht−1)

≤ sup
h∈H

[
E

Z̃t−1

t
1

t− 1

t−1∑
τ=1

E
z

J`(h, z, z̃τ)K

|

− L̃t(h)

]
︸ ︷︷ ︸

gt(z1,...,zt−1)

.

Since L̃t(h) = E
z

r
1
t−1

∑t−1
τ=1 `(h, z, zτ)

∣∣∣Zt−1z and `

is bounded, the expression gt(z1, . . . , zt−1) can have a
variation of at most B/(t−1) when changing any of its
(t−1) variables. Hence an application of McDiarmid’s
inequality gives us, with probability at least 1− δ,

gt(z1, . . . , zt−1) ≤ E
Zt−1

Jgt(z1, . . . , zt−1)K+B

√
log 1

δ

2(t− 1)
.

For any h ∈ H, z′ ∈ Z, let ℘(h, z′) := 1
t−1Ez J`(h, z, z′)K.

Then we can write E
Zt−1

Jg(z1, . . . , zt−1)K as

E
Zt−1

t

sup
h∈H

[
E

Z̃t−1

t
t−1∑
τ=1

℘(h, z̃τ)

|

−
t−1∑
τ=1

℘(h, zτ)

]|

≤ E
Zt−1,Z̃t−1

t

sup
h∈H

[
t−1∑
τ=1

℘(h, z̃τ)−
t−1∑
τ=1

℘(h, zτ)

]|

= E
Zt−1,Z̃t−1,{ετ}

t

sup
h∈H

[
t−1∑
τ=1

ετ (℘(h, z̃τ)− ℘(h, zτ))

]|

≤ 2

t− 1
E

Zt−1,{ετ}

t

sup
h∈H

[
t−1∑
τ=1

ετE
z

J`(h, z, zτ)K

]|

≤ 2

t− 1
E

z,Zt−1,{ετ}

t

sup
h∈H

[
t−1∑
τ=1

ετ `(h, z, zτ)

]|
= 2Rt−1(` ◦ H).

Note that in the third step, the symmetrization was
made possible by the decoupling step in Eq. (5) where
we decoupled the “head” variable zt from the “tail”
variables by absorbing it inside an expectation. This
allowed us to symmetrize the true and ghost samples
zτ and z̃τ in a standard manner. Thus we have, with
probability at least 1− δ,

Pt ≤ 2Rt−1(` ◦ H) +B

√
log 1

δ

2(t− 1)
.

Applying a union bound on the bounds for Pt, t =
2, . . . , n gives us with probability at least 1− δ,

1

n− 1

n∑
t=2

Pt ≤
2

n− 1

n∑
t=2

Rt−1(` ◦ H) +B

√
2 log n

δ

n− 1
.

(6)

Adding Equations (4) and (6) gives us the result.

B. Proof of Theorem 4

Theorem 10 (Theorem 4 restated). Let F be a closed
and convex set of functions over X . Let ℘(f,x) =
p(〈f, φ(x)〉) + r(f), for a σ-strongly convex function

On the Generalization Ability of Online Learning Algorithms for Pairwise Loss Functions

r, be a loss function with P and P̂ as the associated
population and empirical risk functionals and f∗ as the
population risk minimizer. Suppose ℘ is L-Lipschitz
and ‖φ(x)‖∗ ≤ R,∀x ∈ X . Then w.p. 1 − δ, for any
ε > 0, we have for all f ∈ F ,

P(f)− P(f∗) ≤ (1 + ε)
(
P̂(f)− P̂(f∗)

)
+

Cδ
εσn

where Cδ = C2
d · (4(1 + ε)LR)2 (32 + log(1/δ)) and Cd

is the dependence of the Rademacher complexity of the
class F on the input dimensionality d.

Proof. We begin with a lemma implicit in the proof of
Theorem 1 in (Sridharan et al., 2008). For the function
class F and loss function ℘ as above, define a new
loss function µ : (f,x) 7→ ℘(f,x) − ℘(f∗,x) with M
and M̂ as the associated population and empirical risk

functionals. Let r =
4L2R2C2

d(32+log(1/δ))
σn . Then we

have the following

Lemma 11. For any ε > 0, with probability at least
1− δ, the following happens

1. For all f ∈ F such that M(f) ≤ 16
(
1 + 1

ε

)2
r,

we have M(f) ≤ M̂(f) + 4
(
1 + 1

ε

)
r.

2. For all f ∈ F such that M(f) > 16
(
1 + 1

ε

)2
r,

we have M(f) ≤ (1 + ε)M̂(f).

The difference in our proof technique lies in the way
we combine these two cases. We do so by proving the
following two simple results.

Lemma 12. For all f s.t. M(f) ≤ 16
(
1 + 1

ε

)2
r, we

have M(f) ≤ (1 + ε)
(
M̂(f) + 4

(
1 + 1

ε

)
r
)

.

Proof. We notice that for all f ∈ F , we have M(f) =
P(f)−P(f∗) ≥ 0. Thus, using Lemma 11, Part 1, we
have M̂(f) + 4

(
1 + 1

ε

)
r ≥ M(f) ≥ 0. Since for any

a, ε > 0, we have a ≤ (1 + ε)a, the result follows.

Lemma 13. For all f s.t. M(f) > 16
(
1 + 1

ε

)2
r, we

have M(f) ≤ (1 + ε)
(
M̂(f) + 4

(
1 + 1

ε

)
r
)

.

Proof. We use the fact that r > 0 and thus 4(1 +
ε)
(
1 + 1

ε

)
r > 0 as well. The result then follows from

an application of Part 2 of Lemma 11.

From the definition of the loss function µ, we have
for any f ∈ F , M(f) = P(f) − P(f∗) and M̂(f) =
P̂(f) − P̂(f∗). Combining the above lemmata with
this observation completes the proof.

C. Proof of Theorem 5

Theorem 14 (Theorem 5 restated). Let h1, . . . , hn−1
be an ensemble of hypotheses generated by an on-
line learning algorithm working with a B-bounded, L-
Lipschitz and σ-strongly convex loss function `. Fur-
ther suppose the learning algorithm guarantees a regret
bound of Rn. Let Vn = max

{
Rn, 2C

2
d log n log(n/δ)

}
Then for any δ > 0, we have with probability at least
1− δ,

1

n− 1

n∑
t=2

L(ht−1) ≤ L(h∗) +
Rn

n− 1

+Cd · O

(√
Vn log n log(n/δ)

n− 1

)
,

where the O (·) notation hides constants dependent on
domain size and the loss function such as L,B and σ.

Proof. The decomposition of the excess risk shall not
be made explicitly in this case but shall emerge as a
side-effect of the proof progression. Consider the loss
function ℘(h, z′) := E

z
J`(h, z, z′)K with P and P̂ as

the associated population and empirical risk function-
als. Clearly, if ` is L-Lipschitz and σ-strongly convex
then so is ℘. As Equation (5) shows, for any h ∈ H,
P(h) = L(h). Also it is easy to see that for any Zt−1,
P̂(h) = L̃t(h). Applying Theorem 4 on ht−1 with the
loss function ℘ gives us w.p. 1− δ,

L(ht−1)− L(h∗) ≤ (1 + ε)
(
L̃t(ht−1)− L̃t(h∗)

)
+

Cδ
εσ(t− 1)

which, upon summing across time steps and taking a
union bound, gives us with probability at least 1− δ,

1

n− 1

n∑
t=2

L(ht−1) ≤ L(h∗) +
C(δ/n) logn

εσ(n− 1)

+
1 + ε

n− 1

n∑
t=2

(
L̃t(ht−1)− L̃t(h∗)

)
.

Let ξt :=
(
L̃t(ht−1)− L̃t(h∗)

)
−
(
L̂t(ht−1)− L̂t(h∗)

)
.

Then using the regret bound Rn we can write,

1

n− 1

n∑
t=2

L(ht−1) ≤ L(h∗) +
1 + ε

n− 1

(
Rn +

n∑
t=2

ξt

)

+
C(δ/n) logn

εσ(n− 1)
.

We now use Bernstein type inequalities to bound the
sum

∑n
t=2 ξt using a proof technique used in (Kakade

& Tewari, 2008; Cesa-Bianchi & Gentile, 2008). We
first note some properties of the sequence below.

On the Generalization Ability of Online Learning Algorithms for Pairwise Loss Functions

Lemma 15. The sequence ξ2, . . . , ξn is a bounded
martingale difference sequence with bounded condi-
tional variance.

Proof. That ξt is a martingale difference sequence fol-
lows by construction: we can decompose the term
ξt = φt − ψt where φt = L̃t(ht−1) − L̂t(ht−1) and
ψt = L̃t(h∗) − L̂t(h∗), both of which are martin-
gale difference sequences with respect to the com-
mon filtration F = {Fn : n = 0, 1, . . .} where Fn =
σ (zi : i = 1, . . . , n).

Since the loss function takes values in [0, B], we have
|ξt| ≤ 2B which proves that our sequence is bounded.

To prove variance bounds for the sequence, we first use
the Lipschitz properties of the loss function to get

ξt =
(
L̃t(ht−1)− L̃t(h∗)

)
−
(
L̂t(ht−1)− L̂t(h∗)

)
≤ 2L ‖ht−1 − h∗‖ .

Recall that the hypothesis space is embedded in a Ba-
nach space equipped with the norm ‖·‖. Thus we have

E
q
ξ2t
∣∣Zt−1y ≤ 4L2 ‖ht−1 − h∗‖2. Now using σ-strong

convexity of the loss function we have

L(ht−1) + L(h∗)

2
≥ L

(
ht−1 + h∗

2

)
+
σ

8
‖ht−1 − h∗‖2

≥ L(h∗) +
σ

8
‖ht−1 − h∗‖2 .

Let σ2
t := 16L2

σ (L(ht−1)− L(h∗)). Combining the two
inequalities we get E

q
ξ2t
∣∣Zt−1y ≤ σ2

t .

We note that although (Kakade & Tewari, 2008) state
their result with a requirement that the loss function
be strongly convex in a point wise manner, i.e., for
all z, z′ ∈ Z, the function `(h, z, z′) be strongly con-
vex in h, they only require the result in expectation.
More specifically, our notion of strong convexity where
we require the population risk functional L(h) to be
strongly convex actually suits the proof of (Kakade &
Tewari, 2008) as well.

We now use a Bernstein type inequality for martingales
proved in (Kakade & Tewari, 2008). The proof is based
on a fundamental result on martingale convergence due
to Freedman (1975).

Theorem 16. Given a martingale difference sequence
Xt, t = 1 . . . n that is uniformly B-bounded and has
conditional variance E

q
X2
t |X1, . . . , Xt−1

y
≤ σ2

t , we
have for any δ < 1/e and n ≥ 3, with probability at
least 1− δ,
n∑
t=1

Xt ≤ max

{
2σ∗, 3B

√
log

4 log n

δ

}√
log

4 log n

δ
,

where σ∗ =
√∑n

t=1 σ
2
t .

Let Dn =
∑n
t=2 (L(ht−1)− L(h∗)). Then we can write

the variance bound as

σ∗ =

√√√√ n∑
t=1

σ2
t =

√√√√ n∑
t=1

16L2

σ
(L(ht−1)− L(h∗))

= 4L

√
Dn

σ
.

Thus, with probability at least 1− δ, we have

n∑
t=1

ξt ≤ max

{
8L

√
Dn

σ
, 6B

√
log

4 log n

δ

}√
log

4 log n

δ
.

Denoting ∆ =
√

log 4 logn
δ for notational simplicity

and using the above bound in the online to batch con-
version bound gives us

Dn

n− 1
≤ 1 + ε

n− 1

(
Rn + max

{
8L

√
Dn

σ
, 6B∆

}
∆

)

+
C(δ/n) log n

εσ(n− 1)
.

Solving this quadratic inequality is simplified by a use-
ful result given in (Kakade & Tewari, 2008, Lemma 4)

Lemma 17. For any s, r, d, b,∆ > 0 such that

s ≤ r + max
{

4
√
ds, 6b∆

}
∆,

we also have

s ≤ r + 4
√
dr∆ + max {16d, 6b}∆2.

Using this result gives us a rather nasty looking expres-
sion which we simplify by absorbing constants inside
the O (·) notation. We also make a simplifying ad-
hoc assumption that we shall only set ε ∈ (0, 1]. The
resulting expression is given below:

Dn ≤ (1 + ε)Rn +O
(
C2
d log n log(n/δ)

ε
+ log

log n

δ

)
+O

(√(
Rn +

C2
d log n log(n/δ)

ε

)
log

log n

δ

)
.

Let Vn = max
{
Rn, 2C

2
d log n log (n/δ)

}
. Concentrat-

ing only on the portion of the expression involving ε
and ignoring the constants, we get

εRn +
C2
d log n log(n/δ)

ε
+

√
C2
d log n log(n/δ)

ε
log

log n

δ

≤ εRn +
2C2

d log n log(n/δ)

ε
≤ εVn +

2C2
d log n log(n/δ)

ε

≤ 2Cd
√

2Vn log n log(n/δ),

On the Generalization Ability of Online Learning Algorithms for Pairwise Loss Functions

where the second step follows since ε ≤ 1 and the

fourth step follows by using ε =
√

2C2
d logn log(n/δ)

Vn
≤ 1.

Putting this into the excess risk expression gives us

1

n− 1

n∑
t=2

L(ht−1) ≤ L(h∗) +
Rn

n− 1

+ Cd · O

(√
Vn log n log(n/δ)

n− 1

)
which finishes the proof.

D. Generalization Bounds for Finite
Buffer Algorithms

In this section we present online to batch conversion
bounds for learning algorithms that work with finite
buffers and are able to provide regret bounds Rbuf

n with
respect to finite-buffer loss functions L̂buf

t .

Although due to lack of space, Theorem 6 presents
these bounds for bounded as well as strongly convex
functions together, we prove them separately for sake
of clarity. Moreover, the techniques used to prove these
two results are fairly different which further motivates
this. Before we begin, we present the problem setup
formally and introduce necessary notation.

In our finite buffer online learning model, one observes
a stream of elements z1, . . . , zn. A sketch of these el-
ements is maintained in a buffer B of size s, i.e., at
each step t = 2, . . . , n, the buffer contains a subset
of the elements Zt−1 of size at most s. At each step
t = 2 . . . n, the online learning algorithm posits a hy-
pothesis ht−1 ∈ H, upon which the element zt is re-
vealed and the algorithm incurs the loss

L̂buf
t (ht−1) =

1

|Bt|
∑
z∈Bt

`(ht−1, zt, z),

where Bt is the state of the buffer at time t. Note that
|Bt| ≤ s. We would be interested in algorithms that
are able to give a finite-buffer regret bound, i.e., for
which, the proposed ensemble h1, . . . , hn−1 satisfies

n∑
t=2

L̂buf
t (ht−1)− inf

h∈H

n∑
t=2

L̂buf
t (h) ≤ Rbuf

n .

We assume that the buffer is updated after each step
in a stream-oblivious manner. For randomized buffer
update policies (such as reservoir sampling (Vitter,
1985)), we assume that we are supplied at each step
with some fresh randomness rt (see examples below)
along with the data point zt. Thus the data received
at time t is a tuple wt = (zt, rt). We shall refer to

the random variables rt as auxiliary variables. It is
important to note that stream obliviousness dictates
that rt as a random variable is independent of zt. Let
W t−1 := {w1, . . . ,wt−1} and Rt−1 := {r1, . . . , rt−1}.
Note that Rt−1 completely decides the indices present
in the buffer Bt at step t independent of Zt−1. For
any h ∈ H, define

L̃buf
t := E

zt

r
L̂buf
t

∣∣∣W t−1
z
.

D.1. Examples of Stream Oblivious Policies

Below we give some examples of stream oblivious poli-
cies for updating the buffer:

1. FIFO: in this policy, the data point zt arriving at
time t > s is inducted into the buffer by evicting
the data point z(t−s) from the buffer. Since this
is a non-randomized policy, there is no need for
auxiliary randomness and we can assume that rt
follows the trivial law rt ∼ 1{r=1}.

2. RS : the Reservoir Sampling policy was intro-
duced by Vitter (1985). In this policy, at time
t > s, the incoming data point zt is inducted into
the buffer with probability s/t. If chosen to be
induced, it results in the eviction of a random el-
ement of the buffer. In this case the auxiliary
random variable is 2-tuple that follows the law

rt = (r1t , r
2
t) ∼

(
Bernoulli

(s
t

)
,

1

s

s∑
i=1

1{r2=i}

)
.

3. RS-x (see Algorithm 1): in this policy, the in-
coming data point zt at time t > s, replaces each
data point in the buffer independently with prob-
ability 1/t. Thus the incoming point has the po-
tential to evict multiple buffer points while es-
tablishing multiple copies of itself in the buffer.
In this case, the auxiliary random variable is de-
fined by a Bernoulli process: rt = (r1t , r

2
t . . . , r

s
t) ∼(

Bernoulli
(
1
t

)
,Bernoulli

(
1
t

)
, . . . ,Bernoulli

(
1
t

))
.

4. RS-x2 (see Algorithm 3): this is a variant of RS-
x in which the number of evictions is first decided
by a Binomial trial and then those many random
points in the buffer are replaced by the incom-
ing data point. This can be implemented as fol-
lows: rt = (r1t , r

2
t) ∼

(
Binomial

(
s, 1t
)
,Perm(s)

)
where Perm(s) gives a random permutation of s
elements.

D.2. Finite Buffer Algorithms with Bounded
Loss Functions

We shall prove the result in two steps. In the first step
we shall prove the following uniform convergence style

On the Generalization Ability of Online Learning Algorithms for Pairwise Loss Functions

result

Lemma 18. Let h1, . . . , hn−1 be an ensemble of hy-
potheses generated by an online learning algorithm
working with a B-bounded loss function ` and a finite
buffer of capacity s. Then for any δ > 0, we have with
probability at least 1− δ,

1

n− 1

n∑
t=2

L(ht−1) ≤ 1

n− 1

n∑
t=2

L̂buf
t (ht−1) +B

√
2 log n

δ

s

+
2

n− 1

n∑
t=2

Rmin{t−1,s}(` ◦ H).

At a high level, our proof progression shall follow that
of Lemma 1. However, the execution of the proof will
have to be different in order to accommodate the finite-
ness of the buffer and randomness used to construct it.
Similarly, we shall also be able to show the following
result.

Lemma 19. For any δ > 0, we have with probability
at least 1− δ,

1

n− 1

n∑
t=2

L̂buf
t (h∗) ≤ L(h∗) + 3B

√
log n

δ

s

+
2

n− 1

n∑
t=2

Rmin{t−1,s}(` ◦ H).

Note that for classes whose Rademacher averages be-

have as Rn(H) ≤ Cd · O
(

1√
n

)
, applying Lemma 7

gives us Rn(`◦H) ≤ Cd ·O
(

1√
n

)
as well which allows

us to show

2

n− 1

n∑
t=2

Rmin{t−1,s}(` ◦ H) = Cd · O
(

1√
s

)
.

Combining Lemmata 18 and 19 along with the defi-
nition of bounded buffer regret Rbuf

n gives us the first
part of Theorem 6. We prove Lemma 18 below:

Proof (of Lemma 18). We first decompose the excess
risk term as before

n∑
t=2

L(ht−1)− L̂buf
t (ht−1)

=

n∑
t=2

L(ht−1)− L̃buf
t (ht−1)︸ ︷︷ ︸

Pt

+ L̃buf
t (ht−1)− L̂buf

t (ht−1)︸ ︷︷ ︸
Qt

.

By construction, the sequence Qt forms a martingale
difference sequence, i.e., E

zt

q
Qt|Zt−1

y
= 0 and hence

by an application of Azuma Hoeffding inequality we
have

1

n− 1

n∑
t=2

Qt ≤ B

√
2 log 1

δ

n− 1
. (7)

We now analyze each term Pt individually. To simplify
the analysis a bit we assume that the buffer update
policy keeps admitting points into the buffer as long
as there is space so that for t ≤ s+ 1, the buffer con-
tains an exact copy of the preceding stream. This is a
very natural assumption satisfied by FIFO as well as
reservoir sampling. We stress that our analysis works
even without this assumption but requires a bit more
work. In case we do make this assumption, the anal-
ysis of Lemma 1 applies directly and we have, for any
t ≤ s+ 1, with probability at least 1− δ,

Pt ≤ Rt−1(` ◦ H) +B

√
log 1

δ

2(t− 1)

For t > s + 1, for an independent ghost sample
{w̃1, . . . , w̃t−1} we have,

E
W̃ t−1

r
L̃buf
t

z
= E
W̃ t−1

u

v1

s

∑
z̃∈B̃t

E
z

J`(ht−1, z, z̃)K

}

~

= E
R̃t−1

u

v E
Z̃t−1

u

v 1

s

∑
z̃∈B̃t

E
z

J`(ht−1, z, z̃)K

∣∣∣∣∣∣ R̃t−1
}

~

}

~ .

The conditioning performed above is made possible by
stream obliviousness. Now suppose that given R̃t−1

the indices τ̃1, . . . , τ̃s are present in the buffer B̃t at
time t. Recall that this choice of indices is independent
of Z̃t−1 because of stream obliviousness. Then we can
write the above as

E
R̃t−1

u

v E
Z̃t−1

u

v 1

s

∑
z̃∈B̃t

E
z

J`(ht−1, z, z̃)K

∣∣∣∣∣∣ R̃t−1
}

~

}

~

= E
R̃t−1

u

v E
Z̃t−1

u

v1

s

s∑
j=1

E
z

q
`(ht−1, z, z̃τ̃j)

y
}

~

}

~

= E
R̃t−1

u

v E
z̃1,...,z̃s

u

v1

s

s∑
j=1

E
z

J`(ht−1, z, z̃j)K

}

~

}

~

= E
R̃t−1

JL(ht−1)K = L(ht−1).

We thus have

E
W̃ t−1

u

v1

s

∑
z̃∈B̃t

E
z

J`(ht−1, z, z̃)K

}

~ = L(ht−1). (8)

On the Generalization Ability of Online Learning Algorithms for Pairwise Loss Functions

We now upper bound Pt as

Pt = L(ht−1)− L̃buf
t (ht−1)

= E
W̃ t−1

u

v1

s

∑
z̃∈B̃t

E
z

J`(ht−1, z, z̃)K

}

~− L̃buf
t (ht−1)

≤ sup
h∈H

 E
W̃ t−1

u

v1

s

∑
z̃∈B̃t

E
z

J`(h, z, z̃)K

}

~− L̃buf
t (h)

︸ ︷︷ ︸

gt(w1,...,wt−1)

.

Now it turns out that applying McDiarmid’s inequal-
ity to gt(w1, . . . ,wt−1) directly would yield a very
loose bound. This is because of the following reason:
since L̂buf

t (h) = 1
|Bt|

∑
z∈Bt `(h, zt, z) depends only on

s data points, changing any one of the (t−1) variables
wi brings about a perturbation in gt of magnitude at
most O (1/s). The problem is that gt is a function
of (t − 1) � s variables and hence a direct applica-
tion of McDiarmid’s inequality would yield an excess

error term of
√

t log(1/δ)
s2 which would in the end re-

quire s = ω(
√
n) to give any non trivial generalization

bounds. In contrast, we wish to give results that would
give non trivial bounds for s = ω̃(1).

In order to get around this problem, we need to reduce
the number of variables in the statistic while applying
McDiarmid’s inequality. Fortunately, we observe that
gt effectively depends only on s variables, the data
points that end up in the buffer at time t. This allows
us to do the following. For any Rt−1, define

δ(Rt−1) := P
Zt−1

[
gt(w1, . . . ,wt−1) > ε|Rt−1

]
.

We will first bound δ(Rt−1). This will allow us to show

P
W t−1

[gt(w1, . . . ,wt−1) > ε] ≤ E
Rt−1

q
δ(Rt−1)

y
,

where we take expectation over the distribution on
Rt−1 induced by the buffer update policy. Note that
since we are oblivious to the nature of the distribution
over Rt−1, our proof works for any stream oblivious
buffer update policy. Suppose that given Rt−1 the in-
dices τ1, . . . , τs are present in the buffer Bt at time t.
Then we have

gt(w1, . . . ,wt−1;Rt−1)

= sup
h∈H

 E
W̃ t−1

u

v1

s

∑
z̃∈B̃t

E
z

J`(h, z, z̃)K

}

~− 1

s

s∑
j=1

E
z

q
`(h, z, zτj)

y

=: g̃t(zτ1 , . . . , zτs).

The function g̃t can be perturbed at most B/s due to a
change in one of zτj . Applying McDiarmid’s inequality

to the function g̃t we get with probability at least 1−δ,

g̃t(zτ1 , . . . , zτs) ≤ E
Zt−1

Jg̃t(zτ1 , . . . , zτs)K +B

√
log 1

δ

2s

We analyze E
Zt−1

Jg̃t(zτ1 , . . . , zτs)K in Figure 2. In the

third step in the calculations we symmetrize the true
random variable zτj with the ghost random variable
z̃τ̃j . This is contrasted with traditional symmetriza-
tion where we would symmetrize zi with z̃i. In our
case, we let the buffer construction dictate the match-
ing at the symmetrization step. Thus we get, with
probability at least 1− δ over z1, . . . , zt−1,

gt(w1, . . . ,wt−1;Rt−1) ≤ 2Rs(` ◦ H) +B

√
log 1

δ

2s

which in turn, upon taking expectations with respect
to Rt−1, gives us with probability at least 1 − δ over
w1, . . . ,wt−1,

Pt = gt(w1, . . . ,wt−1) ≤ 2Rs(` ◦ H) +B

√
log 1

δ

2s
.

Applying a union bound on the bounds for Pt, t =
2, . . . , n gives us with probability at least 1− δ,

1

n− 1

n∑
t=2

Pt ≤
2

n− 1

n∑
t=2

Rmin{t−1,s}(` ◦ H)

+B

√
log n

δ

2s
. (9)

Adding Equations (7) and (9) gives us the result.

D.3. Finite Buffer Algorithms with Strongly
Convex Loss Functions

In this section we prove faster convergence bounds for
algorithms that offer finite-buffer regret bounds and
use strongly convex loss functions. Given the develop-
ment of the method of decoupling training and auxil-
iary random variables in the last section, we can pro-
ceed with the proof right away.

Our task here is to prove bounds on the following quan-
tity

1

n− 1

n∑
t=2

L(ht−1)− L(h∗).

Proceeding as before, we will first prove the following
result

P
Zn

[
1

n− 1

n∑
t=2

L(ht−1)− L(h∗) > ε

∣∣∣∣∣Rn
]
≤ δ. (10)

On the Generalization Ability of Online Learning Algorithms for Pairwise Loss Functions

E
Zt−1

Jg̃t(zτ1 , . . . , zτs)K = E
Zt−1

u

vsup
h∈H

 E
W̃ t−1

u

v1

s

∑
z̃∈B̃t

E
z

J`(h, z, z̃)K

}

~− 1

s

s∑
j=1

E
z

q
`(h, z, zτj)

y
}

~

≤ E
R̃t−1

t

E
Zt−1,Z̃t−1

t

sup
h∈H

[
1

s

s∑
j=1

E
z

q
`(h, z, z̃τ̃j)

y
− 1

s

s∑
j=1

E
z

q
`(h, z, zτj)

y
]|∣∣∣∣∣ R̃t−1

|

= E
R̃t−1

t

E
Zt−1,Z̃t−1,εj

t

sup
h∈H

[
1

s

s∑
j=1

εj
(
E
z

q
`(h, z, z̃τ̃j)

y
− E

z

q
`(h, z, zτj)

y)]|∣∣∣∣∣ R̃t−1

|

≤ 2 E
R̃t−1

t

E
Zt−1,εj

t

sup
h∈H

[
1

s

s∑
j=1

εjE
z

q
`(h, z, zτj)

y
]|∣∣∣∣∣ R̃t−1

|

≤ 2 E
R̃t−1

JRs(` ◦ H)K ≤ 2Rs(` ◦ H).

Figure 2. Decoupling training and auxiliary variables for Rademacher complexity-based analysis.

This will allow us, upon taking expectations over Rn,
show the following

P
Wn

[
1

n− 1

n∑
t=2

L(ht−1)− L(h∗) > ε

]
≤ δ,

which shall complete the proof.

In order to prove the statement given in Equation (10),
we will use Theorem 4. As we did in the case
of all-pairs loss functions, consider the loss function
℘(h, z′) := E

z
J`(h, z, z′)K with P and P̂ as the as-

sociated population and empirical risk functionals.
Clearly, if ` is L-Lipschitz and σ-strongly convex then
so is ℘. By linearity of expectation, for any h ∈ H,
P(h) = L(h). Suppose that given Rt−1 the indices
τ1, . . . , τs are present in the buffer Bt at time t. Ap-
plying Theorem 4 on ht−1 at the tth step with the loss
function ℘ gives us that given Rt−1, with probability
at least 1− δ over the choice of Zt−1,

L(ht−1)− L(h∗) ≤ (1 + ε)
(
L̃buf
t (ht−1)− L̃buf

t (h∗)
)

+
Cδ

εσ(min {s, t− 1})
,

where we have again made the simplifying (yet op-
tional) assumption that prior to time t = s + 1, the
buffer contains an exact copy of the stream. Summing
across time steps and taking a union bound, gives us
that given Rn, with probability at least 1− δ over the
choice of Zn,

1

n− 1

n∑
t=2

L(ht−1) ≤ L(h∗) +
C(δ/n)

εσ

(
log 2s

n− 1
+

1

s

)

+
1 + ε

n− 1

n∑
t=2

L̃buf
t (ht−1)− L̃buf

t (h∗).

Let us define as before

ξt :=
(
L̃buf
t (ht−1)− L̃buf

t (h∗)
)
−
(
L̂buf
t (ht−1)− L̂buf

t (h∗)
)
.

Then using the regret bound Rbuf
n we can write,

1

n− 1

n∑
t=2

L(ht−1) ≤ L(h∗) +
1 + ε

n− 1

(
Rbuf
n +

n∑
t=2

ξt

)

+
C(δ/n)

εσ

(
log 2s

n− 1
+

1

s

)
.

Assuming s < n/ log n simplifies the above expression
to the following:

1

n− 1

n∑
t=2

L(ht−1) ≤ L(h∗) +
1 + ε

n− 1

(
Rbuf
n +

n∑
t=2

ξt

)

+
2C(δ/n)

εσs
.

Note that this assumption is neither crucial to our
proof nor very harsh as for s = Ω (n), we can always
apply the results from the infinite-buffer setting using
Theorem 5. Moving forward, by using the Bernstein-
style inequality from (Kakade & Tewari, 2008), one
can show with that probability at least 1− δ, we have

n∑
t=1

ξt ≤ max

{
8L

√
Dn

σ
, 6B

√
log

4 log n

δ

}√
log

4 log n

δ
,

where Dn =
∑n
t=2 (L(ht−1)− L(h∗)). This gives us

Dn

n− 1
≤ 1 + ε

n− 1

(
Rbuf
n + max

{
8L

√
Dn

σ
, 6B∆

}
∆

)

+
2C(δ/n)

εσs
.

On the Generalization Ability of Online Learning Algorithms for Pairwise Loss Functions

Using (Kakade & Tewari, 2008, Lemma 4) and absorb-
ing constants inside the O (·) notation we get:

Dn ≤ (1 + ε)Rbuf
n +O

(
C2
dn log(n/δ)

εs
+ log

log n

δ

)
+O

(√(
Rbuf
n +

C2
dn log(n/δ)

εs

)
log

log n

δ

)
.

Let Wn = max
{
Rbuf
n ,

2C2
dn log(n/δ)

s

}
. Concentrating

only on the portion of the expression involving ε and
ignoring the constants, we get

εRbuf
n +

C2
dn log(n/δ)

εs
+

√
C2
dn log(n/δ)

εs
log

log n

δ

≤ εRbuf
n +

2C2
dn log(n/δ)

εs
≤ εWn +

2C2
dn log(n/δ)

εs

≤ 2Cd

√
2Wnn log(n/δ)

s
,

where the second step follows since ε ≤ 1 and
s ≤ n and the fourth step follows by using ε =√

2C2
dn log(n/δ)

Wns
≤ 1 Putting this into the excess risk

expression gives us

1

n− 1

n∑
t=2

L(ht−1) ≤ L(h∗) +
Rbuf
n

n− 1

+ Cd · O

(√
Wn log(n/δ)

sn

)
,

which finishes the proof. Note that in case Wn = Rbuf
n ,

we get

1

n− 1

n∑
t=2

L(ht−1) ≤ L(h∗) +
Rbuf
n

n− 1

+ Cd · O

(√
Rbuf
n log(n/δ)

sn

)
.

On the other hand if Rbuf
n ≤ 2C2

dn log(n/δ)
s , we get

1

n− 1

n∑
t=2

L(ht−1) ≤ L(h∗) +
Rbuf
n

n− 1

+ C2
d · O

(
log(n/δ)

s

)
.

E. Proof of Theorem 7

Recall that we are considering a composition classes of
the form ` ◦H := {(z, z′) 7→ `(h, z, z′), h ∈ H} where `
is some Lipschitz loss function. We have `(h, z1, z2) =
φ (h(x1, x2)Y (y1, y2)) where Y (y1, y2) = y1 − y2 or

Y (y1, y2) = y1y2 and φ : R → R involves some mar-
gin loss function. We also assume that φ is point wise
L-Lipschitz. Let Y = sup

y1,y2∈Y
|Y (y1, y2)|.

Theorem 20 (Theorem 7 restated).

Rn(` ◦ H) ≤ LYRn(H)

Proof. Let φ̃(x) = φ(x)−φ(0). Note that φ̃(·) is point
wise L-Lipschitz as well as satisfies φ̃(0) = 0. Let
Y = sup

y,y′∈Y
|Y (y, y′)|.

We will require the following contraction lemma that
we state below.

Theorem 21 (Implicit in proof of (Ledoux & Ta-
lagrand, 2002), Theorem 4.12). Let H be a set of
bounded real valued functions from some domain X
and let x1, . . . ,xn be arbitrary elements from X . Fur-
thermore, let φi : R → R, i = 1, . . . , n be L-Lipschitz
functions such that φi(0) = 0 for all i. Then we have

E

t

sup
h∈H

1

n

n∑
i=1

εiφi(h(xi))

|

≤ LE

t

sup
h∈H

1

n

n∑
i=1

εih(xi)

|

.

Using the above inequality we can state the following
chain of (in)equalities:

Rn(` ◦ H) = E

t

sup
h∈H

1

n

n∑
i=1

εi`(h, z, zi)

|

= E

t

sup
h∈H

1

n

n∑
i=1

εiφ (h(x,xi)Y (y, yi))

|

= E

t

sup
h∈H

1

n

n∑
i=1

εiφ̃ (h(x,xi)Y (y, yi))

|

+ φ(0)E

t
1

n

n∑
i=1

εi

|

= E

t

sup
h∈H

1

n

n∑
i=1

εiφ̃ (h(x,xi)Y (y, yi))

|

≤ LY E

t

sup
h∈H

1

n

n∑
i=1

εih(x,xi)

|

= LYRn(H),

where the fourth step follows from linearity of expec-
tation. The fifth step is obtained by applying the con-
traction inequality to the functions ψi : x 7→ φ̃(aix)
where ai = Y (y, yi). We exploit the fact that the
contraction inequality is actually proven for the em-
pirical Rademacher averages due to which we can take
ai = Y (y, yi) to be a constant dependent only on i,

On the Generalization Ability of Online Learning Algorithms for Pairwise Loss Functions

use the inequality, and subsequently take expectations.
We also have, for any i and any x, y ∈ R,

|ψi(x)− ψi(y)| =
∣∣∣φ̃(aix)− φ̃(aiy)

∣∣∣
≤ L |aix− aiy|
≤ L |ai| |x− y|
≤ LY |x− y| ,

which shows that every function ψi(·) is LY -Lipschitz
and satisfies ψi(0) = 0. This makes an application
of the contraction inequality possible on the empirical
Rademacher averages which upon taking expectations
give us the result.

F. Applications

In this section we shall derive Rademacher complexity
bounds for hypothesis classes used in various learn-
ing problems. Crucial to our derivations shall be the
following result by (Kakade et al., 2008). Recall the
usual definition of Rademacher complexity of a uni-
variate function class F = {f : X → R}

Rn(F) = E

t

sup
f∈F

1

n

n∑
i=1

εif(xi)

|

.

Theorem 22 ((Kakade et al., 2008), Theorem 1).
Let W be a closed and convex subset of some Ba-
nach space equipped with a norm ‖·‖ and dual norm
‖·‖∗. Let F : W → R be σ-strongly convex with
respect to ‖·‖∗. Assume W ⊆

{
w : F (w) ≤W 2

∗
}

.
Furthermore, let X = {x : ‖x‖ ≤ X} and FW :=
{w 7→ 〈w,x〉 : w ∈ W,x ∈ X}. Then, we have

Rn(FW) ≤ XW∗

√
2

σn
.

We note that Theorem 22 is applicable only to first or-
der learning problems since it gives bounds for univari-
ate function classes. However, our hypothesis classes
consist of bivariate functions which makes a direct ap-
plication difficult. Recall our extension of Rademacher
averages to bivariate function classes:

Rn(H) = E

t

sup
h∈H

1

n

n∑
i=1

εih(z, zi)

|

where the expectation is over εi, z and zi. To overcome
the above problem we will use the following two step
proof technique:

1. Order reduction: We shall cast our learning
problems in a modified input domain where pre-
dictors behave linearly as univariate functions.

Hypothesis class Rademacher Complexity

Bq(‖W‖q) 2 ‖X‖p ‖W‖q
√

p−1
n

B1(‖W‖1) 2 ‖X‖∞ ‖W‖1
√

e log d
n

Table 1. Rademacher complexity bounds for AUC maxi-
mization. We have 1/p+ 1/q = 1 and q > 1.

More specifically, given a hypothesis class H and
domain X , we shall construct a modified domain
X̃ and a map ψ : X × X → X̃ such that for
any x,x′ ∈ X and h ∈ H, we have h(x,x′) =
〈h, ψ(x,x′)〉.

2. Conditioning: For every x ∈ X , we will create a
function class Fx = {x′ 7→ 〈h, ψ(x,x′)〉 : h ∈ H}.
Since Fx is a univariate function class, we will use
Theorem 22 to bound Rn(Fx). Since Rn(H) =
E
x

JRn(Fx)K, we shall obtain Rademacher com-

plexity bounds for H.

We give below some examples of learning situations
where these results may be applied.

As before, for any subset X of a Banach space and
any norm ‖·‖p, we define ‖X‖p := sup

x∈X
‖x‖p. We

also define norm bounded balls in the Banach space

as Bp(r) :=
{

x : ‖x‖p ≤ r
}

for any r > 0. Let the

domain X be a subset of Rd.

For sake of convenience we present the examples using
loss functions for classification tasks but the same can
be extended to other learning problems such as regres-
sion, multi-class classification and ordinal regression.

F.1. AUC maximization for Linear Prediction

In this case the goal is to maximize the area under
the ROC curve for a linear classification problem at
hand. This translates itself to a learning situation
where W,X ⊆ Rd. We have hw(x,x′) = w>x−w>x′

and `(hw, z1, z2) = φ ((y − y′)hw(x,x′)) where φ is the
hinge loss or the exponential loss (Zhao et al., 2011).

In order to apply Theorem 22, we rewrite the hypoth-
esis as hw(x,x′) = w>(x − x′) and consider the in-
put domain X̃ = {x− x′ : x,x′ ∈ X} and the map ψ :
(x,x′) 7→ x − x′. Clearly if X ⊆ {x : ‖x‖ ≤ X} then

X̃ ⊆ {x : ‖x‖ ≤ 2X} and thus we have
∥∥∥X̃∥∥∥ ≤ 2 ‖X‖

for any norm ‖·‖. It is now possible to regularize the
hypothesis class W using a variety of norms.

If we wish to define our hypothesis class as Bq(·), q > 1,
then in order to apply Theorem 22, we can use the
regularizer F (w) = ‖w‖2q. If we wish the sparse

On the Generalization Ability of Online Learning Algorithms for Pairwise Loss Functions

Hypothesis Class Rademacher Complexity

B2,2(‖W‖2,2) ‖X‖22 ‖W‖2,2
√

1
n

B2,1(‖W‖2,1) ‖X‖2 ‖X‖∞ ‖W‖2,1
√

e log d
n

B1,1(‖W‖1,1) ‖X‖2∞ ‖W‖1,1
√

2e log d
n

BS(1)(‖W‖S(1)) ‖X‖22 ‖W‖S(1)
√

e log d
n

Table 2. Rademacher complexity bounds for Similarity and
Metric learning

hypotheses class, B1(W1), we can use the regular-

izer F (w) = ‖w‖2q with q = log d
log d−1 as this regular-

izer is strongly convex with respect to the L1 norm
(Kakade et al., 2012). Table 1 gives a succinct sum-
mary of such possible regularizations and correspond-
ing Rademacher complexity bounds.

Kernelized AUC maximization: Since the L2 regu-
larized hypothesis class has a dimension independent
Rademacher complexity, it is possible to give guar-
antees for algorithms performing AUC maximization
using kernel classifiers as well. In this case we have
a Mercer kernel K with associated reproducing kernel
Hilbert space HK and feature map ΦK : X → HK .
Our predictors lie in the RKHS, i.e., w ∈ HK and
we have hw(x,x′) = w> (ΦK(x)− ΦK(x′)). In this
case we will have to use the map ψ : (x,x′) 7→
ΦK(x)− ΦK(x′) ∈ HK . If the kernel is bounded, i.e.,
for all x,x′ ∈ X , we have |K(x,x′)| ≤ κ2, then we can

get a Rademacher average bound of 2κ ‖W‖2
√

1
n .

F.2. Linear Similarity and Mahalanobis Metric
learning

A variety of applications, such as in vision, require one
to fine tune one’s notion of proximity by learning a
similarity or metric function over the input space. We
consider some such examples below. In the following,
we have W ∈ Rd×d.

1. Mahalanobis metric learning : in this case we wish
to learn a metric MW(x,x′) = (x − x′)>W(x −
x′) using the loss function `(MW, z, z′) =
φ
(
yy′
(
1−M2

W(x,x′)
))

(Jin et al., 2009).

2. Linear kernel learning : in this case we wish
to learn a linear kernel function KW(x,x′) =
x>Wx′,W � 0. A variety of loss functions have
been proposed to aid the learning process

(a) Kernel-target Alignment : the loss function
used is `(KW, z, z′) = φ (yy′KW(x,x′))
where φ is used to encode some notion of
alignment (Cristianini et al., 2001; Cortes
et al., 2010b).

(b) S-Goodness: this is used in case one wishes
to learn a good similarity function that need
not be positive semi definite (Bellet et al.,
2012; Balcan & Blum, 2006) by defining

`(KW, z) = φ

(
y E
(x′,y′)

Jy′KW(x,x′)K
)

.

In order to apply Theorem 22, we will again rewrite
the hypothesis and consider a different input domain.
For the similarity learning problem, write the similar-
ity function as KW(x,x′) =

〈
W,xx′>

〉
and consider

the input space X̃ =
{
xx′> : x,x′ ∈ X

}
⊆ Rd×d along

with the map ψ : (x,x′) 7→ xx′>. For the metric
learning problem, rewrite the metric as MW(x,x′) =〈
W, (x− x′)(x− x′)>

〉
and consider the input space

X̃ =
{

(x− x′)(x− x′)> : x,x′ ∈ X
}
⊆ Rd×d along

with the map ψ : (x,x′) 7→ (x− x′)(x− x′)>.

In this case it is possible to apply a variety of ma-
trix norms to regularize the hypothesis class. We
consider the following (mixed) matrix norms : ‖·‖1,1,
‖·‖2,1 and ‖·‖2,2. We also consider the Schatten
norm ‖X‖S(p) := ‖σ(X)‖p that includes the widely

used trace norm ‖σ(X)‖1. As before, we define
norm bounded balls in the Banach space as follows:

Bp,q(r) :=
{

x : ‖x‖p,q ≤ r
}

.

Using results on construction of strongly convex func-
tions with respect to theses norms from (Kakade et al.,
2012), it is possible to get bounds on the Rademacher
averages of the various hypothesis classes. However
these bounds involve norm bounds for the modified
domain X̃ . We make these bounds explicit by express-
ing norm bounds for X̃ in terms of those for X . From
the definition of X̃ for the similarity learning prob-

lems, we get, for any p, q ≥ 1,
∥∥∥X̃∥∥∥

p,q
≤ ‖X‖p ‖X‖q.

Also, since every element of X̃ is of the form xx′>, it
has only one non zero singular value ‖x‖2 ‖x′‖2 which

gives us
∥∥∥X̃∥∥∥

S(p)
≤ ‖X‖22 for any p ≥ 1.

For the metric learning problem, we can similarly get∥∥∥X̃∥∥∥
p,q
≤ 4 ‖X‖p ‖X‖q and

∥∥∥X̃∥∥∥
S(p)
≤ 4 ‖X‖22 for any

p ≥ 1 which allows us to get similar bounds as those
for similarity learning but for an extra constant fac-
tor. We summarize our bounds in Table 2. We note
that (Cao et al., 2012) devote a substantial amount
of effort to calculate these values for the mixed norms
on a case-by-case basis (and do not consider Schatten
norms either) whereas, using results exploiting strong
convexity and strong smoothness from (Kakade et al.,
2012), we are able to get the same as simple corollaries.

On the Generalization Ability of Online Learning Algorithms for Pairwise Loss Functions

Hypothesis Class Rademacher Avg. Bound

S2(1) κ2
√

p
n

∆(1) κ2
√

e log p
n

Table 3. Rademacher complexity bounds for Multiple ker-
nel learning

F.3. Two-stage Multiple kernel learning

The analysis of the previous example can be replicated
for learning non-linear Mercer kernels as well. Addi-
tionally, since all Mercer kernels yield Hilbertian met-
rics, these methods can be extended to learning Hilber-
tian metrics as well. However, since Hilbertian metric
learning has not been very popular in literature, we re-
strict our analysis to kernel learning alone. We present
this example using the framework proposed by (Kumar
et al., 2012) due to its simplicity and generality.

We are given p Mercer kernels K1, . . . ,Kp that are
bounded, i.e., for all i, |Ki(x,x

′)| ≤ κ2 for all x,x′ ∈ X
and our task is to find a combination of these kernels
given by a vector µ ∈ Rp,µ ≥ 0 such that the kernel
Kµ(x,x′) =

∑p
i=1 µiKi(x,x

′) is a good kernel (Balcan
& Blum, 2006). In this case the loss function used is
`(µ, z, z′) = φ (yy′Kµ(x,x′)) where φ(·) is meant to
encode some notion of alignment. Kumar et al. (2012)
take φ(·) to be the hinge loss.

To apply Theorem 22, we simply use the “K-space”
construction proposed in (Kumar et al., 2012). We
write Kµ(x,x′) = 〈µ, z(x,x′)〉 where z(x,x′) =
(K1(x,x′), . . . ,Kp(x,x

′)). Consequently our modified

input space looks like X̃ = {z(x,x′) : x,x′ ∈ X} ⊆
Rp with the map ψ : (x,x′) 7→ z(x,x′). Pop-
ular regularizations on the kernel combination vec-
tor µ include the sparsity inducing L1 regulariza-
tion that constrains µ to lie on the unit simplex
∆(1) = {µ : ‖µ‖1 = 1,µ ≥ 0} and L2 regularization
that restricts µ to lie on the unit sphere S2(1) =
{µ : ‖µ‖2 = 1,µ ≥ 0}. Arguments similar to the one
used to discuss the case of AUC maximization for lin-
ear predictors give us bounds on the Rademacher aver-

ages for these two hypothesis classes in terms of
∥∥∥X̃∥∥∥

2

and
∥∥∥X̃∥∥∥

∞
. Since

∥∥∥X̃∥∥∥
2
≤ κ2√p and

∥∥∥X̃∥∥∥
∞
≤ κ2, we

obtain explicit bounds on the Rademacher averages
that are given in Table 3.

We note that for the L1 regularized case, our bound
has a similar dependence on the number of kernels,
i.e.,
√

log p as the bounds presented in (Cortes et al.,
2010a). For the L2 case however, we have a worse
dependence of

√
p than Cortes et al. (2010a) who get a

4
√
p dependence. However, it is a bit unfair to compare

the two bounds since Cortes et al. (2010a) consider
single stage kernel learning algorithms that try to learn
the kernel combination as well as the classifier in a
single step whereas we are dealing with a two-stage
process where classifier learning is disjoint from the
kernel learning step.

G. Regret Bounds for Reservoir
Sampling Algorithms

The Reservoir Sampling algorithm (Vitter, 1985)
essentially performs sampling without replacement
which means that the samples present in the buffer
are not i.i.d. samples from the preceding stream. Due
to this, proving regret bounds by way of uniform con-
vergence arguments becomes a bit more difficult. How-
ever, there has been a lot of work on analyzing learn-
ing algorithms that learn from non-i.i.d. data such
as data generated by ergodic processes. Of particular
interest is a result by Serfling 2 that gives Hoeffding
style bounds for data generated from a finite popula-
tion without replacement.

Although Serfling’s result does provide a way to ana-
lyze the RS algorithm, doing so directly would require
using arguments that involve covering numbers that
offer bounds that are dimension dependent and that
are not tight. It would be interesting to see if equiv-
alents of the McDiarmid’s inequality and Rademacher
averages can be formulated for samples obtained with-
out replacement to get tighter results. For our pur-
poses, we remedy the situation by proposing a new
sampling algorithm that gives us i.i.d. samples in the
buffer allowing existing techniques to be used to obtain
regret bounds (see Appendices H and I).

H. Analysis of the RS-x Algorithm

In this section we analyze the RS-x substream sam-
pling algorithm and prove its statistical properties.
Recall that the RS-x algorithm simply admits a point
into the buffer if there is space. It performs a Re-
population step at the first instance of overflow which
involves refilling the buffer by sampling with replace-
ment from all the set of points seen so far (includ-
ing the one that caused the overflow). In subsequent
steps, a Normal update step is performed. The follow-
ing theorem formalizes the properties of the sampling
algorithm

Theorem 23. Suppose we have a stream of elements
z1, . . . , zn being sampled into a buffer B of size s using

2R. J. Serfling, Probability Inequalities for the Sum in
Sampling without Replacement, The Annals of Statistics,
2(1):39-48, 1974.

On the Generalization Ability of Online Learning Algorithms for Pairwise Loss Functions

the RS-x algorithm. Then at any time t ≥ s+ 2, each
element of B is an i.i.d. sample from the set Zt−1.

Proof. To prove the results, let us assume that the
buffer contents are addressed using the variables
ζ1, . . . , ζs. We shall first concentrate on a fixed ele-
ment, say ζ1 (which we shall call simply ζ for nota-
tional convenience) of the buffer and inductively ana-
lyze the probability law Pt obeyed by ζ at each time
step t ≥ s+ 2.

We will prove that the probability law obeyed by ζ
at time t is Pt(ζ) = 1

t−1
∑t−1
τ=1 1{ζ=zτ}. The law is

interpreted as saying the following: for any τ ≤ t −
1, P [ζ = zτ] = 1

t−1 and shows that the element ζ is

indeed a uniform sample from the set Zt−1. We would
similarly be able to show this for all locations ζ2, . . . , ζs
which would prove that the elements in the buffer are
indeed identical samples from the preceding stream.
Since at each step, the RS-x algorithm updates all
buffer locations independently, the random variables
ζ1, . . . , ζs are independent as well which would allow us
to conclude that at each step we have s i.i.d. samples
in the buffer as claimed.

We now prove the probability law for ζ. We note that
the repopulation step done at time t = s+ 1 explicitly
ensures that at step t = s+2, the buffer contains s i.i.d
samples from Zs+1 i.e. Ps+2(ζ) = 1

s+1

∑s+1
τ=1 1{ζ=zτ}.

This forms the initialization of our inductive argu-
ment. Now suppose that at the tth time step, the claim
is true and ζ obeys the law Pt(ζ) = 1

t−1
∑t−1
τ=1 1{ζ=zτ}.

At the tth step, we would update the buffer by making
the incoming element zt replace the element present at
the location indexed by ζ with probability 1/(t + 1).
Hence ζ would obey the following law after the update(

1− 1

t

)
Pt(ζ) +

1

t
1{ζ=zt} =

1

t

t∑
τ=1

1{ζ=zτ}

which shows that at the (t+ 1)th step, ζ would follow
the law Pt+1(ζ) = 1

t

∑t
τ=1 1{ζ=zτ} which completes

the inductive argument and the proof.

I. Proof of Theorem 8

We now prove Theorem 8 that gives a high confidence
regret bound for the OLP learning algorithm when
used along with the RS-x buffer update policy. Our
proof proceeds in two steps: in the first step we prove a
uniform convergence type guarantee that would allow
us to convert regret bounds with respect to the finite-
buffer penalties L̂buf

t into regret bounds in in terms of
the all-pairs loss functions L̂t. In the second step we

then prove a regret bound for OLP with respect to
the finite-buffer penalties.

We proceed with the first step of the proof by
proving the lemma given below. Recall that for
any sequence of training examples z1, . . . , zn, we de-
fine, for any h ∈ H, the all-pairs loss function as
L̂t(h) = 1

t−1
∑t−1
τ=1 `(h, zt, zτ). Moreover, if the on-

line learning process uses a buffer, the we also de-
fine the finite-buffer loss function as L̂buf

t (ht−1) =
1
|Bt|

∑
z∈Bt `(ht−1, zt, z).

Lemma 24. Suppose we have an online learning al-
gorithm that incurs buffer penalties based on a buffer
B of size s that is updated using the RS-x algorithm.
Suppose further that the learning algorithm generates
an ensemble h1, . . . , hn−1. Then for any t ∈ [1, n− 1],
with probability at least 1−δ over the choice of the ran-
dom variables used to update the buffer B until time t,
we have

L̂t(ht−1) ≤ L̂buf
t (ht−1) + Cd · O

√ log 1
δ

s

Proof. Suppose t ≤ s+ 1, then since at that point the
buffer stores the stream exactly, we have

L̂t(ht−1) = L̂buf
t (ht−1)

which proves the result. Note that, as Algorithm 2
indicates, at step t = s+1 the buffer is updated (using
the repopulation step) only after the losses have been
calculated and hence step t = s+ 1 still works with a
buffer that stores the stream exactly.

We now analyze the case t > s+1. At each step τ > s,
the RS-x algorithm uses s independent Bernoulli ran-
dom variables (which we call auxiliary random vari-
ables) to update the buffer, call them rτ1 , . . . , r

τ
s where

rτj is used to update the jth item ζj in the buffer.

Let rtj := {rs+1
j , r2j , . . . , r

t
j} ∈ {0, 1}

t
denote an ensem-

ble random variable composed of t − s independent
Bernoulli variables. It is easy to see that the element
ζj is completely determined at the tth step given rt−1j .

Theorem 23 shows, for any t > s + 1, that the buffer
contains s i.i.d. samples from the set Zt−1. Thus, for
any fixed function h ∈ H, we have for any j ∈ [s],

E
rt−1
j

J`(h, zt, ζj)K =
1

t− 1

t−1∑
τ=1

`(h, zt, zτ)

which in turn shows us that

E
rt−1
1 ,...,rt−1

s

r
L̂buf
t (h)

z
=

1

t− 1

t−1∑
τ=1

`(h, zt, zτ) = L̂t(h)

On the Generalization Ability of Online Learning Algorithms for Pairwise Loss Functions

Now consider a ghost sample of auxiliary random vari-
ables r̃t−11 , . . . , r̃t−1s . Since our hypothesis ht−1 is inde-
pendent of these ghost variables, we can write

E
r̃t−1
1 ,...,r̃t−1

s

r
L̂buf
t (ht−1)

z
= L̂t(ht−1)

We recall that error in the proof presented in Zhao
et al. (2011) was to apply such a result on the true
auxiliary variables upon which ht−1 is indeed depen-
dent. Thus we have

L̂t(ht−1)− L̂buf
t (ht−1)

= E
r̃t−1
1 ,...,r̃t−1

s

r
L̂buf
t (ht−1)

z
− L̂buf

t (ht−1)

≤ sup
h∈H

[
E

r̃t−1
1 ,...,r̃t−1

s

r
L̂buf
t (h)

z
− L̂buf

t (h)

]
︸ ︷︷ ︸

gt(r
t−1
1 ,...,rt−1

s)

Now, the perturbation to any of the ensemble vari-
ables rj (a perturbation to an ensemble variable im-
plies a perturbation to one or more variables forming
that ensemble) can only perturb only the element ζj in

the buffer. Since L̂buf
t (ht−1) = 1

s

∑
z∈Bt `(ht−1, zt, z)

and the loss function is B-bounded, this implies that a
perturbation to any of the ensemble variables can only
perturb g(rt−11 , . . . , rt−1s) by at most B/s. Hence an
application of McDiarmid’s inequality gives us, with
probability at least 1− δ,

gt(r
t−1
1 , . . . , rt−1s) ≤ E

rt−1
j

q
gt(r

t−1
1 , . . . , rt−1s)

y
+B

√
log 1

δ

2s

Analyzing the expectation term we get

E
rt−1
j

q
gt(r

t−1
1 , . . . , rt−1s)

y

= E
rt−1
j

t

sup
h∈H

[
E

r̃t−1
1 ,...,r̃t−1

s

r
L̂buf
t (h)

z
− L̂buf

t (h)

]|

≤ E
rt−1
j ,r̃t−1

j

u

vsup
h∈H

1

s

s∑
j=1

`(h, zt, ζ̃j)− `(h, zt, ζj)

}

~

= E
rt−1
j ,r̃t−1

j ,εj

u

vsup
h∈H

1

s

s∑
j=1

εj

(
`(h, zt, ζ̃j)− `(h, zt, ζj)

)}

~

≤ 2 E
rt−1
j ,r̃t−1

j ,εj

u

vsup
h∈H

1

s

s∑
j=1

εj`(h, zt, ζj)

}

~

≤ 2Rs(` ◦ H)

where in the third step we have used the fact that sym-
metrizing a pair of true and ghost ensemble variables

is equivalent to symmetrizing the buffer elements they
determine. In the last step we have exploited the def-
inition of Rademacher averages with the (empirical)

measure 1
t−1

∑t−1
τ=1 δzτ imposed over the domain Z.

For hypothesis classes for which we have R̂s(` ◦ H) =

Cd · O
(√

1
s

)
, this proves the claim.

Using a similar proof progression we can also show the
following:

Lemma 25. For any fixed h ∈ H and any t ∈ [1, n−1],
with probability at least 1 − δ over the choice of the
random variables used to update the buffer B until time
t, we have

L̂buf
t (h) ≤ L̂t(h) + Cd · O

√ log 1
δ

s

Combining Lemmata 24 and 25 and taking a union
bound over all time steps, the following corollary gives
us a buffer to all-pairs conversion bound.

Lemma 26. Suppose we have an online learning al-
gorithm that incurs buffer penalties based on a buffer
B of size s that is updated using the RS-x algorithm.
Suppose further that the learning algorithm generates
an ensemble h1, . . . , hn−1. Then with probability at
least 1−δ over the choice of the random variables used
to update the buffer B, we have

Rn ≤ Rbuf
n + Cd (n− 1) · O

(√
log n

δ

s

)
,

where we recall the definition of the all-pairs regret as

Rn :=

n∑
t=2

L̂t(ht−1)− inf
h∈H

n∑
t=2

L̂t(h)

and the finite-buffer regret as

Rbuf
n :=

n∑
t=2

L̂buf
t (ht−1)− inf

h∈H

n∑
t=2

L̂buf
t (h).

Proof. Let ĥ := arg inf
h∈H

∑n
t=2 L̂t(h). Then Lemma 25

gives us, upon summing over t and taking a union
bound,

n∑
t=2

L̂buf
t (ĥ) ≤

n∑
t=2

L̂t(ĥ) + Cd(n− 1) · O

(√
log n

δ

s

)
,

(11)

On the Generalization Ability of Online Learning Algorithms for Pairwise Loss Functions

whereas Lemma 24 similarly guarantees

n∑
t=2

L̂t(ht−1) ≤
n∑
t=2

L̂buf
t (ht−1) + Cd(n− 1) · O

(√
log n

δ

s

)
,

(12)

where both results hold with high confidence.
Adding the Equations (11) and (12) and using∑n
t=2 L̂buf

t (ht−1) ≤ inf
h∈H

∑n
t=2 L̂buf

t (ĥ)+Rbuf
n completes

the proof.

As the final step of the proof, we give below a finite-
buffer regret bound for the OLP algorithm.

Lemma 27. Suppose the OLP algorithm work-
ing with an s-sized buffer generates an ensemble
w1, . . . ,wn−1. Further suppose that the loss function
` being used is L-Lipschitz and the space of hypotheses
W is a compact subset of a Banach space with a finite
diameter D with respect to the Banach space norm.
Then we have

Rbuf
n ≤ LD

√
n− 1

Proof. We observe that the algorithm OLP is simply a
variant of the GIGA algorithm (Zinkevich, 2003) being
applied with the loss functions `GIGA

t : w 7→ L̂buf
t (w).

Since `GIGA
t inherits the Lipschitz constant of L̂buf

t

which in turn inherits it from `, we can use the analysis
given by Zinkevich (2003) to conclude the proof.

Combining Lemmata 26 and 27 gives us the following
result:

Theorem 28 (Theorem 8 restated). Suppose the
OLP algorithm working with an s-sized buffer gener-
ates an ensemble w1, . . . ,wn−1. Then with probability
at least 1− δ,

Rn

n− 1
≤ O

(
Cd

√
log n

δ

s
+

√
1

n− 1

)

J. Implementing the RS-x Algorithm

Although the RS-x algorithm presented in the paper
allows us to give clean regret bounds, it suffers from
a few drawbacks. From a theoretical point of view,
the algorithm is inferior to Vitter’s RS algorithm in
terms of randomness usage. The RS algorithm (see
(Zhao et al., 2011) for example) uses a Bernoulli ran-
dom variable and a discrete uniform random variable
at each time step. The discrete random variable takes
values in [s] as a result of which the algorithm uses a
total of O (log s) random bits at each step.

Algorithm 3 RS-x2 : An Alternate Implementation of
the RS-x Algorithm

Input: Buffer B, new point zt, buffer size s, timestep t
Output: Updated buffer Bnew

1: if |B| < s then //There is space
2: Bnew ← B ∪ {zt}
3: else //Overflow situation
4: if t = s+ 1 then //Repopulation step
5: TMP = B ∪ {zt}
6: Bnew = φ
7: for i = 1 to s do
8: Select random r ∈ TMP with replacement
9: Bnew ← Bnew ∪ {r}

10: end for
11: else //Normal update step
12: Bnew ← B
13: Sample k ∼ Binomial(s, 1/t)
14: Remove k random elements from Bnew

15: Bnew ← Bnew ∪
(∐k

i=1 {zt}
)

16: end if
17: end if
18: return Bnew

The RS-x algorithm as proposed, on the other hand,
uses s Bernoulli random variables at each step (to de-
cide which buffer elements to replace with the incom-
ing point) taking its randomness usage to O (s) bits.
From a practical point of view this has a few negative
consequences:

1. Due to increased randomness usage, the variance
of the resulting algorithm increases.

2. At step t, the Bernoulli random variables required
all have success probability 1/t. This quantity
drops down to negligible values for even moderate
values of t. Note that Vitter’s RS on the other
hand requires a Bernoulli random variable with
success probability s/t which dies down much
more slowly.

3. Due to the requirement of such high precision ran-
dom variables, the imprecisions of any pseudo ran-
dom generator used to simulate this algorithm be-
come apparent resulting in poor performance.

In order to ameliorate the situation, we propose an al-
ternate implementation of the normal update step of
the RS-x algorithm in Algorithm 3. We call this new
sampling policy RS-x2 . We shall formally demon-
strate the equivalence of the RS-x and the RS-x2

policies by showing that both policies result in a buffer
whose each element is a uniform sample from the pre-
ceding stream with replacement. This shall be done
by proving that the joint distribution of the buffer el-
ements remains the same whether the RS-x normal
update is applied or the RS-x2 normal step is ap-

On the Generalization Ability of Online Learning Algorithms for Pairwise Loss Functions

plied (note that RS-x and RS-x2 have identical re-
population steps). This will ensure that any learning
algorithm will be unable to distinguish between the
two update mechanisms and consequently, our regret
guarantees shall continue to hold.

First we analyze the randomness usage of the RS-x2

update step. The update step first samples a num-
ber Kt ∼ B(s, 1/t) from the binomial distribution and
then replaces Kt random locations with the incoming
point. Choosing k locations without replacement from
a pool of s locations requires at most k log s bits of ran-
domness. Since Kt is sampled from the binomial dis-
tribution B(s, 1/t), we have Kt = O (1) in expectation
(as well as with high probability) since t > s whenever
this step is applied. Hence our randomness usage per
update is at most O (log s) random bits which is much
better than the randomness usage of RS-x and that
actually matches that of Vitter’s RS upto a constant.

To analyze the statistical properties of the RS-x2 up-
date step, let us analyze the state of the buffer after
the update step. In the RS-x algorithm, the state
of the buffer after an update is completely specified
once we enumerate the locations that were replaced
by the incoming point. Let the indicator variable Ri
indicate whether the ith location was replaced or not.
Let r ∈ {0, 1}s denote a fixed pattern of replacements.
Then the original implementation of the update step
of RS-x guarantees that

P
RS-x

[
s∧
i=1

(Ri = ri)

]
=

(
1

t

)‖r‖1 (
1− 1

t

)s−‖r‖1
To analyze the same for the alternate implementation
of the RS-x2 update step, we first notice that choosing
k items from a pool of s without replacement is iden-
tical to choosing the first k locations from a random
permutation of the s items. Let us denote ‖r‖1 = k.
Then we have,

P
RS-x2

[
s∧
i=1

(Ri = ri)

]
=

s∑
j=1

P

[
s∧
i=1

(Ri = ri) ∧Kt = j

]

= P

[
s∧
i=1

(Ri = ri) ∧Kt = k

]

= P

[
s∧
i=1

(Ri = ri)

∣∣∣∣∣Kt = k

]
P [Kt = k]

We have

P [Kt = k] =

(
s

k

)(
1

t

)k (
1− 1

t

)s−k
The number of arrangements of s items such that some
specific k items fall in the first k positions is k!(s−k)!.

Thus we have

P
RS-x2

[
s∧
i=1

(Ri = ri)

]
=

(
s

k

)(
1

t

)k (
1− 1

t

)s−k
k!(s− k)!

s!

=

(
1

t

)k (
1− 1

t

)s−k
= P

RS-x

[
s∧
i=1

(Ri = ri)

]

which completes the argument.

K. Additional Experimental Results

Here we present experimental results on 14 different
benchmark datasets (refer to Figure 3) comparing the
OLP algorithm using the RS-x2 buffer policy with
the OAMgra algorithm using the RS buffer policy. We
continue to observe the trend that OLP performs com-
petitively to OAMgra while enjoying a slight advantage
in small buffer situations in most cases.

On the Generalization Ability of Online Learning Algorithms for Pairwise Loss Functions

 0.3

 0.4

 0.5

 0.6

 0.7

 0.8

 0.9

 1

 0 50 100 150 200 250 300

A
ve

ra
ge

 A
U

C
 v

al
ue

Buffer size

Vitter’s RS Policy
RS-x Policy

(a) Fourclass

 0.5

 0.6

 0.7

 0.8

 0 50 100 150 200

A
ve

ra
ge

 A
U

C
 v

al
ue

Buffer size

Vitter’s RS Policy
RS-x Policy

(b) Liver Disorders

 0.8

 0.85

 0.9

 0.95

 0 20 40 60 80 100

A
ve

ra
ge

 A
U

C
 v

al
ue

Buffer size

Vitter’s RS Policy
RS-x Policy

(c) Heart

 0.7

 0.75

 0.8

 0.85

 0.9

 0 50 100 150 200 250 300 350 400

A
ve

ra
ge

 A
U

C
 v

al
ue

Buffer size

Vitter’s RS Policy
RS-x Policy

(d) Diabetes

 0.99

 0.995

 1

 0 50 100 150 200 250 300

A
ve

ra
ge

 A
U

C
 v

al
ue

Buffer size

Vitter’s RS Policy
RS-x Policy

(e) Breast Cancer

 0.4

 0.5

 0.6

 0.7

 0.8

 0 100 200 300 400 500

A
ve

ra
ge

 A
U

C
 v

al
ue

Buffer size

Vitter’s RS Policy
RS-x Policy

(f) Vowel

 0.7

 0.8

 0.9

 1

 0 50 100 150 200

A
ve

ra
ge

 A
U

C
 v

al
ue

Buffer size

Vitter’s RS Policy
RS-x Policy

(g) Ionosphere

 0.4

 0.5

 0.6

 0.7

 0.8

 0.9

 0 100 200 300 400 500

A
ve

ra
ge

 A
U

C
 v

al
ue

Buffer size

Vitter’s RS Policy
RS-x Policy

(h) German

 0.5

 0.6

 0.7

 0.8

 0.9

 0 100 200 300 400 500

A
ve

ra
ge

 A
U

C
 v

al
ue

Buffer size

Vitter’s RS Policy
RS-x Policy

(i) SVMguide3

 0.92

 0.93

 0.94

 0.95

 0.96

 0.97

 0.98

 0.99

 1

 0 50 100 150 200 250 300

A
ve

ra
ge

 A
U

C
 v

al
ue

Buffer size

Vitter’s RS Policy
RS-x Policy

(j) SVMguide1

 0.6

 0.7

 0.8

 0.9

 0 50 100 150 200 250 300

A
ve

ra
ge

 A
U

C
 v

al
ue

Buffer size

Vitter’s RS Policy
RS-x Policy

(k) Statlog

 0.8

 0.9

 1

 0 50 100 150 200 250 300

A
ve

ra
ge

 A
U

C
 v

al
ue

Buffer size

Vitter’s RS Policy
RS-x Policy

(l) Cod RNA

 0.5

 0.6

 0.7

 0.8

 0 50 100 150 200 250 300

A
ve

ra
ge

 A
U

C
 v

al
ue

Buffer size

Vitter’s RS Policy
RS-x Policy

(m) Letter

 0.6

 0.7

 0.8

 0.9

 0 50 100 150 200 250 300

A
ve

ra
ge

 A
U

C
 v

al
ue

Buffer size

Vitter’s RS Policy
RS-x Policy

(n) Adult

Figure 3. Comparison between OAMgra (using RS policy) and OLP (using RS-x policy) on AUC maximization tasks.

